
XBee Java Library

User Guide

Revision history—90001438

Revision Date Description

C June
2015

Upgraded XBee Java Library to version v1.1.0: Added support for explicit
frames and application layer fields. Added examples that demonstrate the new
functionality of the API.

D April
2016

Upgraded XBee Java Library to version v1.1.1: Added support for S2C 802.15.4
(XBee S1B), and added new unit tests.

E January
2017

Upgraded XBee Java Library to version v1.2.0: Added support for XBee Cellular
and XBee Wi-Fi protocols, compatibility with Android and new examples.

F August
2017

Upgraded XBee Java Library to version v1.2.1: Added support for XBee Cellular
NB-IoT and Thread protocols. Added IPv6 and CoAP support, as well as new
examples and unit tests.

G July
2019

Upgraded XBee Java Library to version v1.3.0.

Trademarks and copyright
Digi, Digi International, and the Digi logo are trademarks or registered trademarks in the United
States and other countries worldwide. All other trademarks mentioned in this document are the
property of their respective owners.
© 2019 Digi International Inc. All rights reserved.

Disclaimers
Information in this document is subject to change without notice and does not represent a
commitment on the part of Digi International. Digi provides this document “as is,” without warranty of
any kind, expressed or implied, including, but not limited to, the implied warranties of fitness or
merchantability for a particular purpose. Digi may make improvements and/or changes in this manual
or in the product(s) and/or the program(s) described in this manual at any time.

Warranty
To view product warranty information, go to the following website:

www.digi.com/howtobuy/terms

Customer support
Gather support information: Before contacting Digi technical support for help, gather the following
information:
 Product name andmodel
 Product serial number (s)
 Firmware version

XBee Java Library User Guide 2

http://www.digi.com/howtobuy/terms

 Operating system/browser (if applicable)
 Logs (from time of reported issue)
 Trace (if possible)
 Description of issue
 Steps to reproduce
Contact Digi technical support: Digi offers multiple technical support plans and service packages.
Contact us at +1 952.912.3444 or visit us at www.digi.com/support.

Feedback
To provide feedback on this document, email your comments to

techcomm@digi.com

Include the document title and part number (XBee Java Library User Guide, 90001438 G) in the subject
line of your email.

XBee Java Library User Guide 3

http://www.digi.com/support
mailto:techcomm@digi.com

Contents

XBee Java Library

Getting started with XBee Java Library
Install the software 11

XBee Java Library software 11
Java Virtual Machine 11
Download and install XCTU 11
Java IDE 12

Configure your XBee devices 12
Add 802.15.4 devices 12
Add Zigbee devices 13
Add DigiMesh devices 13
Add Point-to-Multipoint devices 14
Add cellular devices 14
AddWi-Fi devices 15

Build your first XBee Java application 15
Create the project 15
Configure the project 17
Add the application source code 20
Build the application 23

Launch the application 24
Launch the application for non-Cellular protocol 24
Launch the application for Cellular protocol 25

Use the XBee Java Library
XBee terminology 29

RF modules 29
XBee RF modules 29
Radio firmware 29
Radio communication protocols 30
Radio module operating modes 30
API operating mode 31
Application Transparent (AT) operating mode 31
API escaped operating mode 32
API frames 32
AT settings or commands 33

Working with XBee classes 33
Instantiate an XBee device object 34
Open the XBee device connection 37

XBee Java Library User Guide 4

XBee Java Library User Guide 5

Close the XBee device connection 40
Configuring the XBee device 40

Read and set common parameters 40
Read, set and execute other parameters 43
Apply configuration changes 46
Write configuration changes 47
Reset the device 48
Configure Wi-Fi settings 48
Scanning for access points 52
Getting/setting the access point operations timeout 53
Getting an access point with specific SSID 53
Connecting to an access point 54
Disconnecting from an access point 55
Checking connection status 56
Getting the connected access point 56
Configure Bluetooth settings 57

Discover the XBee network 59
Configure the discovery process 60
Discover the network 61
Access the discovered devices 66
Add and remove devices manually 67

Communicate with XBee devices 69
Send and receive data 70
Sending broadcast data 74
Broadcast Transmission Example 74
Send and receive explicit data 79
Notes: 89
Send and receive IP data 89
Send network data synchronously 90
Get/set the timeout for synchronous operations 91
Example: Transmit IP data synchronously 91
Example: Transmit UDP data 91
Example: Connect to echo server 91
Example: Knock knock 91
Send network data asynchronously 92
Listening for incoming transmissions 93
Stop listening for incoming transmissions 93
Read network data (polling) 94
Get the IPMessage information 95
Read network data from a specific remote XBee device (polling) 95
Get/set the timeout for synchronous operations 95
Example: Receive IP data with polling 96
Network data reception registration 96
IPDataReceiveListener implementation example 96
Data reception deregistration 97
Example: Receive IP data with listener 97
Send and receive IPv6 data 97
Send IPv6 data synchronously 98
Get/set the timeout for synchronous operations 99
Example: Transmit IPv6 data synchronously 99
Send IPv6 data asynchronously 99
Listening for incoming transmissions 100
Stop listening for incoming transmissions 101
Read IPv6 data (polling) 102
Get the IPMessage information 102

XBee Java Library User Guide 6

Read network data from a specific remote XBee device (polling) 103
Get/set the timeout for synchronous operations 103
Network data reception registration 104
IPDataReceiveListener implementation example 104
Data reception deregistration 105
Example: Receive IPv6 data with listener 105
Send and receive CoAP data 105
Send CoAP data synchronously 106
Get/set the timeout for synchronous operations 107
Example: Transmit CoAP data synchronously 107
Send CoAP data asynchronously 108
Send and receive SMS messages 109
Send SMS message synchronously 109
Get/set the timeout for synchronous operations 110
Example: Send synchronous SMS 110
Send SMS message asynchronously 110
SMS reception registration 111
SMSReceiveListener implementation example 112
SMS reception deregistration 112
Example: Receive SMS messages 112
Send and receive Bluetooth data 112
Send and receive MicroPython data 114
Receive modem status events 116

Handling analog and digital IO lines 118
Configure the IO lines 118
Read IO samples 123

Logging events 127
Download the SLF4J bindings 128
Bind the library with SLF4J 128

Building the library 129
Install Apache Maven 129
Install the library in Maven local repository 130

XBee Java samples
Configuration samples 136

Manage common parameters 136
Set and get parameters 136
Reset 136
Connect to access point (Wi-Fi devices) 137

Network samples - discover devices 137
Communication samples 137

Send Bluetooth data 137
Send data 137
Send data asynchronously 137
Send broadcast data 138
Send CoAP data (Thread devices) 138
Send explicit data 138
Send explicit data asynchronously 138
Send broadcast explicit data 139
Send IP data (IP devices) 139
Send IPv6 data (Thread devices) 139
Send MicroPython data 139
Send SMS (Cellular devices) 139
Send UDP data (IP devices) 140

XBee Java Library User Guide 7

Send User Data Relay 140
Receive Bluetooth data 140
Receive data 140
Receive CoAP data (Thread devices) 140
Receive data polling 141
Receive explicit data 141
Receive explicit data polling 141
Receive IP data (IP devices) 141
Receive IPv6 data (Thread devices) 141
Receive MicroPython data 142
Receive modem status 142
Receive SMS (Cellular devices) 142
Receive User Data Relay messages 142
Connect to echo server (IP devices) 142
Knock Knock (IP devices) 143

IO samples 143
Local DIO 143
Local ADC 143
Remote DIO 143
Remote ADC 144
IO sampling 144

XBee Java Library API reference

XBee Library for Android
Create an XBee Android application 147

Create an XBee Android application from scratch 147
Import an XBee Android sample application 149

Use the XBee Library for Android 149
Bluetooth Low Energy 149
USB host serial port 152
Digi serial port 153

Android samples 154
XBee Library for Android API reference 154

Frequently Asked Questions (FAQs)
What is XCTU and how do I download it? 156
How do I find the serial port and baud rate of my module? 156
Can I use the XBee Java Library with modules in AT operating mode? 156

Additional resources
Contribute now! 157
Digi Forum 157

XBee Java Library

XBee devices allow you to enable wireless connectivity to your projects creating a network of
connected devices. They provide features to exchange data with other devices in the network,
configure them and control their I/O lines. An application running in an intelligent device can take
advantage of these features to monitor andmanage the entire network.
Despite the available documentation and configuration tools for working with XBee devices, it is not
always easy to develop these kinds of applications.

The XBee Java Library is a Java API that dramatically reduces the time to market of XBee projects
developed in Java and facilitates the development of these types of applications, making it an easy
and smooth process. The XBee Java Library includes the following features:

n Support for multiple XBee devices and protocols.
n High abstraction layer provides an easy-to-use workflow.
n Ability to configure local and remote XBee devices of the network.
n Discovery feature finds remote nodes on the same network as the local module.
n Ability to transmit and receive data from any XBee device on the network.
n Ability to manage the General Purpose Input and Output lines of all your XBee devices.

XBee Java Library User Guide 8

XBee Java Library

XBee Java Library User Guide 9

n Ability to send and receive data between the XBee local interfaces (Bluetooth Low Energy,
MicroPython and Serial Port).

The XBee Java Library also offers a sub-library to develop Android applications that manage or
communicate with XBee devices over Bluetooth Low Energy, USB or serial port. This documentation
helps you with the different development stages of your Java or Android applications using these
libraries.

Getting started with XBee Java Library

This Getting Started Guide describes how to set up your environment and use the XBee Java Library to
communicate with your XBee devices.
Start here to begin exploring the XBee Java Library. Then follow this guide to install the software,
build and launch your first Java application, and begin communicating with your devices using Java.

Install the software 11
Configure your XBee devices 12
Build your first XBee Java application 15
Launch the application 24

XBee Java Library User Guide 10

Getting started with XBee Java Library Install the software

XBee Java Library User Guide 11

Install the software
The following software components are required to build and run your first XBee Java application:

n XBee Java Library software
n Java Virtual Machine
n Download and install XCTU
n Java IDE

XBee Java Library software
The first software package is the XBee Java Library. This package includes the XBee library, its source
code and a collection of samples that will help you to develop Java applications to communicate with
your XBee devices. You can download the latest version at:
https://github.com/digidotcom/XBeeJavaLibrary/releases
To work with this package, unzip the file you just downloaded. The main directory, XBJL-X.Y.Z, has the
following structure:

n /examples: Several XBee Java Library examples to demonstrate the XBee Java Library
features.

n /extra-libs: Libraries needed to build and launch an XBee Java application.
n /javadoc: XBee Java Library API documentation.
n /src: Source code for the XBee Java Library.
n xbee-java-library-X.Y.Z.jar: XBee Java Library jar file which allows you to easily interact with

your XBee modules.
n LICENSE.txt: Legal licensing agreement.
n README.md
n release_notes.txt: Latest release information for XBee Java Library.

Java Virtual Machine
You must install a Java Virtual Machine to compile and launch Java projects. The recommended
version is Java SE 8. If you already have a JRE or JDK 7 or higher installed on your PC, you can skip this
step.
You can download the Java machine from
www.oracle.com/technetwork/java/javase/downloads/index.html
Once the download is complete, launch the program and follow the on-screen instructions to finish the
installation process.

Download and install XCTU
XBee Configuration and Test Utility (XCTU) is a multi-platform program that enables users to interact
with Digi radio frequency (RF) devices through a graphical interface. The application includes built-in
tools that make it easy to set up, configure, and test Digi RF devices.
For instructions on downloading and using XCTU, see the XCTU User Guide.
Once you have downloaded XCTU, run the installer and follow the steps to finish the installation
process.
After you load XCTU, a message about software updates appears. We recommend you always update
XCTU to the latest available version.

https://github.com/digidotcom/XBeeJavaLibrary/releases
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.digi.com/products/xbee-rf-solutions/xctu-software/xctu#productsupport-utilities
http://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm

Getting started with XBee Java Library Configure your XBee devices

XBee Java Library User Guide 12

Java IDE
To develop, build and launch Java applications, you can use an IDE (integrated development
environment) capable of managing Java projects. There are many IDEs you can use, such as the
following examples:

n Eclipse - http://www.eclipse.org
n NetBeans - https://netbeans.org
n Android Studio - https://developer.android.com/studio/

Configure your XBee devices
You need to configure two XBee devices. One module (the sender) sends “Hello XBee World!” using the
Java application. The other device (the receiver) receives the message.
Both devices must be working in the same protocol (802.15.4, Zigbee, DigiMesh or Point-to-Multipoint,
or Wi-Fi) andmust be configured to operate in the same network to enable communication.

