Home > Blog > Posts Tagged "Arduino"

NVdrones Gives Developers a Platform to Quickly Create Drone Applications

Posted on:

NVDronesThe core idea for creating the XBee was to create a module for wireless communications that gives our customers the option to choose the best wireless technology for the job. Whether you need long-range communication spanning many miles using the 900MHz band or mesh networking with ZigBee or more data throughput using Wi-Fi. The XBee enables us to offer our customers wireless flexibility to meet their needs.

NVDrones is helping developers integrate XBee for wireless communication in drone designs. The team aims to give software developers all the necessary tools to create drone applications.

They created a board that is plug-n-play compatible with top drone platforms and an XBee socket that allows developers to simply plug in their XBee of choice (check out the image below). By default, they offer the XBee PRO 900MHz, which is ideal for drone applications considering it’s substantial LOS range — enabling autonomous drones. This autonomous operation is controlled by the apps created with the hardware and easy-to-use SDKs.

NVDrones

With library support for Arduino, Android, and Javascript, their platform was meant to be user-friendly for all developers no matter their background — even those with limited or no hardware experience. If you have an itch to start creating a drone application, but lack experience, this is a great starting point.

You can check out their developer website at developers.NVdrones.com. They’ve just launched and are taking pre-orders now.

A Better Way to Build Your Next Project: Software Tools for XBee

Posted on:

The open source movement and strong maker community has led to the creation of a number platforms that give developers a quick and efficient way to create a proof of concept, prototype, or even a final product. We’ve discovered and created quite a few that involve XBee over the last several years so we put some of our favorites in one place for you.connect-devices-to-the-cloud (1)

XBee Java Library
You may remember we released the XBee Java Library earlier this year. This library was created in-house at Digi, so our customers can get to market more quickly with their Java based applications, but we also wanted to share it with the rest of you XBee developers out there. Feel free to make your own contributions! Download the library on Github.

XBee Arduino Library
A few years ago, Andrew Rapp created this extremely useful library for projects involving Arduino and XBee wireless communication. The project supports both Series 1 (802.15.4) and Series 2 (ZigBee) XBee radios. Another fellow XBee’er, Boris, supplemented this library by writing a helpful blog post to help get you startedThe library is available here on Github.

XBee Internet Gateway – XIG
Initially created by Rob Faludi to easily connect XBee to the Internet, the XIG runs on Windows, Macintosh and Linux computers as well as ConnectPort Gateways. If you’re looking to integrate your XBee networks with online databases, web pages, social networks, or other online services this is the starting point for your IoT application. The XIG is available for download here.

Rob has also compiled a list of all XBee libraries living out on the Internet including Max MSP and Python. You can view that on Digi’s Examples site here.

Third Party Development Platforms

In addition to some of the tools we’ve created at Digi, there are a number of companies solely focused on creating development platforms for rapid prototyping and product creation.

 

macchina.io
macchina.io is an open source software toolkit for quickly building embedded applications for the Internet of Things that run on Linux-based devices like the Raspberry Pi and Beaglebone. macchina.io implements a web-enabled, modular and extensible JavaScript and C++ runtime environment to enable applications to talk to various sensors, devices, and cloud services. The first release of macchina.io even includes support for XBee ZigBee radios.

Temboo
Temboo is a platform that simplifies interactions between multiple APIs, so you don’t need to spend hours combing through programming details, but rather focus on creating your IoT application. You can easily generate code in multiple languages for tasks like posting to Twitter, creating Google Calendar events, or more advanced processes like monitoring urban noise levels.

Once the code is generated it can simply be copy and pasted into an IDE. Temboo’s library contains thousands of Choreos that handle API interactions, work with databases, perform code utility functions, and more. Check out this video that walks you through building an XBee tank monitoring demo with Temboo Choreos.

NVDrones
Have you wanted to create and program your own Drone? NVDrones has the tools you need to create your one-of-a-kind UAV. With support for common languages like Arduino, Java and Javascript, the platform gives developers the tools necessary to create their own drone applications. Their API ensures quick development so you can focus your efforts on creating a unique and valuable product. Visit their developers site to learn more about NVDrones.

Looking for More 
Did we miss one of your favorite XBee development tools? Never fear. Just leave a comment below or let us know on Twitter at @XBeeWireless and we will add it to the post!

Look What I Made: XBee Project Gallery Update

Posted on:

We are always finding amazing XBee projects. From interactive musical landscapes to creating virtual reality - the imagination of XBee makers is endless. We have some new additions to the XBee Project Gallery and wanted to share them with you. Let us know your favorite!

 

Thermo Mapping Device
This system makes creating a graphical representation of an object’s temperature possible. It’s comprised of three cameras placed around an object so the user can map out an object’s temperature in three dimensions. The graphic is displayed on an LCD display that is powered by Arduino.

Project Anywhere
Virtual reality is rapidly becoming more prevalent but many systems are too expensive for consumers. Project Anywhere is addressing this by using a smartphone as the primary interface, 3D printed parts, and other off-the-shelf components like Arduino. This drastically reduces the cost of the system — making it more accessible to consumers.

