Home/ Blog/Community

Archive for the ‘Community’ Category

This Week in The Internet of Things: Friday Favorites

Smart Stitches Send Doctors Information on Wounds as They Heal
Modern medicine has come a long way thanks to IoT, and researchers at Tufts University who are working towards pushing the limits even further with the development of “smart stitches”. Learn how these “smart stitches” are designed to close wounds while simultaneously updating doctors on the healing progress.

7-Eleven delivers by drone in Reno including, yes, Slurpees
Are you thirsty but it’s too hot to walk to the nearest 7-Eleven? Well, read how you can have slushies, donuts, and more delivered to your door step courtesy of the first delivery drone built by tech company, Flirtey.

Developing Blockly for Propeller: Our Team Includes Three Student Interns Who’ve Progressed Quickly
In addition to helping develop the Blockly for Propeller demo system; these teenage geniuses have been working hard on a few projects of their own. Check out Blake’s Intruder Alert system he made using Digi XBee, Roxy’s M&M Color Identifying robotics project, and watch Carson’s 0.95” OLED in action.

BuzzCloud Wants to Take the Sting Out of Urban Beekeeping With Its iBuzzHive
With Colony Collapse Disorder (CCD) on the rise, even the honeybees are taking to IoT in hopes to make beekeeping possible (and painless) in Urban environments. Watch how BuzzCloud plans to use 3D-printing and IoT to save the troubled population of these important pollinators:

Facebook’s Internet-Broadcasting Drone Takes to the Skies for the First Time
In effort to increase internet access across the world, Facebook built a solar powered, lightweight, 42 m wide drone named Aquila. See for yourself how Facebook designed Aquila to stay airborne for 90 consecutive days.

This Week in The Internet of Things: Friday Favorites

GRAB THINGS WITH AN ARDUINO ROBOTIC GRIPPER
The robotic gripper built by high school graduates, Sam Baumgarten and Graham Hughes, use Digi XBee for transmitting singles from the control glove to the gripper. Watch below the impressive robot gripper in action.

DIY Sleep Apnea Monitoring
With hundreds of people suffering from sleep apnea everyday, we can all appreciate Marc Merlin’s Sleep Apnea Monitoring rig that collects data through Digi XBee. Although we do not endorse Digi DIY projects, we are very impressed with Merlin’s dedication and research.

Vodafone IoT Barometer: 76% Of Businesses Say Internet of Things Will Be Critical To Future Success
Studies show IoT is even more significant to business success with these seven key insights to prove it.

Connected Healthcare: Internet of Things Examples in Health Care
The IoT influence in the healthcare industry is not only changing lives but saving them as well by adjustable patient monitoring, enhanced drug management, augmented asset monitoring and tracking, early intervention and so much more. Visit Cardiauvergne to learn more about how the remote healthcare monitoring system came to life with Digi ConnectPort.

Digi Int’l XBee SX RF Module | Digi-Key Daily
Digi-Key created this informational video to highlight how Digi XBee SX makes long range communication possible by using low power consumption. Visit the official Digi XBee SX product page to learn more about the design and software.

Digi XBee® S2C 802.15.4 – Let Your Imagination Run Wireless!

Posted on:

Digi XBee® is the world’s #1 RF module because our common footprint is shared across protocols and frequencies. Anything is possible with Digi XBee – from the small science project in the lab to NASA monitoring payloads on a rocket, Digi XBee gives you the tools and flexibility you need to rapidly innovate. The latest example in this broad line of modules is the Digi XBee S2C 802.15.4 which is now available with the Silicon Labs Ember® EM35x transceiver.

This latest module is ideal for applications requiring low latency and predictable communication timing. The Digi XBee S2C 802.15.4 is also ideal when your application requires robust multipoint wireless connectivity with reduced power consumption, support for the over-the-air firmware updates, and an upgrade path to DigiMesh® or ZigBee® Mesh protocols.

New Digi XBee S2C 802.15.4 Offered in Through-Hole & SMT Form Factors

Anyone deploying Digi XBee can swap one Digi XBee for another. You don’t have to design a printed circuit board to take advantage of Silicon Labs’ latest chip – Digi has done it for you on the Digi XBee platform saving you time and giving you the confidence to get connected quickly and easily. Providing quick, robust communication in point-to-point, peer-to-peer, and multipoint/star configurations, Digi XBee S2C 802.15.4 products enable robust end-point connectivity with ease. Whether deployed as a pure cable replacement for simple serial communication, or as part of a more complex hub-and-spoke network of sensors, Digi XBee 802.15.4 modules maximize performance and ease of development.