Note If you are getting started with Cellular, you only need to configure one device. Cellular protocol
devices are connected directly to the Internet, so there is not a network of remote devices to
communicate with them. For the Cellular protocol, the XBee application demonstrated in the getting
started guide differs from other protocols. The Cellular protocol sends and reads data from an echo
server. All the steps of the guide but the the Add the application source code of the Build your first
XBee Java application section are common to all the XBee devices regardless of their protocol.

Use XCTU to configure the devices. Plug the devices into the XBee adapters and connect them to your
computer’s USB or serial ports.

Note For more information about XCTU, see the embedded help or see the XCTU User Guide. You can
access the Help Contents from the Helpmenu of the tool.

Once XCTU is running, add your devices to the tool, and then select them from the Radio Modules
section. When XCTU is finished reading the device parameters, complete the following steps,
according to your device type.
Repeat these steps to configure all your XBee devices using XCTU.

n Add 802.15.4 devices
n Add Zigbee devices
n Add DigiMesh devices
n Add Point-to-Multipoint devices
n Add cellular devices
n AddWi-Fi devices

Add 802.15.4 devices

1. Click Load default firmware settings in the Radio Configuration toolbar to load the default
values for the device firmware.

2. Ensure the API mode (API1 or API2) is enabled. To do so, the AP parameter value must be 1 (API Mode
Without Escapes) or 2 (API Mode With Escapes).

3. Configure ID (PAN ID) setting CAFE.

http://www.eclipse.org/
https://netbeans.org/
https://developer.android.com/studio/
https://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm

Getting started with XBee Java Library Configure your XBee devices

XBee Java Library User Guide 13

4. Configure CH (Channel setting) to C.

5. Click Write radio settings in the Radio Configuration toolbar to apply the new values to the
module.

6. Once you have configured both modules, check to make sure they can see each other. Click Discover

radio modules in the same network , the second button of the device panel in the Radio
Modules view. The other device must be listed in the Discovering remote devices dialog.

Note If the other module is not listed, reboot both devices by pressing the Reset button of the carrier
board and try adding the device again. If the list is still empty, go to the corresponding product manual
for your devices.

Add Zigbee devices
1. For old Zigbee devices (S2 and S2B), ensure the devices are using API firmware. The firmware

appears in the Function label of the device in the Radio Modules view.
n One of the devices must be a coordinator - Function: Zigbee Coordinator API
n We recommend the other one is a router - Function: Zigbee Router API

Note If any of the two previous conditions is not satisfied, you must change the firmware of the

device. Click the Update firmware button of the Radio Configuration toolbar.

2. Click Load default firmware settings in the Radio Configuration toolbar to load the default
values for the device firmware.

3. Do the following:
n If the device has the AP parameter, set it to 1 (API Mode Without Escapes) or 2 (API Mode With

Escapes).
n If the device has the CE parameter, set it to Enabled in the coordinator.

4. Configure the PAN ID setting (ID) to be C001BEE.
5. Configure SC (Scan Channels) setting to FFF.

6. Click Write radio settings in the Radio Configuration toolbar to apply the new values to the
module.

7. Once you have configured both modules, check to make sure they can see each other. Click Discover

radio modules in the same network , the second button of the device panel in the Radio
Modules view. The other device must be listed in the Discovering remote devices dialog.

Note If the other module is not listed, reboot both devices by pressing the Reset button of the carrier
board and try adding the device again. If the list is still empty, go to the corresponding product manual
for your devices.

Add DigiMesh devices

1. Click Load default firmware settings in the Radio Configuration toolbar to load the default
values for the device firmware.

Getting started with XBee Java Library Configure your XBee devices

XBee Java Library User Guide 14

2. Ensure the API mode (API1 or API2) is enabled. The AP parameter value must be 1 (API Mode Without
Escapes) or 2 (API Mode With Escapes).

3. Configure ID (PAN ID) setting to CAFE.
4. Configure CH (Operating Channel) setting to C.

5. Click Write radio settings in the Radio Configuration toolbar to apply the new values to the
module.

6. Once you have configured both modules, check to make sure they can see each other. Click Discover

radio modules in the same network , the second button of the device panel in the Radio Modules
view. The other device must be listed in the Discovering remote devices dialog.

Note If the other module is not listed, reboot both devices by pressing the Reset button of the carrier
board and try adding the device again. If the list is still empty, go to the corresponding product manual
for your devices.

Add Point-to-Multipoint devices

1. Click Load default firmware settings in the Radio Configuration toolbar to load the default
values for the device firmware.

2. Ensure the API mode (API1 or API2) is enabled. The AP parameter value must be 1 (API Mode Without
Escapes) or 2 (API Mode With Escapes).

3. Configure ID (PAN ID) setting to CAFE.
4. Configure HP (Hopping Channel) setting to 5.

5. Click Write radio settings in the Radio Configuration toolbar to apply the new values to the
module.

6. Once you have configured both modules, check to make sure they can see each other. Click Discover

radio modules in the same network , the second button of the device panel in the Radio Modules
view. The other device must be listed in the Discovering remote devices dialog.

Note If the other module is not listed, reboot both devices by pressing the Reset button of the carrier
board and try adding the device again. If the list is still empty, go to the corresponding product manual
for your devices.

Add cellular devices

1. Click Load default firmware settings in the Radio Configuration toolbar to load the default
values for the device firmware.

2. Ensure the API mode (API1 or API2) is enabled. To do so, the AP parameter value must be 1 (API Mode
Without Escapes) or 2 (API Mode With Escapes).

3. Click Write radio settings in the Radio Configuration toolbar to apply the new values to the
module.

4. Verify the module is correctly registered and connected to the Internet. To do so check that the LED
on the development board blinks. If it is solid or has a double-blink, registration has not occurred
properly. Registration can take several minutes.

Getting started with XBee Java Library Build your first XBee Java application

XBee Java Library User Guide 15

Note In addition to the LED confirmation, you can check the IP address assigned to the module by
reading the MY parameter and verifying it has a value different than 0.0.0.0.

Add Wi-Fi devices

1. Click Load default firmware settings in the Radio Configuration toolbar to load the default
values for the device firmware.

2. Ensure the API mode (API1 or API2) is enabled. To do so, the AP parameter value must be 1 (API Mode
Without Escapes) or 2 (API Mode With Escapes).

3. Connect to an access point:
a. Click the Active Scan button.
b. Select the desired access point from the list of the Active Scan result dialog.
c. If the access point requires a password, type your password.
d. Click the Connect button and wait for the module to connect to the access point.

4. Click Write radio settings in the Radio Configuration toolbar to apply the new values to the
module.

5. Verify the module is correctly connected to the access point by checking the IP address assigned to
the module by reading the MY parameter and verifying it has a value different than 0.0.0.0.

Build your first XBee Java application
In this section, you create and build your first XBee application. You can then use a device connected
to your computer to broadcast the message “Hello XBee World!” to all remote devices on the same
network using the XBee Java Library.

Note Cellular devices are connected directly to the Internet, so there is no network of remote devices
to communicate with them. For the Cellular protocol, the XBee application demonstrated in this
section differs from other protocols. The application sends and reads data from an echo server. All the
steps in this section except the Add the application source code procedure are common to all the
XBee devices, regardless of their protocol.

The following sections describe how to create and build the XBee application:

1. Create the project
2. Configure the project
3. Add the application source code
4. Build the application

The section describes the steps for the two most popular development environments: NetBeans and
Eclipse. We also include instructions for building an application without using an IDE. You should be
able to replicate these steps for a different Java IDE or any build automation tool.

Create the project
To use the XBee Java Library in your code, the first step is to create a new project to store the Java
source code files and the build result. The name of the project is myFirstXBeeApp, and has the
following structure:

Getting started with XBee Java Library Build your first XBee Java application

XBee Java Library User Guide 16

n A directory called src for the sources organized in packages (com.digi.xbee.example).
n The libs folder to contain the XBee Java Library and other resources needed in order to

properly build.
n The bin directory to store the *.class files that are the result of the build process.

To create the myFirstXBeeApp project, choose one of these development options and follow the
steps:

n Eclipse
n Netbeans
n Command line

After you create the project, you must code the application and add the required libraries to the
classpath of the project, because the classes with the functionality to communicate with your XBee
devices are provided in a jar file (xbee-java-library-X.Y.Z.jar).

Eclipse
To create a new Java project in Eclipse, follow these steps:

1. Navigate to the File menu, select New, and click Java Project.

A New Java Project window appears.

2. Enter the Project name,myFirstXBeeApp, and change the location if desired.
3. Click Finish to create the project. The window closes and the project is listed in the Package Explorer

view at the left side of the IDE.

Netbeans
To create a new Java project in NetBeans, follow these steps:

1. Navigate to the File menu and select New project....

You are prompted with a New Project window.

2. In the Categories frame, select Java > Java Application on the right panel.
3. Click Next.
4. Enter the Project Name,myFirstXBeeApp, and the Project Location.
5. Clear the Create Main Class option. This will be created later.
6. Click Finish to create the project. The window closes and the project is listed in the Projects view at

the left side of the IDE.

Command line

Note The command samples used in this guide are for Windows PCs. Linux and MacOS computers
operate in a similar manner.

1. Create a directory to store the application source code and other resources, calledmyFirstXBeeApp,
and go inside this new directory.

Getting started with XBee Java Library Build your first XBee Java application

XBee Java Library User Guide 17

~> mkdir myFirstXBeeApp
~> cd myFirstXBeeApp
~\myFirstXBeeApp>

2. Then create a folder to store the source code, src .

~\myFirstXBeeApp> mkdir src
~\myFirstXBeeApp>

3. Inside the src directory, create the folders that represent the packages of the Java application,
com.digi.xbee.example.

~\myFirstXBeeApp> cd src
~\myFirstXBeeApp\src> mkdir com\digi\xbee\example
~\myFirstXBeeApp\src\com\digi\xbee\example>

Configure the project
To build the project you have just created, you must add the needed JAR files to the classpath, and tell
Java where to find the required native libraries when launching the application.
The XBJL-X.Y.Z you downloaded and unzipped (see XBee Java Library software) contains the library
JAR file, xbee-java-library-X.Y.Z.jar, and other needed resources in the directory called extra-libs.
The XBee Java Library depends on the following JAR files and native libraries:

n rxtx-2.2.jar: RXTX library that provides serial communication in Java.
n slf4j-api-1.7.12.jar: Simple Logging Facade for Java (SLF4J) for logging.
n slf4j-nop-1.7.12.jar: SLF4J binding for NOP, silently discarding all logging.
n RXTX native library that depends on your PC operating system and the installed Java Virtual

Machine (as an example we are going to use 32-bit Windows).
n android-sdk-5.1.1.jar: Library that provides all the necessary classes to create content for

Android.
n android-sdk-addon-3.jar: Digi SDK Add-on for Android, which allows you to create apps for Digi

Embedded devices.

Configure the project - Eclipse

1. Click File > New > Folder, and create a directory called libs in the root of the project to create a
directory.

2. Copy the xbee-java-library-X.Y.Z.jar file and the contents of the extra-libs directory from the XBJL-
X.Y.Z folder to the libs directory.

