Home/ Blog/Posts Tagged "wireless"

Prototype XBee and Other Wireless Projects with Tinylab

Posted on: No Comments

You might remember our post about the XBee product turned Indiegogo superstar last year–Plexidrone. Well, there’s another XBee related Indiegogo campaign making headlines. Tinylab is a prototyping platform, developed by Bosphorus Mechatronics, simplifying IoT development with an all-in-one Arduino-based solution.

Tinylab reduces the need to stack multiple Arduino shields, pull out the breadboard and jumper wires, or hunt down that spare LTH sensor in your drawer. This flexible and extensive development board supports Arduino and other development environments, hosts 20 Digital I/O, and additional sensors come pre-attached. And, perhaps most exciting, is the support for a number of wireless technologies like XBee, Bluetooth, or Wi-Fi with the ESP8266 chip as seen in the graphic below.

 

tinylab-schematic
 

The Indiegogo campaign got off to a great start and Bosphorus Mechatronics quickly exceeded their goal of $25,000. The crew is shipping development kits to their campaign supporters in May and one level of support will even earn contributors a development kit that includes XBee RF modules.

Also, to demonstrate the board’s capabilities, the team at Tinylab created an wireless lighting demo. The video is showing wireless control of a lightbulb with commands sent over XBee. Check out the video below.

If you are interested in learning more about the Tinylab prototyping platform, click here to visit the Indiegogo campaign and support! You can follow their updates on Twitter or visit the Bosphorus Mechatronics website here.

Introducing XCTU 6.3

Posted on:

A new version of everyone’s favorite XBee configuration software, XCTU, is here! Among a few small updates like a refreshed look and feel, UI enhancements, and minor bug fixes, the XBee team has introduced three brand new features to the software. Here’s a look at what you’ll find in XCTU 6.3.


Command Line Interface Support
New to XCTU is Command Line Interface (CLI) Support. Now, users can execute the application in CLI mode without the graphic interface. This is primarily useful for scripting and automation purposes when managing large scale XBee deployments. The following features are supported within CLI mode:

  • List ports – A list of serial and USB ports can be retrieved in
    command line mode.xctu_welcome
  • Update firmware – Firmware of any radio device can be updated in this
    mode.
  • Load profile – Now it is possible to load profiles to connected
    devices through the CLI of XCTU.

Spectrum Analyzer
From within the XCTU interface, users can test and measure the spectrum of the radio’s band. The analysis displays average, maximum, and minimum values of each channel. This is helpful to determine which channel to set your XBee radios to and troubleshoot network issues.

Throughput Tool
With the Throughput Tool users can measure the maximum transfer ratio from one radio module to another within the same network. The tool provides three session modes and several payload configuration options to test different combinations and understand the performance of your wireless network.

Download
If you haven’t already updated from within XCTU, just click here to download the software to your computer. Have fun and if you have questions feel free to tweet us at @XBeeWireless.

Connecting Grove Sensors with XBee

Posted on:

Grove modules are quickly growing in popularity due to each sensor and actuator having the same standardized connector — making it fast and easy to prototype a sensor project.

In the words of Seeed Studio, “Grove is a modulated, ready-to-use tool set. Much like Lego, it takes a building block approach to assembling electronics. Compared with the traditional, complicated learning method of using a breadboard and various electronic components to assemble a project, Grove simplifies and condenses the learning process significantly. The Grove system consists of a base shield and various modules with standardized connectors.”im121027001_2_1

What makes Grove devices so simple is that the connectors eliminate the need to break out the breadboard, resistors, jumper wires, etc.. The connection is a 4-pin interface that supports digital, analog, I2C signal through four wires with different colors.

  • Red is for VCC
  • Black is for GND,
  • Yellow is for signal
  • White is for others.

Since XBee is used frequently in wireless sensor networks, we included six Grove connectors on the new XBee Grove Development Board. You can use it to quickly evaluate XBee and Grove modules with a PC or microcontroller.

We have included two XBee Grove Adapter Boards in the Wireless Connectivity Kit. If you’re interested in how this might help you build wireless sensor networks, we have this graphic that offers an overview of the board and its connections.

 

grove_board_connectors

 

Visit Digi-Key to learn more about the Wireless Connectivity Kit. More information on the XBee Grove Development Board can be found here.

Look What I Made: XBee Project Gallery Update

Posted on:

 

Wireless Keytar
This project enables musicians to wireless transmit MIDI data to a computer to get processed by an audio enginer such as Max MSP.  The project enables a musician to create music without the hassle of plugging in and re-discovering the Keytar, while also tapping into the powerful processing capabilities of music software.

All-Terrain Rover
This all-terrain vehicle is able to navigate over difficult environments with a complex servo system. And, like many robots, this rover uses XBee for wireless control, but the creator took the project one step further by equipping the robot with sensors. Additionally, a camera relays a live video feed into the a graphical interface running on the user’s computer.

