Home/ Blog/Posts Tagged "M2M"

This Week in The Internet of Things: Friday Favorites

Smart Stitches Send Doctors Information on Wounds as They Heal
Modern medicine has come a long way thanks to IoT, and researchers at Tufts University who are working towards pushing the limits even further with the development of “smart stitches”. Learn how these “smart stitches” are designed to close wounds while simultaneously updating doctors on the healing progress.

7-Eleven delivers by drone in Reno including, yes, Slurpees
Are you thirsty but it’s too hot to walk to the nearest 7-Eleven? Well, read how you can have slushies, donuts, and more delivered to your door step courtesy of the first delivery drone built by tech company, Flirtey.

Developing Blockly for Propeller: Our Team Includes Three Student Interns Who’ve Progressed Quickly
In addition to helping develop the Blockly for Propeller demo system; these teenage geniuses have been working hard on a few projects of their own. Check out Blake’s Intruder Alert system he made using Digi XBee, Roxy’s M&M Color Identifying robotics project, and watch Carson’s 0.95” OLED in action.

BuzzCloud Wants to Take the Sting Out of Urban Beekeeping With Its iBuzzHive
With Colony Collapse Disorder (CCD) on the rise, even the honeybees are taking to IoT in hopes to make beekeeping possible (and painless) in Urban environments. Watch how BuzzCloud plans to use 3D-printing and IoT to save the troubled population of these important pollinators:

Facebook’s Internet-Broadcasting Drone Takes to the Skies for the First Time
In effort to increase internet access across the world, Facebook built a solar powered, lightweight, 42 m wide drone named Aquila. See for yourself how Facebook designed Aquila to stay airborne for 90 consecutive days.

Is Your JTAG Debug Port Vulnerable to Hackers?

Posted on:

In most Internet of Things (IoT) deployments, it’s good practice to authenticate anyone trying to access your device – typically through the Ethernet, WiFi, or other network protocol. But there’s a more subtle, and dangerous, way to get into your device: through a JTAG debug port. If someone gains physical access, he can create much more havoc because JTAG takes you to the low-level heart of a board or chip, where an expert hacker can take complete low-level control of the system – even replacing firmware with a rogue code.

System Blog Diagram

In this contributed article for Embedded Computing Design, Digi’s Mike Rohrmoser explains the pluses and minuses of the use of Secure JTAG keys. Regardless of the approach you choose, Digi TrustFence™ security framework includes tools for manufacturing and maintenance, including Secure JTAG.

FULL ARTICLE IN EMBEDDED COMPUTING DESIGN: DON’T LET HACKERS IN THE JTAG PORT >>

It’s an Uncertain World: Are You Secure?

Posted on:

Security is a mounting concern for both wired and wireless M2M networks.

Their data may seem mundane, but if this information is stolen, impeded, or altered, the potential consequences are too great, particularly in commercial and industrial applications.

IoT SecurityYet M2M networks are populated by small, defenseless devices that are designed to be simple and inexpensive.

With their limited electrical and processing power, desktop and mobile security measures like firewalls or passwords aren’t practical.

Digi acutely understands the need to safeguard M2M networks and offers Strengthening Security in Embedded IoT Solutions, an introduction to security options for designers of M2M implementations.

Reading this paper, you’ll learn about the four types of IoT threats and the tools available to identify and prioritize them.

You’ll discover the six core methods for achieving M2M security: packet encryption, message replay protection, message authentication code, debug port protection, secure bootloaders, and pre-shared keys.

By understanding the threats and means to counter them, you can greatly reduce the risks and vulnerabilities of your M2M networks.

Read the white paper here >>

Powering the World’s First Zero-Emission Cab

Posted on:

Frazer-NashThe zero-emission taxicab of the future will soon be on the streets of London – and Digi is playing a key role in making it happen. That’s because Frazer-Nash, the electric-car pioneer founded in 1922, has selected Digi’s ConnectCore 6 system-on-module to create a complete digital experience for driver instrumentation and touchscreen passenger infotainment inside its range-extended electric vehicle (REEV) Metrocabs. The ConnectCore 6 will also enable wireless connectivity to in-cab Internet, GPS navigation, and revenue-producing interactive displays.