3. From the Package Explorer view, right-click your sample project and go to Properties.
4. In the list of categories, go to Java Build Path, select the Libraries tab, and click the Add JARs…

button.
5. In the JAR Selection window, go to the myFirstXBeeApp project and select only the following files

from inside the libs folder:
n xbee-java-library-X.Y.Z.jar
n rxtx-2.2.jar
n slf4j-api-1.7.12.jar
n slf4j-nop-1.7.12.jar

Getting started with XBee Java Library Build your first XBee Java application

XBee Java Library User Guide 18

n android-sdk-5.1.1.jar
n android-sdk-addon-3.jar

Ensure only the libraries listed above are added to your project.

6. Click OK to add the libraries.

Note You can optionally register the included API documentation and source code for the XBee Java
Library to review classes andmethods documentation within Eclipse.
Find the Javadoc in the installation directory, XBJL-X.Y.Z, inside javadoc directory, and the source
code inside src/main.

7. Expand the rxtx-2.2.jar file of the Libraries tab list, select the Native library location item and click
Edit….

8. Select the Workspace... button to navigate to the libs\native\Windows\win32 folder, and click OK to
add the path to the native libraries.

Note The path to the native libraries depends on your computer operating system and the Java
Virtual Machine you have installed (32-bit/64-bit).

9. Click OK to apply the Java Build Path property modifications.

Configure the project - Netbeans

1. Click File > New > Folder, and create a directory called libs in the root of the project to create a
directory.

2. Copy the xbee-java-library-X.Y.Z.jar file and the contents of the extra-libs directory from the XBJL-
X.Y.Z folder to the libs directory.

3. From Projects view, right-click your project and go to Properties.
4. In the list of categories, go to Libraries and click the Add JAR/Folder button.
5. In the Add JAR/Folderwindow, navigate to the myFirstXBeeApp project location, go to the libs

directory, and select only the following files:
n xbee-java-library-X.Y.Z.jar
n rxtx-2.2.jar
n slf4j-api-1.7.12.jar
n slf4j-nop-1.7.12.jar
n android-sdk-5.1.1.jar
n android-sdk-addon-3.jar

Ensure only the libraries listed above are added to your project.

6. Click Open to finish.

Note You can optionally register the included API documentation and source code for the XBee Java
Library to review classes andmethods documentation within Eclipse.

Getting started with XBee Java Library Build your first XBee Java application

XBee Java Library User Guide 19

Find the Javadoc in the installation directory, XBJL-X.Y.Z, inside javadoc directory, and the source
code inside src/main.

7. Select Run in the left tree of the Properties dialog.
8. In the VM Options field, add the following option:

-Djava.library.path=libs\native\Windows\win32

The path is relative to the "myFirstXBeeApp’s" path.

Note The path to the native libraries depends on your computer operating system and the Java
Virtual Machine you have installed (32-bit/64-bit).

9. Click OK to apply the properties modifications.

Configure the project - Command line
You can specify all the resources required to build and launch the application in the command line. To
facilitate that command, you can copy the needed resources and then define some environment
variables.

1. Create a directory called libs in the root of the project.

~\myFirstXBeeApp> mkdir libs
~\myFirstXBeeApp>

2. Copy the xbee-java-library-X.Y.Z.jar file inside the libs directory.

~\myFirstXBeeApp> xcopy <path_to_XBJL>\XBJL-X.Y.Z\xbee-java-library-X.Y.Z.jar
libs
~\myFirstXBeeApp>

3. Copy the contents of the extra-libs directory in the XBJL-X.Y.Z folder to the libs directory.

~\myFirstXBeeApp> xcopy /S <path_to_XBJL>\XBJL-X.Y.Z\extra-libs libs

~\myFirstXBeeApp>

4. Define the following environment variables:

XBJL_CLASS_PATH contains the paths to the required JAR files:

n xbee-java-library-X.Y.Z.jar
n rxtx-2.2.jar
n slf4j-api-1.7.12.jar
n slf4j-nop-1.7.12.jar
n android-sdk-5.1.1.jar
n android-sdk-addon-3.jar

~\myFirstXBeeApp> set XBJL_CLASS_PATH=libs\xbee-java-library-X.Y.Z.jar;libs\rxtx-
2.2.jar;libs\slf4j-api-1.7.12.jar;libs\slf4j-nop-1.7.12.jar
~\myFirstXBeeApp>

Getting started with XBee Java Library Build your first XBee Java application

XBee Java Library User Guide 20

Add the application source code
Once you create your project, the next step is to create the Java source file to send the Hello XBee
World! message to the rest of devices in the same network.

Add the application source code - Eclipse

1. In the Package Explorer view, select the project myFirstXBeeApp and right-click.
2. From the context menu, select New > Class. The New Java Class wizard opens.
3. Modify the Package to com.digi.xbee.example.
4. Type the Name of the class,MainApp.
5. Click Finish. Inside the src folder, a new package called com.digi.xbee.example is displayed, which

contains the class MainApp you have just created.
The MainApp.java file opens in the editor.

6. Remove the existing code and copy the appropriate source code from one the following links:
n MainApp.java code (not cellular)
n MainApp.java code (cellular)

7. Set the port (PORT) and baud rate (BAUD_RATE) of the module you are going to use as the sender in
the code.

Note Use XCTU to find out the port and baud rate of your sender module. See the Frequently Asked
Questions (FAQs) section for additional information.

8. Save the changes and close the file.

Add the application source code - Netbeans

1. In the Projects view, right-click and select the myFirstXBeeApp project.
2. From the context menu select New > Java Class.... The New Java Class wizard opens.
3. Modify the Class Name toMainApp.
4. Type the Package name, com.digi.xbee.example.
5. Click Finish. Inside the Source Packages folder, a new package, com.digi.xbee.example, is

displayed, which contains the class MainApp you have just created.
The MainApp.java file opens in the editor.

6. Remove the existing code and copy the appropriate source code from one the following links:
n MainApp.java code (not cellular)
n MainApp.java code (cellular)

7. Set the port (PORT) and baud rate (BAUD_RATE) of the module you are going to use as sender in the
code.

Note Use XCTU to find out the port and baud rate of your sender module. See the Frequently Asked
Questions (FAQs) section for additional information.

8. Save the changes and close the file.

Getting started with XBee Java Library Build your first XBee Java application

XBee Java Library User Guide 21

Add the application source code - command line

1. Inside the last folder of the package structure you have just created
(myFirstXBeeApp/com/digi/xbee/example), create the Java application source file,MainApp.java.

~\myFirstXBeeApp\com\digi\xbee\example> fsutil file createnew MainApp.java 0
File [...]\myFirstXBeeApp\com\digi xbee\example\MainApp.java is created
~\myFirstXBeeApp\com\digi\xbee\example>

2. Open the MainApp.java file in a text editor and copy the appropriate source code from one the
following links:

n MainApp.java code (not cellular)
n MainApp.java code (cellular)

3. Set the port (PORT) and baud rate (BAUD_RATE) of the module you are going to use as the sender in
the code.

Note Use XCTU to find out the port and baud rate of your sender module. See the Frequently Asked
Questions (FAQs) section for additional information.

4. Save the changes and close the file.

MainApp.java code (not cellular)
This code must be modified to enter the right values for the constants PORT and BAUD_RATE. Their
current values must be replaced with the port and baud rate of your sender module.

package com.digi.xbee.example;

import com.digi.xbee.api.WiFiDevice;
import com.digi.xbee.api.XBeeDevice;
import com.digi.xbee.api.exceptions.XBeeException;
import com.digi.xbee.api.models.XBeeProtocol;

public class MainApp {
/* Constants */
// TODO Replace with the port where your sender module is connected to.
private static final String PORT = "COM1";
// TODO Replace with the baud rate of your sender module.
private static final int BAUD_RATE = 9600;

private static final String DATA_TO_SEND = "Hello XBee World!";

public static void main(String[] args) {
XBeeDevice myDevice = new XBeeDevice(PORT, BAUD_RATE);
byte[] dataToSend = DATA_TO_SEND.getBytes();

try {
myDevice.open();

System.out.format("Sending broadcast data: '%s'", new String
(dataToSend));

if (myDevice.getXBeeProtocol() == XBeeProtocol.XBEE_WIFI) {
myDevice.close();

Getting started with XBee Java Library Build your first XBee Java application

XBee Java Library User Guide 22

myDevice = new WiFiDevice(PORT, BAUD_RATE);
myDevice.open();
((WiFiDevice)myDevice).sendBroadcastIPData(0x2616, dataToSend);

} else
myDevice.sendBroadcastData(dataToSend);

System.out.println(" >> Success");

} catch (XBeeException e) {
System.out.println(" >> Error");
e.printStackTrace();
System.exit(1);

} finally {
myDevice.close();

}
}

}

MainApp.java code (cellular)
This code must be modified to enter the right values for the constants PORT and BAUD_RATE. Their
current values must be replaced with the port and baud rate of your sender module.

package com.digi.xbee.example;

import java.net.Inet4Address;
import java.net.UnknownHostException;

import com.digi.xbee.api.CellularDevice;
import com.digi.xbee.api.exceptions.XBeeException;
import com.digi.xbee.api.models.IPMessage;
import com.digi.xbee.api.models.IPProtocol;

public class MainApp {

/* Constants */
// TODO Replace with the serial port where your sender module is connected

to.
private static final String PORT = "COM1";
// TODO Replace with the baud rate of your sender module.
private static final int BAUD_RATE = 9600;
// TODO Optionally, replace with the text you want to send to the server.
private static final String TEXT = "Hello XBee World!";

private static final String ECHO_SERVER_IP = "52.43.121.77";
private static final int ECHO_SERVER_PORT = 11001;

private static final IPProtocol PROTOCOL_TCP = IPProtocol.TCP;

public static void main(String[] args) {
CellularDevice myDevice = new CellularDevice(PORT, BAUD_RATE);

try {
myDevice.open();

System.out.format("Sending text to echo server: '%s'", TEXT);
myDevice.sendIPData((Inet4Address) Inet4Address.getByName(ECHO_

SERVER_IP),
ECHO_SERVER_PORT, PROTOCOL_TCP, TEXT.getBytes());

Getting started with XBee Java Library Build your first XBee Java application

XBee Java Library User Guide 23

System.out.println(" >> Success");

// Read the echoed data.
IPMessage response = myDevice.readIPData();
if (response == null) {

System.out.format("Echo response was not received from the
server.");

System.exit(1);
}
System.out.format("Echo response received: '%s'",

response.getDataString());
} catch (XBeeException | UnknownHostException e) {

System.out.println(" >> Error");
e.printStackTrace();
System.exit(1);

} finally {
myDevice.close();

}
}

}

Build the application
Now that you have configured the project and created the source code, you can build the example.

Build the application - Eclipse
Eclipse automatically builds all the projects by default, although this setting can be changed from the
Projectmenu (Build Automatically).
If this setting is not enabled, you must manually build the project. Select your project from the
Package Explore view. Once selected, go to the Project menu and click Build project.

Build the application - Netbeans
To build the project:

1. Select the project from the Projects view.
2. Right-click the project and select Build.

Build the application - Command line
The Java compiler, javac, needs to know the location of the source (-sourcepath), the required classes
(-classpath), the output directory (-d) and the Java files to build (<source files>).

Compiling Java source with the javac command
javac \

-sourcepath <path> \
-classpath <path> \
-d <directory> \
<source files>

1. Create the bin directory to store the *.class files resulting from the Java build inside the folder
myFirstXBeeApp:

Getting started with XBee Java Library Launch the application

XBee Java Library User Guide 24

~\myFirstXBeeApp> mkdir bin
~\myFirstXBeeApp>

2. Execute the following command, using the XBJL_CLASS_PATH variable created in the previous step:

~\myFirstXBeeApp> javac -sourcepath src -classpath %XBJL_CLASS_PATH% -d bin
src/com/digi/xbee/example/*.java
~\myFirstXBeeApp>

Once the code is built, you obtain the class files (*.class) inside the bin folder.

3. When the code is built, you can create an executable JAR file of your project.
a. To create an executable JAR, create a manifest file which contains the main class and a reference

to the required libraries.

For this example, the manifest.mf file is located inside the root project folder.