BeeChecker
BeeChecker enables beekeepers to maintain and remotely monitor the health of their beehives. The system is comprised of two devices-one located in the hive and one out of the hive. The device measures the weight of the hive and the frequencies that the bees emit-which can indicate various behaviors of the bees within the hive. The sensor outside the hive measures humidity, temperature, and GPS location to map out the placement of each hive.

Do you have an XBee project you would like featured in the XBee Project Gallery? You can submit your own or someone else’s project here.

XBees Soar into Space on NASA Rocket

Posted on: 2 Comments

Rob Faludi, Digi’s Chief Innovator, was onsite for the launch of the first XBee network into space. The successful test of the wireless sensor network took place at the Wallops Flight Facility in Virginia. The launch is part of NASA’s effort to determine the effectiveness of Exo-Brake technology and introduce wireless technology into their designs. As this was the first XBee network to reach space, we had to capture it on video.

Learn more about the experiment and see photos in these related posts:

Off-the-Shelf Components Connect NASA Wireless Experiment

Posted on:

Did you know NASA’s XBee network that was deployed 200 miles above Earth was constructed completely out of off-the-shelf components?

As part of a NASA initiative to efficiently experiment with new ideas and technologies, the development team created their entire network out of commercial off-the-shelf components.  Using devices like Arduino and XBee, the engineering team was able to create a network to reliably gather critical data on Exo-Brake technology.

NASA-XBee-Arduino-WSN

An Arduino Mega processed data and acted as the gateway’s engine, which connected the local XBee network to the long-range Iridium satellite uplink. As seen in the diagram above, the gateway was placed within the payload of the Exo-Brake and gathered sensor data from three XBees-3-axis acceleration, temperature and pressure. Data was then sent back down to mission control for analysis.

You can read more about the launch at these links:

Digi Employee Hackathon: Lindon Edition v2

Posted on:

Another Digi employee hackathon has come to a close! Rob paid a visit to our team out in Utah to hold a hackathon with Digi’s development staff. This continues what has become a tradition at Digi over the last couple years.

Each event has led to the creation of a number of product improvements and other fun and whimsical projects. Another important benefit is that it gives everyone a chance to collaborate with those they don’t normally work with on a day-to-day basis.

Here’s a look at the winning project.

AT Command Database
The winners of our recent hackathon created an incredibly useful tool for both developers inside our company and for our customers. The team’s final prototype is a new centralized system for managing XBee, XTend and our other radios’ AT command info across our entire wireless product line. Digi’s wireless products use these AT commands to manage setup, networking, security, sensors, actuators, battery use, diagnostics and many more functions.

There are hundred of useful commands that need to be managed, tested and shared between our products, libraries, software and documentation. In addition, the commands are implemented by our partners in third-party products and tools. Changes, updates and corrections to the commands need to be kept in sync across all these implementations, and absolute accuracy is essential.

IMG_7064

Prior to Team AT-DB’s creation, the process for maintaining up-to-date AT command information involved lots of coordination and double-checking. We also needed a more efficient way to accurately process updates when changes occur, and share these with our partners and customers. Each command has a specific syntax, description, parameters and defaults. Certain commands must be implemented differently for different protocols. Details matter!

Here are the main benefits the group demonstrated with their new prototype:

  • The ability to audit radio descriptors and test firmware updates against a single, authoritative source.
  • Automatic synchronization services for Digi software like XCTU, and also for third-party software development partners.
  • Electronic documentation support functions and enhanced support for automated testing.
  • A user friendly front end interface that can be enhanced as new use cases arise.

Hackathons keep us creative and excited about our work as it’s an opportunity to try out new ideas. Successful prototypes like this one inspire and help implement the innovative systems necessary to making and maintaining Digi’s mission-critical products.

Check out this page to see other projects and ideas developed at past Digi Hackathons.

NVdrones Gives Developers a Platform to Quickly Create Drone Applications

Posted on:

NVDronesThe core idea for creating the XBee was to create a module for wireless communications that gives our customers the option to choose the best wireless technology for the job. Whether you need long-range communication spanning many miles using the 900MHz band or mesh networking with ZigBee or more data throughput using Wi-Fi. The XBee enables us to offer our customers wireless flexibility to meet their needs.

NVDrones is helping developers integrate XBee for wireless communication in drone designs. The team aims to give software developers all the necessary tools to create drone applications.

They created a board that is plug-n-play compatible with top drone platforms and an XBee socket that allows developers to simply plug in their XBee of choice (check out the image below). By default, they offer the XBee PRO 900MHz, which is ideal for drone applications considering it’s substantial LOS range — enabling autonomous drones. This autonomous operation is controlled by the apps created with the hardware and easy-to-use SDKs.

NVDrones

With library support for Arduino, Android, and Javascript, their platform was meant to be user-friendly for all developers no matter their background — even those with limited or no hardware experience. If you have an itch to start creating a drone application, but lack experience, this is a great starting point.

You can check out their developer website at developers.NVdrones.com. They’ve just launched and are taking pre-orders now.

Contact a Digi expert and get started today! Contact Us