The ConnectCore 6 is less than 2 inches square and includes all the power and connectivity you would expect from a PC, including a cellular adapter, 1080p graphics, Wi-Fi and Bluetooth, and up to 64GB of flash memory. The decision to utilize ConnectCore 6 was a change for Frazer-Nash, which traditionally develops all technologies in-house. In fact, the ConnectCore 6 is the only component in the Frazer-Nash Metrocab that was not designed and created by the company itself.

In this new Frazer-Nash “cab of the future,” drivers can monitor the cab’s key systems as well as optimize routes, fuel, and battery efficiency. What’s more, Digi offers secure remote management and web services capabilities through the scalable Digi Device Cloud™ so Frazer-Nash can monitor all of its cabs remotely and deploy updates over cellular networks.

Frazer-Nash has been in the forefront of electric powertrain development and designs and builds all of its own components. By using the ConnectCore 6, Frazer-Nash reduced costs and accelerated its time-to-market while offering new services and deliver a connected cab. The Metrocab is just one example of the incredible development opportunities for Digi customers and partners, brining computing power to new classes of innovative applications.

Visit the ConnectCore 6 product page to learn more.

Small-Footprint Remote-Sensor Monitoring: The Future Is Now

Posted on:

When you’re working for a major petrochemical company, inventory control isn’t merely a financial matter. That’s because a slow, undetected leak of a dangerous chemical substance can ultimately lead to significant safety concerns, and environmental/regulatory issues that can cost millions of dollars.

A major metro’s DPW team might be responsible for ensuring thousands of streets are operational on a 24×7 basis. Outages translate into lapses in public safety and unnecessary taxpayer expense. But how can they keep tabs on all of those fixtures?

Unfortunately, for organizations like these – and thousands of others facing the same dilemmas – the only feasible recourse has been to put technicians and repair teams on the road, logging thousands of miles each year to remote sites to manually check simple metrics like air quality, tank levels, pipeline pressures, valve statuses, light fixtures, and more. It’s a cost and headache that they’re eager to avoid – but the data is too important to avoid or ignore. In fact, the more difficult the data is to capture, the more valuable it often is.

Remote-sensor monitoring through wireless networks is the obvious – and long-sought – alternative, but too many barriers have prevented wide-scale adoption. Chief among these roadblocks: power consumption. Solar-powered wireless gateways are still not cost-feasible for industrial applications. Battery-powered cellular devices are another option, but until recently the costs of carriers’ rigid consumer-focused data plans (and the expense of the devices themselves) made them suitable for only a small subset of applications. Low-power WiFi networks and internal batteries can provide some coverage, but they require RF and network engineers to design, install, and maintain – expertise that is in high demand.

The Tide Is Turning

Fortunately, we’re seeing important changes that are making low- or no-power remote monitoring easy and cost-effective. First, cellular operators are recognizing that $30-50/mo. consumer data plans are a non-starter in the industrial space. Some carriers are now offering data plans of as little as 250 KB and compelling configurations and bundles that have driven prices down to $1-3/mo. High-volume customers are even seeing sub-$1 pricing.

Device costs have also plunged. Cellular gateways are now less than $20 for 2G and 3G modules. Similar dynamics are likely in the LTE space soon. And as M2M-friendly LTE CAT standards take hold in the coming years, we’ll see lower device costs, lower operating costs, and longer battery life – all with no need for a local wireless network to carry backhaul traffic.

Ultimately, it means we’re now able to deploy the small-footprint, no/low-power remote-sensor network that skips the truck rolls, cuts the costs, and increases visibility across the company’s entire asset portfolio. The new Digi Connect Sensor battery-powered cellular gateway lets companies and agencies finally deploy a no-infrastructure remote monitoring solution in virtually any harsh or remote environment.