Example of manifest.mf
Main-Class: com.digi.xbee.example.MainApp
Class-Path:libs/xbee-java-library-X.Y.Z.jar libs/rxtx-2.2.jar libs/slf4j-api-

1.7.7.jar libs/slf4j-nop-1.7.7.jar

Note The last line of the manifest file must be an empty line.

b. When you have the manifest file, create the executable JAR file.

Creating an executable JAR file with the jar command
jar \

cvfm \
<jar file> \
<manifest file> \
<files>

You must execute this command from the bin folder as shown in the following example:
~\myFirstXBeeApp\bin> jar cvfm myFirstXBeeApp.jar ..\manifest.mf .
~\myFirstXBeeApp\bin>

Launch the application
After you have built the project, you can launch it. Your application needs the XBee Java Library and
the required JAR files as well as the native code to properly run your application.

n Launch the application for non-Cellular protocol
n Launch the application for Cellular protocol

Launch the application for non-Cellular protocol
If you developed the application for protocols other than Cellular, you must ensure the message Hello
XBee World! is sent from your sender device. Use XCTU to read the frames received:

1. Launch XCTU.
2. Add the receiver module to XCTU. Do not use the same module you established as the sender in the

Java Application.

Getting started with XBee Java Library Launch the application

XBee Java Library User Guide 25

3. Click Open the serial connection with the radio module to switch to Consoles working mode and
open the serial connection. This allows you to see the data when it is received.

4. Launch the Java application using the following command line, Eclipse or NetBeans instructions.
n Eclipse
n Netbeans
n Command line

The application sends the message Hello XBee World! to all modules of the network. When that
happens, a line with the result of the operation prints to the standard output:

Sending broadcast data: 'Hello XBee World!' >> Success

Verify that a new RX frame or RX IPv4 (if the module is Wi-Fi) appears in the XCTU console. Select the
frame and review the details as shown in the following example:

Start delimiter 7E

Length Depends on the XBee protocol

Frame type Depends on the XBee protocol

64-bit source address XBee sender's 64-bit address

RF data/Received data 48 65 6C 6C 6F 20 58 42 65 65 20 57 6F 72 6C 64 21

Where the sequence in RF data/Received data is the hexadecimal representation of the sent ASCII
string:Hello XBee World!

Launch the application for Cellular protocol
If you developed the application for the Cellular protocol, complete the following tasks:

Getting started with XBee Java Library Launch the application

XBee Java Library User Guide 26

n Execute the application.
n Verify the data sent to the echo server echoes back and the Cellular module reads it correctly.

Launch the Java application using the command line, Eclipse or NetBeans instructions below.

n Eclipse
n Netbeans
n Command line

The application sends the message Hello XBee World! to the echo server and the Cellular device reads
it back. When that happens, a line with the result of the operation is printed to the standard output:

Sending text to echo server: 'Hello XBee World!' >> Success
Echo response received: 'Hello XBee World!'

Use the XBee Java Library

The XBee Java Library is an easy-to-use API developed in Java that allows you to interact with Digi's
XBee radio frequency (RF) modules. You can use the XBee Java Library to create any kind of Java or
Android application, from command line to GUI, that needs to communicate with or configure XBee
devices.
The API is designed both for new and advanced users. You do not need previous knowledge of XBee
communication protocols or advanced Java experience to get started. The API provides all the
methods you need to perform the most common tasks related to XBee devices. If you are an
advanced user, you can take advantage of the complete set of API commands to create powerful
applications.
The XBee Java Library includes the following features:

n Support for the following XBee devices:
l Zigbee
l 802.15.4
l DigiMesh
l Point-to-Multipoint
l Wi-Fi
l Cellular
l Cellular NB-IoT
l Thread

n Support for API and API Escaped operating modes.
n Support for Android.
n A range of capabilities, including the ability to:

l Discover all the remote XBee devices in your network.
l Configure your XBee device or any remote module of the network.
l Send data to a specific device, or to all the XBee devices in the network.
l Receive data from remote XBee devices.
l Receive network status changes related to your XBee device.
l Configure, set and read the IO lines of your XBee devices.
l Receive IO data samples at a specific rate from any remote XBee device in the network.
l Send and receive data between the XBee local interfaces (Bluetooth Low Energy,

MicroPython and Serial Port).

Before you begin to work with the XBee Java Library, we recommended looking at the concepts
explained in the first section, XBee terminology, to help you while developing your application.

XBee Java Library User Guide 27

Use the XBee Java Library

XBee Java Library User Guide 28

XBee terminology 29
Working with XBee classes 33
Configuring the XBee device 40
Discover the XBee network 59
Communicate with XBee devices 69
Handling analog and digital IO lines 118
Logging events 127
Building the library 129

Use the XBee Java Library XBee terminology

XBee Java Library User Guide 29

XBee terminology
This section covers basic XBee concepts and terminology. The XBee Java library manual refers to
these concepts frequently, so it is important to understand these concepts.

RF modules
A radio frequency (RF) module is a small electronic circuit used to transmit and receive radio signals
on different frequencies. Digi produces a wide variety of RF modules to meet the requirements of
almost any wireless solution, such as long-range, low-cost, and low power modules. The most popular
wireless products are the XBee RF modules.

XBee RF modules
XBee is the brand name of a family of RF modules produced by Digi International Inc. XBee RF modules
are modular products that make it easy and cost-effective to deploy wireless technology. Multiple
protocols and RF features are available, giving customers enormous flexibility to choose the best
technology for their needs.
The XBee RF modules are available in two form-factors: Through-Hole and Surface Mount, with
different antenna options. Almost all modules are available in the Through-Hole form factor and share
the same footprint.

Radio firmware
Radio firmware is the program code stored in the radio module's persistent memory that provides the
control program for the device. From the local web interface of the XBee Gateway, you can update or
change the firmware of the local XBee module or any other module connected to the same network.
This is a common task when changing the role of the device or updating to the latest version of the
firmware.

Use the XBee Java Library XBee terminology

XBee Java Library User Guide 30

Radio communication protocols
A radio communication protocol is a set of rules for data exchange between radio devices. An XBee
module supports a specific radio communication protocol depending on the module and its radio
firmware.
Following is the complete list of protocols supported by the XBee radio modules:

n IEEE 802.15.4
n Zigbee
n Zigbee Smart Energy
n DigiMesh (Digi’s proprietary)
n ZNet
n IEEE 802.11 (Wi-Fi)
n Point-to-multipoint (Digi’s proprietary)
n XSC (XStream compatibility)
n Cellular
n Cellular NB-IoT
n Thread

Note Not all XBee devices can run all these communication protocols. The combination of XBee
hardware and radio firmware determines the protocol that an XBee device can execute. Refer to the
XBee RF Family Comparison Matrix for more information about the available XBee RF modules and the
protocols they support.

Radio module operating modes
The operating mode of an XBee radio module establishes the way a user or any microcontroller
attached to the XBee communicates with the module through the Universal Asynchronous
Receiver/Transmitter (UART) or serial interface.
Depending on the firmware and its configuration, the radio modules can work in three different
operating modes:

https://www.digi.com/pdf/chart_xbee_rf_features.pdf

Use the XBee Java Library XBee terminology

XBee Java Library User Guide 31

n Application Transparent (AT) operating mode
n API operating mode
n API escaped operating mode

In some cases, the operating mode of a radio module is established by the firmware version and the
firmware's AP setting. The module's firmware version determines whether the operating mode is AT
or API. The firmware's AP setting determines if the API mode is escaped (AP=2) or not (AP=1). In other
cases, the operating mode is only determined by the AP setting, which allows you to configure the
mode to be AT (AP=0), API (AP=1) or API escaped (AP=2).

API operating mode
Application Programming Interface (API) operating mode is an alternative to AT operating mode. API
operating mode requires that communication with the module through a structured interface; that is,
data communicated in API frames.
The API specifies how commands, command responses, the module sends and receives status
messages using the serial interface. API operation mode enables many operations, such as the
following:

n Configure the XBee device itself.
n Configure remote devices in the network.
n Manage data transmission to multiple destinations.
n Receive success/failure status of each transmitted RF packet.
n Identify the source address of each received packet.

Depending on the AP parameter value, the device can operate in one of two modes: API (AP = 1) or API
escaped (AP = 2) operating mode.

Application Transparent (AT) operating mode
In Application Transparent (AT) or transparent operating mode, all serial data received by the radio
module is queued up for RF transmission. When the module receives RF data, it sends the data out
through the serial interface.
To configure an XBee module operating in AT, put the device in commandmode to send the
configuration commands.

Command mode
When the radio module is working in AT operating mode, configure settings using the commandmode
interface.
To enter commandmode, send the 3-character command sequence through the serial interface of the
radio module, usually +++, within one second. Once the commandmode has been established, the
module sends the reply OK, the commandmode timer starts, and the radio module can receive AT
commands.
The structure of an AT command follows this format:
AT[ASCII command][Space (optional)][Parameter (optional)][Carriage return]

Example:
ATNI MyDevice\r

Use the XBee Java Library XBee terminology

XBee Java Library User Guide 32

If no valid AT commands are received within the commandmode timeout, the radio module
automatically exits commandmode. You can also exit commandmode issuing the CN command (Exit
Commandmode).

API escaped operating mode
API escaped operating mode (AP = 2) works similarly to API mode. The only difference is that when
working in API escapedmode, some bytes of the API frame specific data must be escaped.
Use API escaped operating mode to add reliability to the RF transmission, which prevents conflicts
with special characters such as the start-of-frame byte (0x7E). Since 0x7E can only appear at the start
of an API packet, if 0x7E is received at any time, you can assume that a new packet has started
regardless of length. In API escapedmode, those special bytes are escaped.

Escape characters
When sending or receiving an API frame in API escapedmode, you must escape (flag) specific data
values so they do not interfere with the data frame sequence. To escape a data byte, insert 0x7D and
follow it with the byte being escaped, XOR'd with 0x20.
The following data bytes must be escaped:

n 0x7E: Frame delimiter
n 0x7D: Escape
n 0x11: XON
n 0x13: XOFF

API frames
An API frame is the structured data sent and received through the serial interface of the radio module
when it is configured in API or API escaped operating modes. API frames are used to communicate
with the module or with other modules in the network.
An API frame has the following structure:

Start
Delimiter

This field is always 0x7E.

Length The length field has a two-byte value that specifies the number of bytes that are
contained in the frame data field. It does not include the checksum field.

Frame
Data

The content of this field is composed by the API identifier and the API identifier specific
data. Depending on the API identifier (also called API frame type), the content of the
specific data changes.

Checksum Byte containing the hash sum of the API frame bytes.

Use the XBee Java Library Working with XBee classes

XBee Java Library User Guide 33

In API escapedmode, there may be some bytes in the Length, Frame Data and Checksum fields that
must be escaped.

AT settings or commands
The firmware running in the XBee RF modules contains a group of settings and commands that you
can configure to change the behavior of the module or to perform any related action. Depending on
the protocol, the number of settings andmeanings vary, but all the XBee RF modules can be
configured with AT commands.
All the firmware settings or commands are identified with two ASCII characters and some applications
and documents refer to them as AT settings or AT commands.
The configuration process of the AT settings varies depending on the operating mode of the XBee RF
module.

n AT operating mode. In this mode, you must put the module in a special mode called command
mode, so it can receive AT commands. For more information about configuring XBee RF
modules working in AT operating mode, see Application Transparent (AT) operating mode.

n API operating mode. To configure or execute AT commands when the XBee RF module
operates in API mode, you must generate an AT command API frame containing the AT setting
identifier and the value of that setting, and send it to the XBee RF module. For more
information about API frames, see API frames.