Digi XBee is a special product because of our customers: the innovators, the hackers, the problem-solvers — whatever you call yourself, Digi is dedicated to providing you with everything you need to quickly create wireless connectivity solutions. Let your imagination run wireless!

Click here for a “Digi XBee 802.15.4 Protocol Comparison” Technical Brief>>

The Next Chapter in the Digi Story: Connect with Confidence

Posted on:

This year represents a transformational moment for Digi as a company. We celebrated our 30th birthday. We have a new CEO. We’ve made a new acquisition and have brought on customers that represent some of the world’s most innovative companies.

Not too long ago, we held a retirement gathering for one of our long time employees. She’d been with the company for 28 years. She and others who have been here for the long haul started sharing stories about how things were in the early days. The stories were the perfect anecdote for how much things have changed over the years—over the decades. Those stories show how much Digi have evolved. But just as much as they show Digi’s evolution, the stories represent our powerful foundation of strength that we’re carrying into the future.


About 18 months ago, we set out to define how we would bring the meaning of that foundation and evolution to our customers, partners and the public in the clearest way possible. We asked ourselves: “how can our brand embody the sentiment of the stories our employees tell? How can our brand articulate why those innovative companies turn to Digi over others?”

To start, we went back to our roots. To our core value: listening. With 30 years of history and our diversity of experience, that’s what made sense. You can find Digi products in vast oil fields, intensive care units, crowded freeways, factory floors, and in retail stores on Black Friday. There are millions of devices deployed in the world, each with a critical task to perform. We needed to talk to the people who depend on those connections in order to articulate our mission best.

So, we conducted deep customer and partner interviews, employee surveys and spent time with our partners. All in all, we went through 100 interviews, 125 surveys and 10 workshops—more than 500 hours of listening.

It led us to a key finding: it’s time to modernize the Digi brand, but to emphasize not change, who we are at our core.

So, here we are today.

What is the new brand?

At its core, we have the brand promise, what you can expect from Digi, why would you choose Digi:

Digi works with you to solve mission-critical and business-critical machine communication challenges in the most demanding environments. You get proven, no-nonsense solutions that work, and keep working. With Digi, you can create, deploy and manage your M2M and IoT connections with confidence.

What we heard in those 500+ hours of research is that there’s something our customers get when they choose Digi: trust. They trust the people, the products and the company.

In short, we help you CONNECT WITH CONFIDENCE.Digi-Logo-Timeline

You’ll see “connect with confidence” as our new tagline and continued promise to you. You’ll also see the evolution of the Digi corporate logo. It represents exactly what the tagline does: sturdy, solid, reliable Digi. We’ve also gotten Digi out of the box and added a new shade of green—energetic and agile. We are company that our customers can connect with confidence, and we’re dedicated to doing so with fresh energy.

Thank you to everyone who took the time to play a role in this process. Listening to you has helped us get to a place where we’re truly sharing who we are with the world.

We’d love to hear your thoughts in the comments section below.

Illinois Institute of Technology Students Bring Connected Solutions to Life with XBee

Posted on:

Urban gardens that send text alerts when vegetables are ready, autonomous drones, solar powered mesh networks—these innovations aren’t just ideas, they’re real projects that students at the Illinois Institute of Technology (IIT) created in less than eight weeks.

The Interprofessional Projects Program (IPRO) at IIT gives students the opportunity to work with teams across multiple disciplines to bring ideas to life.

“The IPRO program prepares students for the practical challenges they will face in a changing workplace—emulating a cross-functional team.” The program aims to give students hands on experience and create real solutions for the complex issues. 

Students from IIT’s programs including engineering, science, business, law, psychology, design and architecture complete nearly 90 projects via IPRO every year.

Jeremy Hajek, a professor at IIT has students learn about and work with XBee. First his class reads Building Wireless Sensor Networks by Digi’s Chief Innovation Officer, Rob Faludi. Then, they bring their own connected ideas to life.

One group used Digi’s XBee and Arduino to power a solar power mesh network.