Felted Terrain
Felted Terrain is an interactive landscape that users can touch to generate sound. The installation uses fabric woven with conductive thread so a Lilypad with XBee can be woven into the design. As users touch parts of the landscape, XBee sends data to computer to create a tone based on where the user touched.

Do you have an XBee project you would like featured in the XBee Project Gallery? You can submit your own or someone else’s project here.

This Week in the Internet of Things: Friday Favorites

Posted on:

The Internet of Things is developing and buzzing all around us. Throughout the week we come across innovative projects, brilliant articles and posts that support and feature the innovators and companies that make our business possible. Here’s our list of favorites from this week’s journey on the Web.

sleeve_wearable-650-80
 

Happy Internet of Things Day | Deutsche  Telekom Blog

How the Internet of Things Will Change the Future of Sport | IT Wire

Internet of Things Relay for Home Automation Using Arduino | Geeky Gadgets

With Meld, Another Step Toward the Internet of Tasty Things | New York Times

Six Things You Should Know About the Internet of Things | Tech Radar

Please tell us in the comments below or Tweet us, @DigiDotCom– we would love to share your findings too. You can also follow all of the commentary and discussion with the hashtag #FridayFavorites.

An Idea Worth Spreading: Internet of Things TED Talks

Posted on: 3 Comments

We’ve gathered these Internet of Things related TED talks to peak your interest, stir your curiosity and inspire you. We’ll continue to collect riveting talks about or related to the Internet of Things by remarkable people, free to the world thanks to TED.

Massimo Banzi: How Arduino is open-sourcing imagination

Massimo Banzi helped invent the Arduino (along with Tom Igoe and others), a tiny, easy-to-use open-source microcontroller that’s inspired thousands of people around the world to make cool things — from toys to satellite gear. Because, as he says, “You don’t need anyone’s permission to make something great.


Kevin Kelly on the next 5,000 days of the web

At the 2007 EG conference, Kevin Kelly shares a fun stat: The World Wide Web, as we know it, is only 5,000 days old. Now, Kelly asks, how can we predict what’s coming in the next 5,000 days?

 

Kristina Höök: Living in an Internet of Things World

Kristina Höök is a Professor in Human-Machine Interaction at the Department of Computer and Systems Sciences and an employee at SICS, the Swedish Institute of Computer Science. Kristina was a founder of the Mobile Life Centre. Her research focuses on bodily and emotional interaction. She will talk about “The Internet of Things” – uniquely identifiable objects virtually represented in an Internet-like structure. www.tedxkth.com TEDxKTH – ICT as a Game Changer


Vijay Kumar: Robots that fly … and cooperate

In his lab at Penn, Vijay Kumar and his team build flying quadrotors, small, agile robots that swarm, sense each other, and form ad hoc teams — for construction, surveying disasters and far more.


Tim Berners: Lee on the next Web

20 years ago, Tim Berners-Lee invented the World Wide Web. For his next project, he’s building a web for open, linked data that could do for numbers what the Web did for words, pictures, video: unlock our data and reframe the way we use it together.

 

Andy Stanford-Clark: Innovation Begins at Home

Dr Andy Stanford-Clark is a Distinguished Engineer and Master Inventor at IBM UK. He specializes in technologies which are helping to make the planet smarter, by analysing and reacting to data from remote sensors.

 

 

John Barrett: The Internet of Things

Dr. John Barrett is Head of Academic Studies at the Nimbus Centre for Embedded Systems Research at Cork Institute of Technology (CIT) and Group Director of the Centre’s Smart Systems Integration Research Group. His research is focused on packaging, miniaturisation and embedding of smart systems in materials, objects and structures.

 

 

Arlen Nipper: The Internet of Things is Just Getting Started

Arlen Nipper has been designing embedded computer hardware and software for 33 years.  Across his entire career, Arlen has been passionate about applying embedded computer technology to existing paradigm problems in the industrial controls and automation market sector.

 

David Cuartielles – Open Source Hardware

David is the creator and co-founder of Arduino, which is an open-source single-board microcontroller, descendant of the open-source Wiring Platform, designed to make the process of using electronics in multidisciplinary projects more accessible

Rodolphe el-Khoury: Designing for the Internet of Things

 As co-director of RAD Lab, el-Khoury researches architectural applications for information technology aiming for enhanced responsiveness and sustainability in buildings and cities.

Chris Rezendes: Rethink Money and Meaning with the Internet of Things

Chris Rezendes, founder and president of INEX Advisors, talks about the emergence of the Internet of Things. While the focus of the IoT has been on profit, Rezendes argues for a broader perspective. From water wells in Africa to America’s own transportation infrastructure, the Internet of Things can help us put people above machines, faces before screens, and find the path for “AND.”

 

The is just the beginning of what we hope will be a growing list of TED videos, and meaningful Internet of Things conversations. Let us know if you would like to add a video to this list in the comments section or on Twitter.

Three Things You Can Build with XBee This Weekend

Posted on:

Have a couple spare XBees, microcontrollers, and some free time? Here are a few simple projects that you can build to put those RF modules and other electronic goodies to use. Below, you’ll find project descriptions as well as links to step-by-step instructions.