Working with XBee classes
When working with the XBee Java Library, start with an XBee device object that represents a physical
module. A physical XBee device is the combination of hardware and firmware. Depending on that
combination, the device runs a specific wireless communication protocol such as Zigbee, 802.15.4,
DigiMesh, Wif-Fi, and Cellular. An XBeeDevice class represents the XBee module in the API.
Most of the protocols share the same features and settings, but there are some differences between
them. For that reason, the XBee Java Library also includes a set of classes that represent XBee
devices running different communication protocols. The XBee Java Library supports one XBee device
class per protocol, as follows:

n XBee Zigbee device (ZigbeeDevice)
n XBee 802.15.4 device (Raw802Device)
n XBee DigiMesh device (DigiMeshDevice)
n XBee Point-to-multipoint device (DigiPointDevice)
n XBee IP devices

Use the XBee Java Library Working with XBee classes

XBee Java Library User Guide 34

l XBee Cellular device (CellularDevice)
o XBee Cellular NB-IoT device (NBIoTDevice)

l XBee Wi-Fi device (WiFiDevice)
n XBee IPv6 devices

l XBee Thread device (ThreadDevice)

All these XBee device classes allow you to configure the physical XBee device, communicate with the
device, send data to other nodes on the network, receive data from remote devices, and so on.
Depending on the class, you may have additional methods to execute protocol-specific features or
similar methods.
To work with the API and perform actions involving the physical device, you must instantiate a generic
XBeeDevice object or one that is protocol-specific. This documentation refers to the XBeeDevice
object generically when describing the different features, but they can be applicable to any XBee
device class.
This section provides information to help you complete the following tasks:

n Instantiate an XBee device object
n Open the XBee device connection
n Close the XBee device connection

Instantiate an XBee device object
When you are working with the XBee Java Library, the first step is to instantiate an XBee device
object. The API works well using the generic XBeeDevice class, but you can also instantiate a protocol-
specific XBee device object if you know the protocol your physical XBee device is running.
An XBee device is represented as either local or remote in the XBee Java Library, depending upon how
you communicate with the device.

Local XBee device
A local XBee device is the object in the library representing the device that is physically attached to
your PC through a serial or USB port. The classes you can instantiate to represent a local device are
listed in the following table:

Class Description

XBeeDevice Generic object, protocol independent

ZigbeeDevice Zigbee protocol

Raw802Device 802.15.4 protocol

DigiMeshDevice DigiMesh protocol

DigiPointDevice Point-to-multipoint protocol

CellularDevice Cellular protocol

WiFiDevice Wi-Fi protocol

NBIoTDevice Cellular NB-IoT protocol

ThreadDevice Thread protocol

Use the XBee Java Library Working with XBee classes

XBee Java Library User Guide 35

To instantiate a generic or protocol-specific XBee device, you need to provide the following two
parameters:

n Serial port name
n Serial port baud rate

Instantiating a local XBee device - simple

import com.digi.xbee.api.XBeeDevice;

[...]

// Instantiate an XBee device object.
XBeeDevice myXBeeDevice = new XBeeDevice("COM1", 9600);

Other serial port parameters are optional and they default to the following values:

Data bytes 8

Stop bits 1

Parity None

Flow control None

There are also other constructors allowing their specification.

Instantiating a local XBee device - advanced

import com.digi.xbee.api.XBeeDevice;

[...]

// Instantiate an XBee device with optional serial params.
XBeeDevice myXBeeDevice = new XBeeDevice("COM1", 9600, 8, 1, 0, 0);

The XBee Java API also includes a serial port configuration class that you can use to declare an XBee
device.

Instantiating a local XBee device - serial port parameters

import com.digi.xbee.api.XBeeDevice;
import com.digi.xbee.api.connection.serial.SerialPortParameters;

[...]

// Instantiate an XBee device using the SerialPortParameters class.
SerialPortParameters portParams = new SerialPortParameters(

9600, /* baudrate: 9600 */
8, /* data bits: 8 */
1, /* stop bits: 1 */
0, /* parity: none */
0, /* flow control: none */);

XBeeDevice myXBeeDevice = new XBeeDevice("COM1", portParams);

Use the XBee Java Library Working with XBee classes

XBee Java Library User Guide 36

Remote XBee device
Remote XBee device objects represent remote nodes of the network. These are XBee devices that are
not attached to your PC but operate in the same network as the attached (local) device.

When working with remote XBee devices, it is very important to understand that you
cannot communicate directly with them. You need to provide a local XBee device operating
in the same network that acts as bridge between your serial port and the remote node.

Managing remote devices is similar to managing local devices, but with limitations. You can configure
them, handle their IO lines, and so on, in the same way you manage local devices. Local XBee devices
have several methods for sending data to remote devices, but the remote devices cannot use these
methods because they are already remote. Therefore a remote device cannot send data to another
remote device.
In the local XBee device instantiation you can choose between instantiating a generic remote XBee
device object, or a protocol-specific remote XBee device. The following table lists the remote XBee
device classes:

Class Description

RemoteXBeeDevice Generic object, protocol independent

RemoteZigbeeDevice Zigbee protocol

RemoteRaw802Device 802.15.4 protocol

RemoteDigiMeshDevice DigiMesh protocol

RemoteDigiPointDevice Point-to-multipoint protocol

RemoteThreadDevice Thread protocol

Note XBee Cellular andWi-Fi protocols do not support remote devices.

To instantiate a remote XBee device object, you need to provide the following parameters:

n Local XBee device attached to your PC that serves as the communication interface.
n 64-bit address of the remote device (for all remote devices but RemoteThreadDevice).
n IPv6 address of the remote device (only if the remote device is a RemoteThreadDevice).

RemoteRaw802 device objects can be also instantiated by providing the local XBee device attached to
your PC and the 16-bit address of the remote device.

Instantiating a remote XBee device

import com.digi.xbee.api.RemoteXBeeDevice;
import com.digi.xbee.api.XBeeDevice;

[...]

// Instantiate a local XBee device object.
XBeeDevice myLocalXBeeDevice = new XBeeDevice("COM1", 9600);

// Instantiate a remote XBee device object.

Use the XBee Java Library Working with XBee classes

XBee Java Library User Guide 37

RemoteXBeeDevice myRemoteXBeeDevice = new RemoteXBeeDevice(myLocalXBeeDevice,
new XBee64BitAddress("000000409D5EXXXX"));

The local device must also be the same protocol for protocol-specific remote XBee devices.

Open the XBee device connection
Before trying to communicate with the local XBee device attached to your PC, you need to open its
communication interface, which is typically a serial/USB port. Use the open() method of the
instantiated XBee device, and you can then communicate and configure the device.
Remote XBee devices do not have an openmethod. They use a local XBee device as the connection
interface. If you want to perform any operation with a remote XBee device you must open the
connection of the associated local device.
If the connection is not open, any task executed by the XBee device object involving communication
with the physical device throws an InterfaceNotOpenException runtime exception, terminating the
execution of your application. Similarly, if you try to open a device that was already opened, you
receive an InterfaceAlreadyOpenException runtime exception and your application exits. This is a
common issue if you are working with remote XBee devices.

Open the device connection

import com.digi.xbee.api.XBeeDevice;

[...]

// Instantiate an XBee device object.
XBeeDevice myXBeeDevice = new XBeeDevice("COM1", 9600);

// Open the device connection.
myXBeeDevice.open();

[...]

The open() methodmay fail for the following reasons:

n All the possible errors are caught as XBeeException:
l If the connection interface is already in use by other applications, throwing an

InterfaceInUseException.
l If the interface is invalid or does not exist, throwing an InvalidInterfaceException.
l If the configuration used to open the interface is not valid, throwing an

InvalidConfigurationException.
l If you do not have permissions to open the interface, throwing a

PermissionDeniedException.
l If the operating mode of the device is not API or API_ESCAPE, throwing an

InvalidOperatingModeException.

The open() action performs some other operations apart from opening the connection interface of the
device. It reads the device information (reads some sensitive data from it) and determines the
operating mode of the device.

Use the XBee Java Library Working with XBee classes

XBee Java Library User Guide 38

Device information reading
The read device information process reads the following parameters from the local or remote XBee
device and stores them inside. You can then access parameters at any time, calling their
corresponding getters.

n 64-bit address
n 16-bit address
n Node Identifier
n Firmware version
n Hardware version
n IPv4 address (only for Cellular andWi-Fi modules)
n IPv6 address (only for Threadmodules)
n IMEI (only for Cellular modules)

The read process is performed automatically in local XBee devices when opening them with the open
() method. If remote XBee devices cannot be opened, you must use readDeviceInfo() to read their
device information.

Initializing a remote XBee device

import com.digi.xbee.api.RemoteXBeeDevice;
import com.digi.xbee.api.XBeeDevice;
import com.digi.xbee.api.models.XBee64BitAddress;

[...]

// Instantiate an XBee device object.
XBeeDevice myLocalXBeeDevice = new XBeeDevice("COM1", 9600);
myLocalXBeeDevice.open();

// Instantiate a remote XBee device object.
RemoteXBeeDevice myRemoteXBeeDevice = new RemoteXBeeDevice(myLocalXBeeDevice,

new XBee64BitAddress("0013A20040XXXXXX"));

// Read the device information of the remote XBee device.
myRemoteXBeeDevice.readDeviceInfo();

[...]

The readDeviceInfo() methodmay fail for the following reasons:

n ACK of the command sent is not received in the configured timeout, throwing a
TimeoutException.

n Other errors caught as XBeeException:
l The operating mode of the device is not API or API_ESCAPE, throwing an

InvalidOperatingModeException.
l The response of the command is not valid, throwing an ATCommandException.
l There is an error writing to the XBee interface, throwing a generic XBeeException.

Note Although the readDeviceInfomethod is executed automatically in local XBee devices when they
are open, you can issue it at any time to refresh the information of the device.

Use the XBee Java Library Working with XBee classes

XBee Java Library User Guide 39

Getting the device information

import com.digi.xbee.api.XBeeDevice;

[...]

XBeeDevice myXBeeDevice = ...

myXBeeDevice.open();

// Get the 64-bit address of the device.
XBee64BitAddress 64BitAddress = myXBeeDevice.get64BitAddress();
// Get the Node identifier of the device.
String nodeIdentifier = myXBeeDevice.getNodeID();
// Get the Hardware version of the device.
HardwareVersion hardwareVersion = myXBeeDevice.getHardwareVersion();
// Get the Firmware version of the device.
String firmwareVersion = myXBeeDevice.getFirmwareVersion();

The read device information process also determines the communication protocol of the local or
remote XBee device object. This is typically something you need to know beforehand if you are not
using the generic XBeeDevice object.
However, the API performs this operation to ensure that the class you instantiated is the correct one.
So, if you instantiated a Zigbee device and the open() process realizes that the physical device is
actually a DigiMesh device, you receive an XBeeDeviceException indicating the device.

Getting the XBee protocol
You can retrieve the protocol of the XBee device from the object executing the corresponding getter.

import com.digi.xbee.api.XBeeDevice;

[...]

XBeeDevice myXBeeDevice = ...

myXBeeDevice.open();

// Get the protocol of the device.
XBeeProtocol xbeeProtocol = myXBeeDevice.getXBeeProtocol();

Device operating mode
The open() process also reads the operating mode of the physical local device and stores it in the
object. As with previous settings, you can retrieve the operating mode from the object at any time by
calling the corresponding getter.

Getting the operating mode

import com.digi.xbee.api.XBeeDevice;

[...]

XBeeDevice myXBeeDevice = ...

myXBeeDevice.open();

Use the XBee Java Library Configuring the XBee device

XBee Java Library User Guide 40

// Get the operating mode of the device.
OperatingMode operatingMode = myXBeeDevice.getOperatingMode();

Remote devices do not have an open() method, so you receive UNKNOWN when retrieving the
operating mode of a remote XBee device.
The XBee Java API supports 2 operating modes for local devices:

n API
n API with escaped characters

This means that AT (transparent) mode is not supported by the API. So, if you try to execute the open
() method in a local device working in AT mode, you get an XBeeException caused by an
InvalidOperatingModeException.

Close the XBee device connection
Once you have finished communicating with the local XBee device, we recommend that you close its
communication interface. This releases the interface so other applications can use it.
To close the connection of a local XBee device, use the close() method of the XBee device object. This
method immediately frees the allocated resources.

[...]

// Instantiate an XBee device object.
XBeeDevice myXBeeDevice = ...;

try {
myXBeeDevice.open();

} catch [...] {
[...]