“XBees are radio modules that communicate to each other, being able to be set up any topology including point-to-point, star and mesh, and can go much further than Bluetooth. The router and endpoint collect data and send it to the coordinator, which is in charge of all of the data that passes in its network. XBees are useful to a bunch of purposes, we used them not only for monitoring temperature data and displaying it on the monitor, but also uploading this new data on a web server.”

Just like we hear XBee customers say so often, the students mentioned that they selected the XBee because it’s cost effective and easy to use. “It just does exactly what we need it to do,” one of the students said.

To take the project a step further, another group created an Android and Google Glass app to display the data collected by the network. The team pointed out how this could be used by maintenance professionals, landlords and building operators to truly keep their finger on the pulse of facilities.

Digi customers are in fact using XBees to collect and access data to better businesses today.

Similar to some of the solutions that students put together for urban agriculture, DigiBale created a foundational communications system in the form of a “Farm Automation Starter Kit” that can be used to collect data for agriculture processes.

The kit includes ConnectPort X2 Gateway, three Digi XBee-PRO 900HP modules, a subscription to Device Cloud and a smartphone application. Its an ideal setup for creating a mid-sized mesh network that provides accurate soil moisture measurements and converts two electrical devices into automated and remotely managed devices. It enables farmers and growers to setup a system with simple scheduling and activation configuration to devices and access to statistics and activity history of all sensors and devices.

RMONI too, selected XBee due to its ease of use. “We’re not RF experts. We don’t want to worry about the RF design, so it was very convenient to source XBee and get the support of Digi’s partners and resellers to get to market quickly,” said Bart Meekers, CEO, RMONI.

RMONI uses the XBee to track the environment around food and medication while it’s in transit and on store shelves. This helps to ensure safety and quality. Even the slightest increase in temperature while handling the products can lead to deterioration, invalid results and considerable loss in revenue, so this is a vital application.

Schréder created Owlet, a solution that uses mesh networking for intelligent street lights. Each light is equipped with a high performance LED array and a XBee ZigBee module. The XBee modules enable groups of lights to form a ZigBee mesh network, which connects to a cellular WAN—a Digi ConnectPort X4 cellular gateway.

Innovators, whether they’re some of Digi’s bigger XBee customers or students, agree that XBee is the most easy and to-the-point way to add wireless communication to a solution.

Digi’s Golden Birthday: Celebrating 30 Years of Connected Technology

Posted on:

Today marks Digi’s golden birthday! Over the last 30 years, a lot has changed and more is on the way, so for a little fun, we decided to take a look back at Digi’s history. When was XBee invented? When did the Digi diamond logo come into existence? All those answers and more are below. Here’s to 30 more years!

Digi-History

XBee Tech Tip: Using Remote AT Commands to Toggle an IO on a Remote XBee

Posted on:

This Tech Tip is brought to you by Digi Applications Engineer Mark Grierson.

Using API mode it is possible to send commands from a transmitting radio to a receiving radio. This allows for module parameter registers on a remote device to be queried or set.

One useful application of this feature is to toggle an IO on a remote radio from a high to a low state. In this manner the radios can be used as a wireless relay to control a wide variety of remote devices.

Overview

In this tutorial we will be using XCTU to create and send 2 distinct API frames. One frame will toggle the remote radio’s IO high, and the other will toggle the remote radio’s IO low. You could easily program a micro or other piece of hardware to issue these commands.

Setup

To perform this tutorial you will require the following materials:

  • 2 – XBee 802.15.4 RF modules.
  • 2 – Interface boards (USB or RS232) *the use of DEV boards (XBIB-U-DEV or XBIB-R-DEV) will allow the use of onboard LEDs to observe output
  • 1 – PC with XCTU software installed. Click here to download.
  • Serial or USB cables to connect interface boards to the PC

Procedure

Select one radio to operate as your Base and one to operate as your Remote.

Both radios are programmed with the default settings with the following exceptions. API is enabled on the Base radio (AP=1), D4=4 on the remote radio

In this example my radios have the following factory set 64 bit addresses:

Base:

SH=0013A200

SL=403199EB

AP=1

Remote:

SH=0013A200

SL=4055F498

D4=4

Connect the base radio to the PC and launch XCTU. Connect the radio to XCTU by clicking on the Add Devices icon and selecting the appropriate com port and settings and clicking finish.

The Radio will now be listed on the left side of XCTU as in the following screenshot.

Open the Console mode of XCTU by clicking on the Console icon.