Here’s more about the features of the Digi Connect Sensor:

  • Flexible power sources – Use a long-lasting (two to three years), non-rechargeable battery, power-saving sleep mode, and the option to draw power external sources (including solar) while using the internal battery as a backup.
  • Cellular choice – For global connectivity, Connect Sensor supports 3G HSPA+ with 2G fallback. North American users can also choose an LTE CAT 1 version.
  • Supports LTE CAT 1 – With support for LTE CAT 1, the band specifically created for IoT and M2M communications, Connect Sensor devices are highly efficient, consume less power, and are optimized for data transfer.
  • Sensor variety and flexibility – Connect Sensor can work with virtually any 4/20mA, Analog Out, Digital Out, or Pulsed Output sensor, and can power multiple external sensors, eliminating the need for external supplies or batteries.
  • Enterprise-grade security – You can implement security at the device, transport, and platform level.
  • Appropriate for harsh environments – A weatherproof NEMA 4 enclosure protects your sensors from the elements. It also features ATEX Group 2 and UL Class 1 Division 2 ratings.

Interested in learning more? Here are a number of resources to get you started:

The Next Generation of M2M Applications

Posted on:

M2M networking is advancing. Sensors, gateways, batteries, and cellular technologies are all improving, and clouds are widely available. Coupled with refined data storage and analytics, a new generation of M2M applications is boosting enterprises’ productivity and bottom lines.

The Digi white paper, Cutting Through the Noise, presents an overview of the manifold new opportunities for leveraging machine data across the organization.

You’ll learn how M2M communications offer operational visibility into remote equipment and assets, delivering data that previously required on-site observation. You’ll see how to control costs by tracking power consumption at facilities and sites, and better quantify items rolling off the assembly line for optimal scheduling and resource planning.

You’ll also discover the advantages of using M2M networks to directly link demand and supply chains. Vending machines, for instance, can communicate which items are selling and when to restock them. This capability alone provides greater marketing intelligence, higher productivity and efficiencies, as well as more satisfied customers.

Cutting Through the Noise introduces forward-looking organizations to how today’s M2M solutions can create actionable intelligence, unprecedented proficiency, and competitive advantages.

Read the white paper >>

What Are the Differences Between DigiMesh® and ZigBee® Mesh?

Posted on:

Mesh networking is a powerful way to route data over an RF network. Range is extended by allowing data to hop node to node and reliability and resiliency is increased by “self-healing,” or the ability to create alternate paths when one node fails or a connection is lost.

One popular mesh networking protocol is ZigBee®, which is specifically designed for low-data rate, low-power applications. Digi offers several products based on the ZigBee protocol. Additionally, Digi has developed a similar mesh protocol named DigiMesh®. Both ZigBee and DigiMesh offer unique advantages important to different applications. The following chart highlights these differences:

ZigBee® Mesh DigiMesh®
Node types and their benefits Multiple: Coordinators, Routers, End Devices. End devices can sometimes be less expensive because of reduced functionality. Single: One homogeneous node type, with more flexibility to expand the network. DigiMesh simplifies network setup and reliability in
environments where routers may come and go due to interference or damage.
Battery Deployed Networks Coordinators and routers must be mains powered All nodes are capable of battery operation and can sleep. No single point of failure associated with relying on a gateway or coordinator to
maintain time synchronization.
Over-the-air firmware updates Yes Yes
Range Most ZigBee devices have range of less than 2 miles (3.2 km) for each hop. Available on XBee SX with range of up to 40+ miles for each hop.
Frame payload and throughput Up to 80 bytes. Up to 256 bytes, depending on product. Improves throughput for applications that send larger blocks of data.
Supported frequencies and RF data rates Predominantly 2.4 GHz (250 kbps) 900 MHz (Up to 250 Kbps), 868MHz, 2.4 GHz (Up to 250 Kbps)
Security 128-bit AES encryption. Can lock down the network and prevent other nodes from joining. Both 128 and 256-bit AES encryption. Can lock down the network and prevent other nodes from joining.
Interoperability Potential for interoperability between vendors. Digi proprietary
Interference tolerance Direct-Sequence Spread Spectrum (DSSS). 900 MHz: Frequency-Hopping Spread Spectrum (FHSS). 2.4GHz: Direct-Sequence Spread Spectrum (DSSS).
Addressing Two layers. MAC address (64 bit) and Network address (16 bit). MAC address (64 bit) only.
Maintenance More sniffers and diagnostic tools available on market. Simpler addressing can help in diagnosing problems and setting up a network.