} finally {
// Close the device connection.
myXBeeDevice.close();

}

[...]

Remote XBee devices cannot be open, so they cannot be closed either. To close the connection of a
remote device you need to close the connection of the local associated device.

Configuring the XBee device
One of the main features of the XBee Java Library is the ability to configure the parameters of local
and remote XBee devices and execute actions or commands on them.

The values set on the different parameters are not persistent through subsequent resets
unless you store those changes in the device. For more information, see Write configuration
changes.

Read and set common parameters
Local and remote XBee device objects provide a set of methods to get and set common parameters of
the device. Some of these parameters are saved inside the XBee device object, and a cached value is

Use the XBee Java Library Configuring the XBee device

XBee Java Library User Guide 41

returned when the parameter is requested. Other parameters are read directly from the physical
XBee device when requested.

Cached parameters
There are some parameters in an XBee device that are used or requested frequently. To avoid the
overhead of those parameters being read from the physical XBee device every time they are
requested, they are saved inside the XBeeDevice object being returned when the getters are called.
The following table lists parameters that are cached and their corresponding getters:

Parameter Method

64-bit address get64BitAddress()

16-bit address get16BitAddress()

Node identifier getNodeIdentifier()

Firmware version getFirmwareVersion()

Hardware version getHardwareVersion()

Local XBee devices read and save previous parameters automatically when opening the connection of
the device. In remote XBee devices, you must issue the readDeviceInfo() method to initialize the
parameters.
You can refresh the value of those parameters (that is, read their values and update them inside the
XBee device object) at any time by calling the readDeviceInfo() method.

Refreshing cached values

import com.digi.xbee.api.XBeeDevice;

[...]

// Instantiate an XBee device object.
XBeeDevice myXBeeDevice = new XBeeDevice("COM1", 9600);
myXBeeDevice.open();

// Refresh the cached values.
myXBeeDevice.readDeviceInfo();

[...]

The readDeviceInfo() methodmay fail for the following reasons:

n ACK of the command sent is not received in the configured timeout, throwing a
TimeoutException.

n Other errors caught as XBeeException:
l The operating mode of the device is not API or API_ESCAPE, throwing an

InvalidOperatingModeException.
l The response of the command is not valid, throwing an ATCommandException.
l There is an error writing to the XBee interface, throwing a generic XBeeException.

Use the XBee Java Library Configuring the XBee device

XBee Java Library User Guide 42

All the cached parameters but the Node Identifier do not change; therefore, they cannot be set. For
the Node Identifier, there is a method within all the XBee device classes that allows you to change it:

Method Descripton

setNodeIdentifier
(String)

Specifies the new Node Identifier of the device. This method configures the
physical XBee device with the provided Node Identifier and updates the cached
value with the one provided.

Non-cached parameters
The following are the non-cached parameters that have their ownmethods to be configured within
the XBee device classes:

n Destination Address: This setting specifies the default 64-bit destination address of a module
that is used to report data generated by the XBee device (that is, IO sampling data). This
setting can be get and set.

Method Description

getDestinationAddress() Returns the XBee64BitAddress of the device where the
data will be reported.

setDestinationAddress
(XBee64BitAddress)

Specifies the 64-bit address of the device where the data
will be reported. Configures the destination address of
the XBee device with the one provided.

n PAN ID: This is the ID of the Personal Area Network the XBee device is operating in. This
setting can be get and set.

Method Description

getPANID() Returns a byte array containing the ID of the Personal Area Network where the
XBee device is operating.

setPANID
(byte[])

Specifies the 64-bit value in a byte array format of the PAN ID where the XBee
device should work.

n Power level: This setting specifies the output power level of the XBee device. This setting can
be get and set.

Method Description

getPowerLevel() Returns a PowerLevel enumeration entry indicating the power level of the
XBee device.

setPowerLevel
(PowerLevel)

Specifies a PowerLevel enumeration entry containing the desired output
level of the XBee device.

Use the XBee Java Library Configuring the XBee device

XBee Java Library User Guide 43

Configuring non-cached parameters

import com.digi.xbee.api.XBeeDevice;

[...]

// Instantiate an XBee device object.
XBeeDevice myXBeeDevice = new XBeeDevice("COM1", 9600);
myXBeeDevice.open();

// Set the destination address of the device.
XBee64BitAddress destinationAddress = new XBee64BitAddress("0123456789ABCDEF");
myXBeeDevice.setDestinationAddress(destinationAddress);

// Read the operating PAN ID of the device.
byte[] operatingPANID = myXBeeDevice.getPANID();

// Read the output power level.
PowerLevel powerLevel = myXBeeDevice.getPowerLevel();

[...]

All the previous getters and setters of the different options may fail for the following reasons:

n ACK of the command sent is not received in the configured timeout, throwing a
TimeoutException.

n Other errors caught as XBeeException:
l The operating mode of the device is not API or API_ESCAPE, throwing an

InvalidOperatingModeException.
l The response of the command is not valid, throwing an ATCommandException.
l There is an error writing to the XBee interface, throwing a generic XBeeException.

Common Parameters Example
The XBee Java Library includes a sample application that displays how to get and set common
parameters. It can be located in the following path:
/examples/configuration/ManageCommonParametersSample

Read, set and execute other parameters
If you want to read or set a parameter that does not have a custom getter or setter within the XBee
device object, you can do so. All the XBee device classes (local or remote) include two methods to get
and set any AT parameter, and a third one to run a command in the XBee device.

Getting a parameter
You can read the value of any parameter of an XBee device using the getParameter() method
provided by all the XBee device classes. Use this method to get the value of a parameter that does not
have its getter method within the XBee device object.

Method Descripton

getParameter
(String)

Specifies the AT command (string format) to retrieve its value. The method returns
the value of the parameter in a byte array.

Use the XBee Java Library Configuring the XBee device

XBee Java Library User Guide 44

Getting a parameter from the XBee device

import com.digi.xbee.api.XBeeDevice;

[...]

// Instantiate an XBee device object.
XBeeDevice myXBeeDevice = new XBeeDevice("COM1", 9600)
myXBeeDevice.open();

// Get the value of the Sleep Time (SP) parameter.
byte[] sleepTime = myXBeeDevice.getParameter("SP");

[...]

The getParameter() methodmay fail for the following reasons:

n ACK of the command sent is not received in the configured timeout, throwing a
TimeoutException.

n Other errors caught as XBeeException:
l The operating mode of the device is not API or API_ESCAPE, throwing an

InvalidOperatingModeException.
l The response of the command is not valid, throwing an ATCommandException.
l There is an error writing to the XBee interface, throwing a generic XBeeException.

Set and get parameters example
The XBee Java Library includes a sample application that displays how to get and set parameters
using the methods explained previously. It can be located in the following path:
/examples/configuration/SetAndGetParametersSample

Setting a parameter
To set a parameter that does not have its own setter method, you can use the setParameter()
method provided by all the XBee device classes.

Method Descripton

setParameter
(String, byte[])

Specifies the AT command (String format) to be set in the device and a byte
array containing the value of the parameter.

Setting a parameter in the XBee device

import com.digi.xbee.api.XBeeDevice;

[...]

// Instantiate an XBee device object.
XBeeDevice myXBeeDevice = new XBeeDevice("COM1", 9600);
myXBeeDevice.open();

// Configure the Node ID using the setParameter method.
myXBeeDevice.setParameter("NI", "YODA".getBytes());

[...]

Use the XBee Java Library Configuring the XBee device

XBee Java Library User Guide 45

The setParameter() methodmay fail for the following reasons:

n ACK of the command sent is not received in the configured timeout, throwing a
TimeoutException.

n Other errors caught as XBeeException:
l The operating mode of the device is not API or API_ESCAPE, throwing an

InvalidOperatingModeException.
l The response of the command is not valid, throwing an ATCommandException.
l There is an error writing to the XBee interface, throwing a generic XBeeException.

Set and get parameters example
The XBee Java Library includes a sample application that displays how to get and set parameters
using the methods explained previously. It can be located in the following path:
/examples/configuration/SetAndGetParametersSample

Executing a command
There are other AT parameters that cannot be read or written. They are actions that are executed by
the XBee device. The XBee library has several commands that handle most common executable
parameters, but to run a parameter that does not have a custom command, you can use the
executeCommand() method provided by all the XBee device classes.

Method Descripton

executeCommand(String) Specifies the AT command (String format) to be run in the device.

Running a command in the XBee device

import com.digi.xbee.api.XBeeDevice;

[...]

// Instantiate an XBee device object.
XBeeDevice myXBeeDevice = new XBeeDevice("COM1", 9600);
myXBeeDevice.open();

// Run the apply changes command.
myXBeeDevice.executeCommand("AC");

[...]

The executeCommand() methodmay fail for the following reasons:

n ACK of the command sent is not received in the configured timeout, throwing a
TimeoutException.

n Other errors caught as XBeeException:
l The operating mode of the device is not API or API_ESCAPE, throwing an

InvalidOperatingModeException.
l The response of the command is not valid, throwing an ATCommandException.
l There is an error writing to the XBee interface, throwing a generic XBeeException.

Use the XBee Java Library Configuring the XBee device

XBee Java Library User Guide 46

Apply configuration changes
By default, when you perform any configuration on a local or remote XBee device, the changes are
automatically applied. However, there could be some scenarios when you want to configure different
settings or parameters of a device and apply the changes at the end when everything is configured.
For that purpose, the XBeeDevice and RemoteXBeeDevice objects provide some methods that allow
you to manage when to apply configuration changes.

Method Description Notes

enableApplyConfigurationChanges
(boolean)

Specifies whether the
changes on settings and
parameters are applied
when set.

The apply configuration
changes flag is enabled by
default.

isApplyConfigurationChangesEnabled
()

Returns whether the XBee
device is configured to
apply parameter changes
when they are set.

applyChanges() Applies the changes on
parameters that were
already set but are
pending to be applied.

This method is useful when
the XBee device is
configured to not apply
changes when they are set.

Applying configuration changes

import com.digi.xbee.api.XBeeDevice;

[...]

// Instantiate an XBee device object.
XBeeDevice myXBeeDevice = new XBeeDevice("COM1", 9600);
myXBeeDevice.open();

// Check if device is configured to apply changes.
boolean applyChangesEnabled = myXBeeDevice.isApplyConfigurationChangesEnabled();

// Configure the device not to apply parameter changes automatically.
if (applyChangesEnabled)
myXBeeDevice.setApplyConfigurationChanges(false);

// Set the PAN ID of the XBee device to BABE.
myXBeeDevice.setPANID(new byte[]{(byte)0xBA, (byte)0xBE});

// Perform other configurations.
[...]

// Apply changes.
myXBeeDevice.applyChanges();

[...]

The applyChanges() methodmay fail for the following reasons:

Use the XBee Java Library Configuring the XBee device

XBee Java Library User Guide 47

n ACK of the command sent is not received in the configured timeout, throwing a
TimeoutException.

n Other errors caught as XBeeException:
l The operating mode of the device is not API or API_ESCAPE, throwing an

InvalidOperatingModeException.
l The response of the command is not valid, throwing an ATCommandException.
l There is an error writing to the XBee interface, throwing a generic XBeeException.

Write configuration changes
If you want configuration changes performed in an XBee device to persist through subsequent resets,
you need to write those changes in the device. Writing changes means that the parameter values
configured in the device are written to the non-volatile memory of the XBee device. The module loads
the parameter values from non-volatile memory every time it is started.
The XBee device classes (local and remote) provide a method to write (save) the parameter
modifications in the XBee device memory so they persist through subsequent resets:writeChanges().

Writing configuration changes

import com.digi.xbee.api.XBeeDevice;

[...]

// Instantiate an XBee device object.
XBeeDevice myXBeeDevice = new XBeeDevice("COM1", 9600);
myXBeeDevice.open();

// Set the PAN ID of the XBee device to BABE.
myXBeeDevice.setPANID(new byte[]{(byte)0xBA, (byte)0xBE});

// Perform other configurations.
[...]

// Apply changes.
myXBeeDevice.applyChanges()

// Write changes.
myXBeeDevice.writeChanges()

[...]