Open the serial connection with the base radio by selecting the Connect icon.   The image will change to the connected status.

The Console should indicate that it is opn as an API Console.   If it is showing that it is an AT console, return to the module settings tab and ensure API is enabled (AP=1)

In the Send a single frame section open the “Add a frame” dialog box by clicking on the  .  Rename your frame name to Low, then click on the Packet generator icon  to open the packet generator.

We will now use the built in API frames generator to create two remote AT command (type 0x17) frames paying close attention to the structure of this frame as outlined in the API section of the Product manual. One frame will set the remote radios Digital output High and the other will set it Low.

Select “0x17 – Remote AT Command” as the frame type and then set the 64 bit address to the SH and SL of the remote module.  Set the AT command to ASCII D4 and the Parameter value to HEX 04 as in the following screenshot.

*Please note that the command D4 (bytes 17 and 18) is issued as 44 and 34. 34 is the hex equivalent of the ASCII character 4. The parameter value setting for D4 (byte 19) is issued as 04 and 05. This is the hex equivalent of decimal 4 and 5 respectively.

Click OK and the frame contents will appear in the Add API frame to the list dialog box as follows:

Click on Add frame.

Repeat the procedure for your set high frame changing the parameter value to 0x05 and create a second frame with a frame name of High

Click on Add frame.

Your API console should now look something like this:

Here are the frames configured for the address of my radios. Your packets will contain the address of your remote radio and the checksum will be different.

Note: I have chosen to toggle DIO4 as it is connected to LED 3 on the XBIB-DEV board and allows easy viewing of the toggle process without the use of a voltmeter or scope.

Command to set DIO4 high:

7E 00 10 17 01 00 13 A2 00 40 55 F4 98 FF FE 02 44 34 05 95

Command to set DIO4 Low:

7E 00 10 17 01 00 13 A2 00 40 55 F4 98 FF FE 02 44 34 04 96

You can now send the commands to the base radio which will in turn send remote commands to the remote radio to set its digital output D4 (Pin 11). Do this by highlighting the appropriate frame (high or Low) and clicking on “Send selected frame.”

The LED associated with the D4 pin should go off and on as you send these two frames. You may also verify the state by connecting a multi-meter to Pin 11 of the module to check its voltage state as it is toggled from High to low. The pin should read about 3.3v when high and about 0 volts when low.

You can also view and parse the frames and their corresponding response packets in the Frame log section of the display. A status of 0x00 (OK) indicates that the frame was sent successfully and acknowledged by the remote module.

If you do not receive a response frame please check your API packet for accuracy.

Note: This article is written using the XBee 802.15.4 radios but the concepts are applicable to all of the XBee radio lineup that offer API mode.

XCTU 6.2 – Linux Support and More

Posted on:

If you’ve opened up XCTU recently you may have noticed a prompt to update. Among many performance upgrades, version 6.2 of XCTU has a variety of new features and most importantly we now support Linux!Linux

Here are the release notes for XCTU 6.2:

Serial Console Tool
The Serial Console tool has been included within the Tools drop-down menu of the main toolbar. This tool allows you to interact with your radio modules without having to discover and add them to the list of radio modules.

  • Added a control in the consoles toolbar to see and manage the serial port flow control lines.
  • Added a new recording feature to XCTU consoles that allows you to record all the sent and received data in a log file with CSV format.
  • Status icon of consoles tabs now changes depending on the status of the console to display the following actions: connected, disconnected, sending and receiving data.

API Console Frames Filter 
Added a new frames filtering option in the API console in order to filter the frames of the table. This allows you to filter down to specific packet types and even look at packets being sent or received from a specific device on your XBee network.

Firmware Release Notes Viewer
Included a new feature that allows users to explore and read the Release Notes of the released XBee firmwares in all the firmware list controls.

Documentation Updated With More Graphics and Video
We’ve also done a massive overhaul of our documentation which includes step-by-step walkthroughs of each feature as well as some videos like this one on updating firmware:


With XCTU documentation being moved to an online system we can guarantee up to date information and facilitate its access outside XCTU. Additionally, a PDF copy has been included in the tool, so you can access the documentation while working without an internet connection. Click here to access the new resource.

Download
If you haven’t already updated from within XCTU, or you’re a Linux user that has patiently waited for XCTU, just click here to download the software to your computer. Have fun!

Contact a Digi expert and get started today! Contact Us