For more information on DigiMesh and Digi XBee click here.

Smart City Series: 4G LTE & Smart Infrastructure – Q&A Follow-Up

Posted on:

If your inbox is anything like ours, it’s full of emails touting “Smart Cities” as the next big thing, but how are cities actually using cellular technology to run smarter?

In a recent webinar, Digi’s Cellular Product Manager, Andrew Lund, shared real-world examples of 3G/4G LTE in infrastructure applications, along with the challenges and questions that need to be answered to get there.

smart cities

Below, Andrew covers questions from the Q&A that we didn’t have time to answer live. If you’d like to watch the webinar recording and learn more about how Digi enables Smart Cities.

Miss the webinar? Here’s where you and watch the webinar recording and learn more about how Digi enables Smart Cities >>

What accelerated lifecycle testing have you performed on the Digi TransPort® WR31 and are you able to share your results?
Specific test results are shared on a business case basis and only under NDA, but we can share that the WR31 was subjected to a Highly Accelerated Life Test (HALT) in line with our standard testing.  This testing is divided into three sections: temperature, vibration and a combination of vibration and temperature.

In each section, the Unit Under Test (UUT) is tested at the operational limit, the functional limit, and the destructive limit (if applicable). For the WR31, the functional limit was above the operating limit, meaning it functioned above and beyond the threshold we expected it to.

Who does the integration with energy meters / HVAC controllers ? Does Digi do that type of integration or is it some system integrators who are Digi partners who are responsible for integration?
Both options are available, depending on the customer and the goals. In cases where, for example, an OEM wants to add cellular connectivity to their offer, Digi and its partner would work directly with the OEM. In cases where the customer is an end user, for example an city or state department, Digi would work with a system integrator or value added reseller to deliver the final solution.

Can you please share how the Garbage Collection and Emailing System was implemented?
This was done by Digi’s Wireless Design Services group. More details and a video can be found here.

Does the WR31 product have the relevant Australian compliance e.g. C-Tick, A-Tick?
Yes.

Are there plans to support LTE 700 Mhz Band 28 in future?
Yes—stay tuned for details.

Rather than offer a device management application for us to use, does Digi offer a managed service for its product set?
Digi has implemented bespoke managed services programs for customers, but it is more common for us to partner with 3rd party managed services companies.

Does the WR31 support DNP3/IP?
Yes, the Digi TransPort WR line supports DNP3.

Does the WR31 has an LTE to NextG fallback?
Yes, the WR31 offers LTE with fallback to Telstra’s NextG (i.e. 850 MHz) network.

Do you have an example of an application in France?
We have many, many customer and applications in France—please contact your Digi rep or Digi partner for details.

WR31 is a nice product, but how to beat the competition having this form factor in the market for many years. E.g. Welotec, Moxa, etc.
“How to beat…” questions are a bit tough to answer in the abstract, but you can discuss specifics with your Digi rep or partner. Nor now, let’s focus on positioning the WR31 where it will have clear advantages. The WR31 is the best fit in applications that DO NEED: LTE, strong price/performance (i.e. affordable), Modbus/DNP3 bridging, and advanced security and routing (VPN, authentication, encryption, etc, and DON’T NEED vendor-specific object libraries or Modbus/DNP3 translation.

Is there a version that supports XBee® 868 LP?
No, currently there are no versions of the WR31 with an XBee radio, although that is an interesting concept, and worth discussing further with your Digi rep or partner.

Is it possible for the hardware to move from Cellular communications to a WiFi network and use this to communicate, WiFi becomes available – and if so – what product fits best?
The Digi TransPort WR44 supports Wi-Fi and 4G/4G LTE comms and is used in this kind of least cost routing scenario.

What is different in terms of speed in WR21 and WR31?
The WR21 and WR31 share the same WWAN radio and processor architecture—there is no material performance difference between the two.

Contact a Digi expert and get started today! Contact Us