The writeChanges() methodmay fail for the following reasons:

n ACK of the command sent is not received in the configured timeout, throwing a
TimeoutException.

n Other errors caught as XBeeException:
l The operating mode of the device is not API or API_ESCAPE, throwing an

InvalidOperatingModeException.
l The response of the command is not valid, throwing an ATCommandException.
l There is an error writing to the XBee interface, throwing a generic XBeeException.

Use the XBee Java Library Configuring the XBee device

XBee Java Library User Guide 48

Reset the device
There are times when it is necessary to reset the XBee device because things are not operating
properly or you are initializing the system. All the XBee device classes of the XBee API provide the
reset() method to perform a software reset on the local or remote XBee module.
In local modules, the reset() method blocks until a confirmation from the module is received, which
usually takes one or two seconds. Remote modules do not send any kind of confirmation, so the
method does not block when resetting them.

Resetting the module

import com.digi.xbee.api.XBeeDevice;

[...]

// Instantiate an XBee device object.
XBeeDevice myXBeeDevice = new XBeeDevice("COM1", 9600);
myXBeeDevice.open();

// Reset the module.
myXBeeDevice.reset();

[...]

The reset() methodmay fail for the following reasons:

n ACK of the command sent is not received in the configured timeout, throwing a
TimeoutException.

n Other errors caught as XBeeException:
l The operating mode of the device is not API or API_ESCAPE, throwing an

InvalidOperatingModeException.
l The response of the command is not valid, throwing an ATCommandException.
l There is an error writing to the XBee interface, throwing a generic XBeeException.

Reset example
The XBee Java Library includes a sample application that shows you how to perform a reset on your
XBee device. The example is located in the following path:
/examples/configuration/ResetModuleSample

Configure Wi-Fi settings
Unlike other protocols such as Zigbee or DigiMesh where devices are connected each other, the XBee
Wi-Fi protocol requires that the module is connected to an access point in order to communicate with
other TCP/IP devices.
This configuration and connection with access points can be done using applications such as XCTU;
however, the XBee Java Library includes a set of methods to configure the network settings, scan
access points and connect to one of them in easily.

Example: Configure Wi-Fi settings and connect to an access point
The XBee Java Library includes a sample application that demonstrates how to configure the network
settings of a Wi-Fi device and connect to an access point. You can locate the example in the following
path:
/examples/configuration/ConnectToAccessPointSample

Use the XBee Java Library Configuring the XBee device

XBee Java Library User Guide 49

Configure IP addressing mode
Before connecting your Wi-Fi module to an access point, you must decide how to configure the
network settings using the IP addressing mode option. The supported IP addressing modes are
contained in an enumerator called IPAddressingMode. It allows you to choose between:

n DHCP
n STATIC

The method used to perform this configuration is:

Method Description

setIPAddressingMode
(IPAddressingMode)

Sets the IP addressing mode of the Wi-Fi module. Depending on the
providedmode, network settings are configured differently:

n DHCP. Network settings are assigned by a server.
n STATIC. Network settings must be providedmanually one by one.

Configuring IP addressing mode

import com.digi.xbee.api.wiFiDevice;
import com.digi.xbee.api.models.IPAddressingMode;

[...]

// Instantiate a Wi-Fi device object.
WiFiDevice myWiFiDevice = new WiFiDevice("COM1", 9600);
myWiFiDevice.open();

// Configure the IP addressing mode to DHCP.
myWiFiDevice.setIPAddressingMode(IPAddressingMode.DHCP);

// Save the IP addressing mode.
myWiFiDevice.writeChanges();

[...]

The setIPAddressingMode(IPAddressingMode) methodmay fail for the following reasons:

n There is a timeout setting the IP addressing parameter, throwing a TimeoutException.
n Other errors caught as XBeeException:

l The operating mode of the device is not API or API_ESCAPE, throwing an
InvalidOperatingModeException.

l The response of the command is not valid, throwing an ATCommandException.
l There is an error writing to the XBee interface, throwing a generic XBeeException.

Configure IP network settings
Like any TCP/IP protocol device, the XBee Wi-Fi modules have the IP address, subnet mask, default
gateway and DNS settings that you can get at any time using the XBee Java Library.
Unlike some general configuration settings, these parameters are not saved inside the WiFiDevice
object. Every time you request the parameters, they are read directly from the Wi-Fi module

Use the XBee Java Library Configuring the XBee device

XBee Java Library User Guide 50

connected to the computer. The following is the list of parameters used in the configuration of the
TCP/IP protocol:

Parameter Method

IP Address getIPAddress()

Subnet mask getIPAddressMask()

Gateway IP getGatewayIPAddress()

DNS Address getDNSAddress()

Configuring IP network settings

import com.digi.xbee.api.wiFiDevice;
import com.digi.xbee.api.models.IPAddressingMode;

[...]

// Instantiate a Wi-Fi device object.
WiFiDevice myWiFiDevice = new WiFiDevice("COM1", 9600);
myWiFiDevice.open();

// Configure the IP addressing mode to DHCP.
myWiFiDevice.setIPAddressingMode(IPAddressingMode.DHCP);

// Connect to access point with SSID 'My SSID' and password "myPassword".
myWiFiDevice.connect("My SSID", "myPassword");

// Display the IP network settings that were assigned by the DHCP server.
System.out.println("- IP address: " + myWiFiDevice.getIPAddress().getHostAddress
());
System.out.println("- Subnet mask: " + myWiFiDevice.getIPAddressMask
().getHostAddress());
System.out.println("- Gateway IP address: " + myWiFiDevice.getGatewayIPAddress
().getHostAddress());
System.out.println("- DNS IP address: " + myWiFiDevice.getDNSAddress
().getHostAddress());

[...]

Any of the previous methods may fail for the following reasons:

Parameter Method

IP Address setIPAddress(Inet4Address)

Subnet mask setIPAddressMask(Inet4Address)

Gateway IP setGatewayIPAddress(Inet4Address)

DNS Address setDNSAddress(Inet4Address)

Use the XBee Java Library Configuring the XBee device

XBee Java Library User Guide 51

Configuring IP network settings

import java.net.Inet4Address;
import com.digi.xbee.api.wiFiDevice;
import com.digi.xbee.api.models.IPAddressingMode;

[...]

// Instantiate a Wi-Fi device object.
WiFiDevice myWiFiDevice = new WiFiDevice("COM1", 9600);
myWiFiDevice.open();

// Configure the IP addressing mode to Static.
myWiFiDevice.setIPAddressingMode(IPAddressingMode.STATIC);

// Configure the IP network settings.
myWiFiDevice.setIPAddress((Inet4Address)Inet4Address.getByName("192.168.1.123"));
myWiFiDevice.setIPAddressMask((Inet4Address)Inet4Address.getByName
("255.255.255.0"));
myWiFiDevice.setGatewayIPAddress((Inet4Address)Inet4Address.getByName
("192.168.1.1"));
myWiFiDevice.setDNSAddress((Inet4Address)Inet4Address.getByName("8.8.8.8"));

// Save the IP network settings.
myWiFiDevice.writeChanges();

// Connect to access point with SSID 'My SSID' and password "myPassword"
myWiFiDevice.connect("My SSID", "myPassword");

[...]

Any of the previous methods may fail for the following reasons:

n There is a timeout setting the IP addressing parameter, throwing a TimeoutException.
n Other errors caught as XBeeException:

l The operating mode of the device is not API or API_ESCAPE, throwing an
InvalidOperatingModeException.

l The response of the command is not valid, throwing an ATCommandException.
l There is an error writing to the XBee interface, throwing a generic XBeeException.

These set methods that configure the network settings can be only invoked when the IP
addressing mode is Static, otherwise an XBeeException appears.

Scan and connect to access points
The XBee Java Library includes some helpful methods in the WiFiDevice class to scan and connect to
access points. The AccessPoint class represents an access point in the XBee Java Library and contains
the following:

n The SSID of the access point.
n The encryption type of the access point represented by a value of the WiFiEncryptionType

enumerator, including:

Use the XBee Java Library Configuring the XBee device

XBee Java Library User Guide 52

l NONE
l WPA
l WPA2
l WEP

n The channel where the access point operates.
n The signal quality with the device in %.

Although you can instantiate an AccessPoint object in your code, they are usually generated and
returned by the access point scan methods of the WiFiDevice.

Scanning for access points
In order to scan access points, a method within the WiFiDevice returns a list of AccessPoint objects
found in the vicinity:

Method Description

scanAccessPoints() Performs a scan to search for access points in the vicinity.
Returns a list with the access points found.

Scanning for access points
import com.digi.xbee.api.wiFiDevice;
import com.digi.xbee.api.models.AccessPoint;

[...]

// Instantiate a Wi-Fi device object.
WiFiDevice myWiFiDevice = new WiFiDevice("COM1", 9600);
myWiFiDevice.open();

// Scan for access points.
List<AccessPoint> accessPoints = myWiFiDevice.scanAccessPoints();

// Print information of the access points found:
System.out.println("Access points found:");
for (AccessPoint accessPoint:accessPoints)
System.out.println(" - " + accessPoint.toString());

[...]

The scanAccessPoints() methodmay fail for the following reasons:

n There is a timeout setting the IP addressing parameter, throwing a TimeoutException.
n Other errors caught as XBeeException:

l The operating mode of the device is not API or API_ESCAPE, throwing an
InvalidOperatingModeException.

l The response of the command is not valid, throwing an ATCommandException.
l There is an error writing to the XBee interface, throwing a generic XBeeException.

Use the XBee Java Library Configuring the XBee device

XBee Java Library User Guide 53

Note This method blocks until the scan process ends or the access point timeout expires. This timeout
is set to 15 seconds by default, but you can configure it using the getAccessPointTimeout and
setAccessPointTimeoutmethods of the WiFiDevice class.

Getting/setting the access point operations timeout
import com.digi.xbee.api.WiFiDevice;

[...]

public static final int NEW_TIMEOUT_FOR_AP_OPERATIONS = 30 * 1000; // 30 seconds

WiFiDevice myWiFiDevice =

[...]

// Retrieve the configured timeout for access point related operations.
System.out.println("Current access point timeout: " +
myWiFiDevice.getAccessPointTimeout() + " ms.");

[...]

// Configure the new access point related operations timeout (in milliseconds).
myWiFiDevice.setAccessPointTimeout(NEW_TIMEOUT_FOR_AP_OPERATIONS);

[...]

If you already know the SSID of the access point you want to get, you can use the getAccessPoint
(String) method to get it. If the access point with the provided SSID is found, it is returned as an
AccessPoint object.

Method Description

getAccessPoint(String) Finds and reports the access point that matches the supplied SSID.

Getting an access point with specific SSID
import com.digi.xbee.api.wiFiDevice
import com.digi.xbee.api.models.AccessPoint;

[...]

// Instantiate a Wi-Fi device object.
WiFiDevice myWiFiDevice = new WiFiDevice("COM1", 9600);
myWiFiDevice.open();

// Get the access point with SSID "My access point".
AccessPoint accessPoint = myWiFiDevice.getAccessPoint("My access point");

[...]

Note This method blocks until the scan process ends or the access point timeout expires. This timeout
is set to 15 seconds by default, but you can configure it using the getAccessPointTimeout and
setAccessPointTimeoutmethods of the WiFiDevice class.

Use the XBee Java Library Configuring the XBee device

XBee Java Library User Guide 54

Connecting to an access point
Once you have found the access point you want to connect to, you can use any of the connect
methods provided by the WiFiDevice object to connect. The connect methods require the password of
the access point as a parameter. If the WiFiEncryptionType of the access point is NONE, the
password you provide must be null. In any case, the connect methods return a boolean value
indicating if the connection was established successfully.

Method Description

connect
(AccessPoint,
String)

Connects to the provided access point.

connect(String,
String)

Connects to the access point with the provided SSID. If you already know the
SSID this method allows you to skip the scan step.

Connecting to an access point
import com.digi.xbee.api.wiFiDevice;
import com.digi.xbee.api.models.AccessPoint;

[...]