 

Wireless Text to Speech Device
Want to transform serial data into sound? This project allows you to type into a serial terminal connected to an XBee, and when you press enter, the words are sent to another XBee enabled text-to-speech module that speaks the words out loud on a connected speaker. Click here for instructions.

Wireless Disco Ball Controller
Is it party time? We have the perfect solution! This project uses a set of XBees and an Arduino to control a disco ball’s lighting as well as how fast it revolves. Click here for instructions.

XBee Rock, Paper, Scissors Game
Need a fun way to determine who should do the dishes or take the trash out? How about a wireless and interactive game of Rock, Paper, Scissors? This project uses two Mbed microcontrollers and a couple of Digi XBee radios to enable two people to choose a button representing either Rock, Paper, or Scissors and determines the winner on your own LCD screen. Click here for instructions.

Check out examples.digi.com for more projects. There, you can browse tutorials for beginner, intermediate, and even experienced XBee developers. Once you’re done building, feel free to share them with us on Twitter, Facebook, or Google+ using the #XBee hashtag. Happy building!

Digi Employee Hackathon: Developing with Arduino and Mbed Microcontrollers

Posted on: 3 Comments

Last week, Digi engineers convened at our headquarters in Minneapolis for their annual meeting. We also took this time to hold a Hackathon. For this Hackathon, there was a requirement of using both an Arduino and Mbed microcontroller in each team’s design and connect the two microcontrollers via XBee. Here are a few of the projects that were created.

Aquariometer

The goal of the project was to give fish tank owners and pet shop managers a complete solution for monitoring their aquariums. Temperature changes can be detrimental to aquatic life.  Additonally, continuous monitoring of the tank’s temperature can prevent serious damage to a heater if there is an issue. It’s also important to maintain a proper water level. If the levels get too low, it can cause damage to the aquarium’s filtering system.

The project shows the tank level and temperature at a glance with a shiny RGB LED light strip. The height of the lights represents the level in the tank and temperature is reflected by the color of the lights. So, when the temperature is warm, the lights turn red and when the temperature is cool, the light strip turns blue.

The mbed microcontroller was connected to the temperature sensor and the scale, which is used to measure the level of the tank. XBee sent the sensor readings from the tank to an Arduino which processes the sensor readings and controls the LED strip.

Team Members: Don Schleede and Jayna Locke 

Wireless Scoreboard

We’re a competitive bunch. In the heat of competition, you need a way to keep score. That’s why the wireless scoreboard was created.

The design consisted of an Arduino board and mbed board to meet the competition criteria. The mbed was connected to buttons that the user can push to enter a point. There are buttons for the home and away team as well as a reset button to set the score back to zero. The score is displayed on an LCD screen connected to an Arduino. The two microcontrollers communicate via XBee, so you can place the scoreboard and control panel in convenient locations.

Team Members: Jonathan Young

ReMorse

People still use Morse code… right? That’s beside the point. Now, there’s finally a way to send your friends and colleagues Morse code messages.

ReMorse is a high-end, lo-fi, vintage, wireless communication device that makes it easy to send very important, highly secure, messages to those you need to reach. The user simply enters in their message on a laptop, hits send, and the message begins playing from the speaker. The receiver processes the morse code and translates the message.

Team Members: Aaron Kurland, Gene Fodor

CarDuinoIMG_0118

Have you ever left for work in a hurry only to second guess whether or not you closed the garage door? Fear no more. The CarDuino ensures this is a problem of the past.

The team’s prototype consisted of an RC car and miniature garage door, but could easily be expanded to work in the real world. On board the remote control vehicle is an Arduino and XBee. If the door is left open, the driver is notified with a jingle. They can then choose to close the garage door from their car or acknowledge the alarm and turn it off. The range of the device is about one mile out on the road!

 Closing

The goal of the Hackathon was to familiarize everyone with developing on both the Arduino and MBed platforms. We learned a lot and identified strengths and weaknesses in both platforms and we got some amazing projects as a result. Click here to check out past Hackathons we’ve held at Digi. Here’s to more hackathons in the future!

The Pool by Jen Lewin: XBee Art at i Light Marina Bay Festival

Posted on:

 

The Straits Times
Jen Lewin’s project The Pool, is stealing the show at this year’s i Light Marina Bay Festival. The festival aims to promote environmentally-responsible behavior and artists are incorporating recyclable materials and energy efficient lighting in their interactive art installations.

The Pool consists of over 100 interactive pads that emit colorful light and react to users’ movements. As participants move across the installation the pads send out colors and blend together to create a stunning visual display. Each pad has a simple set of rules that reacts to information being sent to and from sensors on every pad throughout the Pool. More than 100 XBee 802.15.4 radios send this information wirelessly from an Arduino in each pad that creates the colorful reactions. The project is monitored and updated remotely using a Digi ConnectPort X2e XBee gateway via Device Cloud.

The Pool was even featured on the front-page of The Straits Times, Singapore’s most widely read newspaper. Congrats Jen! The next stop for The Pool will be at Vivid Sydney May 23.

Check out Jen Lewin’s website to see more of her work.