// Instantiate a Wi-Fi device object.
WiFiDevice myWiFiDevice = new WiFiDevice("COM1", 9600);
myWiFiDevice.open();

// Get the access point with SSID "My access point".
AccessPoint accessPoint = myWiFiDevice.getAccessPoint("My access point");

// Connect to the access point.
boolean connected = myWiFiDevice.connect(accessPoint, "myPassword");

if (connected)
System.out.println("Connected");

else
System.out.println("Could not connect");

[...]

The connect methods may fail for the following reasons:

n There is a timeout setting the IP addressing parameter, throwing a TimeoutException.
n Other errors caught as XBeeException:

l The operating mode of the device is not API or API_ESCAPE, throwing an
InvalidOperatingModeException.

l The response of the command is not valid, throwing an ATCommandException.
l There is an error writing to the XBee interface, throwing a generic XBeeException.

Note These methods block until the device is fully connected to the access point or the access point
timeout expires. This timeout is set to 15 seconds by default, but you can configure it using the
getAccessPointTimeout and setAccessPointTimeoutmethods of the WiFiDevice class.

Use the XBee Java Library Configuring the XBee device

XBee Java Library User Guide 55

Disconnecting from an access point
If you want to close the connection with the current access point to connect to a different access
point or just disconnect from the network, call the disconnect method.

Method Description

disconnect() Disconnects from the access point where the device is connected.

Disconnecting from an access point
import com.digi.xbee.api.wiFiDevice;

[...]

// Instantiate a Wi-Fi device object.
WiFiDevice myWiFiDevice = new WiFiDevice("COM1", 9600);
myWiFiDevice.open();

// Get the access point with SSID "My access point".
myDevice.connect("My access point", "myPassword");

[...]

myDevice.disconnect();

[...]

The disconnect() methodmay fail for the following reasons:

n There is a timeout setting the IP addressing parameter, throwing a TimeoutException.
n Other errors caught as XBeeException:

l The operating mode of the device is not API or API_ESCAPE, throwing an
InvalidOperatingModeException.

l The response of the command is not valid, throwing an ATCommandException.
l There is an error writing to the XBee interface, throwing a generic XBeeException.

Note This method blocks until the device is fully disconnected from the access point or the access
point timeout expires. This timeout is set to 15 seconds by default, but you can configure it using the
getAccessPointTimeout and setAccessPointTimeoutmethods of the WiFiDevice class.

Checking connection status
The WiFiDevice object provides a method that allows you to check the connection status (connected
or disconnected) of your device at any time.

Method Description

isConnected() Returns whether the device is connected to an access point or not.

Use the XBee Java Library Configuring the XBee device

XBee Java Library User Guide 56

Checking connection status
import com.digi.xbee.api.wiFiDevice;

[...]

// Instantiate a Wi-Fi device object.
WiFiDevice myWiFiDevice = new WiFiDevice("COM1", 9600);
myWiFiDevice.open();

// Connect to the access point with SSID "My access point".
myWiFiDevice.connect("My access point", "myPassword");

// Check connection status.
System.out.println("Connected: " + myWiFiDevice.isConnected());

myWiFiDevice.disconnect();

// Check connection status again.
System.out.println("Connected: " + myWiFiDevice.isConnected());

[...]

The isConnected() methodmay fail for the following reasons:

n There is a timeout setting the IP addressing parameter, throwing a TimeoutException.
n Other errors caught as XBeeException:

l The operating mode of the device is not API or API_ESCAPE, throwing an
InvalidOperatingModeException.

l The response of the command is not valid, throwing an ATCommandException.
l There is an error writing to the XBee interface, throwing a generic XBeeException.

Getting the connected access point
If you need to get the access point where the device is connected, you can do so by executing the
getConnectedAccessPointmethod of the WiFiDevice object.

Method Description

getConnectedAccessPoint() Returns the access point where the Wi-Fi device is connected.

Getting the connected access point
import com.digi.xbee.api.wiFiDevice;
import com.digi.xbee.api.models.AccessPoint;

[...]

// Instantiate a Wi-Fi device object.
WiFiDevice myWiFiDevice = new WiFiDevice("COM1", 9600);
myWiFiDevice.open();

// Connect to the access point with SSID "My access point".
myWiFiDevice.connect("My access point", "myPassword");

Use the XBee Java Library Configuring the XBee device

XBee Java Library User Guide 57

// Get the connected access point.
AccessPoint connectedAccessPoint = myWiFiDevice.getConnectedAccessPoint();

// Print access point information.
System.out.println("SSID :" + connectedAccessPoint.getSSID());
System.out.println("Encryption :" + connectedAccessPoint.getEncryptionType());
System.out.println("Channel :" + connectedAccessPoint.getChannel());
System.out.println("Signal quality :" + connectedAccessPoint.getSignalQuality());

[...]

The getConnectedAccessPoint() methodmay fail for the following reasons:

n There is a timeout setting the IP addressing parameter, throwing a TimeoutException.
n Other errors caught as XBeeException:

l The operating mode of the device is not API or API_ESCAPE, throwing an
InvalidOperatingModeException.

l The response of the command is not valid, throwing an ATCommandException.
l There is an error writing to the XBee interface, throwing a generic XBeeException.

Configure Bluetooth settings
Newer XBee3 devices have a Bluetooth® Low Energy (BLE) interface that enables you to connect your
XBee device to another device such as a cellphone. The XBee device classes (local and remote) offer
some methods that allow you to:

n Enable and disable Bluetooth
n Configure the Bluetooth password
n Read the Bluetooth MAC address

Enable and disable Bluetooth
Before connecting to your XBee device over Bluetooth Low Energy, you first have to enable this
interface. The XBee Java Library provides two methods to enable or disable this interface:

Method Description

enableBluetooth() Enables the Bluetooth Low Energy interface of your XBee device.

disableBluetooth() Disables the Bluetooth Low Energy interface of your XBee device.

Enable and disable the Bluetooth interface

import com.digi.xbee.api.XBeeDevice;

[...]

// Instantiate and open an XBee device object.
XBeeDevice myXBeeDevice = new XBeeDevice("COM1", 9600);
myXBeeDevice.open();

// Enable the Bluetooth interface.
myXBeeDevice.enableBluetooth();

Use the XBee Java Library Configuring the XBee device

XBee Java Library User Guide 58

[...]

// Disable the Bluetooth interface.
myXBeeDevice.disableBluetooth();

These methods may fail for the following reasons:

n There is a timeout setting the IP addressing parameter, throwing a TimeoutException.
n Other errors caught as XBeeException:

l The operating mode of the device is not API or API_ESCAPE, throwing an
InvalidOperatingModeException.

l The response of the command is not valid, throwing an ATCommandException.
l There is an error writing to the XBee interface, throwing a generic XBeeException.

Configure the Bluetooth password
Once you have enabled the Bluetooth Low Energy, you must configure the password you will use to
connect to the device over that interface (if not previously done). For this purpose, the API offers the
following method:

Method Description

updateBluetoothPassword(String) Specifies the new Bluetooth password of the XBee device.

Configure or change the Bluetooth password

import com.digi.xbee.api.XBeeDevice;

[...]

XBeeDevice myXBeeDevice = [...];
myXBeeDevice.open();

String newPassword = "myBluetoothPassword"; // Do not hard-code it in the app!

// Configure the Bluetooth password.
myXBeeDevice.updateBluetoothPassword(newPassword);

The updateBluetoothPassword(String) methodmay fail for the following reasons:

n ACK of the command sent is not received in the configured timeout, throwing a
TimeoutException.

n Other errors caught as XBeeException:
l The operating mode of the device is not API or API_ESCAPE, throwing an

InvalidOperatingModeException.
l The response of the command is not valid, throwing an ATCommandException.
l There is an error writing to the XBee interface, throwing a generic XBeeException.

Note Never hard-code the Bluetooth password in the code, a malicious person could decompile the
application and find it out.

Use the XBee Java Library Discover the XBee network

XBee Java Library User Guide 59

Read the Bluetooth MAC address
Another method that the XBee Java Library provides is getBluetoothMacAddress(), which returns the
EUI-48 Bluetooth MAC address of your XBee device in a format such as 00112233AABB.

Reading the Bluetooth MAC address

import com.digi.xbee.api.XBeeDevice;

[...]

XBeeDevice myXBeeDevice = [...];
myXBeeDevice.open();

System.out.println("The Bluetooth MAC address is: " +
myXBeeDevice.getBluetoothMacAddress());

The getBluetoothMacAddress methodmay fail for the following reasons:

n ACK of the command sent is not received in the configured timeout, throwing a
TimeoutException.

n Other errors caught as XBeeException:
l The operating mode of the device is not API or API_ESCAPE, throwing an

InvalidOperatingModeException.
l The response of the command is not valid, throwing an ATCommandException.
l There is an error writing to the XBee interface, throwing a generic XBeeException.

Discover the XBee network
Several XBee devices working together and communicating with each other form a network. XBee
networks have different topologies and behaviors depending on the protocol of the XBee devices that
form the network.
The XBee Java Library includes a class, called XBeeNetwork, that represents the set of nodes forming
the actual XBee network. This class allows you to perform some operations related to the nodes. The
XBee Network object can be retrieved from a local XBee device after you open the device using the
getNetwork() method.

Note Because XBee Cellular andWi-Fi modules protocols are directly connected to the Internet and do
not share a connection, these protocols do not support XBee networks.

Retrieving the XBee network

import com.digi.xbee.api.XBeeDevice;
import com.digi.xbee.api.XBeeNetwork;

[...]

// Instantiate an XBee device object.
XBeeDevice myXBeeDevice = new XBeeDevice("COM1", 9600);
myXBeeDevice.open();

// Get the XBee Network object from the XBee device.
XBeeNetwork network = myXBeeDevice.getNetwork();

Use the XBee Java Library Discover the XBee network

XBee Java Library User Guide 60

[...]

One of the main features of the XBeeNetwork class is the ability to discover the XBee devices that
form the network. The XBeeNetwork object provides the following operations related to the XBee
devices discovery feature:

n Configure the discovery process
n Discover the network
n Access the discovered devices
n Add and remove devices manually

Configure the discovery process
Before discovering all the nodes of a network you need to configure the settings of that process. The
API provides two methods to configure the discovery timeout and discovery options. These methods
set the provided values in the module.

Method Description

setDiscoveryTimeout
(long)

Configures the discovery timeout (NT parameter) with the given value
in milliseconds.

setDiscoveryOptions
(Set<DiscoveryOptions>)

Configures the discovery options (NO parameter) with the given set of
options. The set of discovery options contains the different
DiscoveryOption configuration values that are applied to the local XBee
module when performing the discovery process. These options are the
following:

n DiscoveryOption.APPEND_DD: Appends the device type
identifier (DD) to the information retrieved when a node is
discovered. This option is valid for DigiMesh, Point-to-multipoint
(Digi Point) and Zigbee protocols.

n DiscoveryOption.DISCOVER_MYSELF: The local XBee device is
returned as a discovered device. This option is valid for all
protocols.

n DiscoveryOption.APPEND_RSSI: Appends the RSSI value of the
last hop to the information retrieved when a node is discovered.
This option is valid for DigiMesh and Point-to-multipoint (Digi
Point) protocols.

Configuring the timeout options

import com.digi.xbee.api.XBeeDevice;
import com.digi.xbee.api.XBeeNetwork;
import com.digi.xbee.api.models.DiscoveryOptions;

[...]

// Get the XBee Network object from the XBee device.
XBeeNetwork network = myXBeeDevice.getNetwork();

Use the XBee Java Library Discover the XBee network

XBee Java Library User Guide 61

// Set the timeout to 10 seconds.
network.setDiscoveryTimeout(10000);

// Append the device type identifier and the local device.
network.setDiscoveryOptions(EnumSet.of(DiscoveryOptions.APPEND_DD,
DiscoveryOptions.DISCOVER_MYSELF));

[...]

Discover the network
The XBeeNetwork object discovery process allows you to discover and store all the XBee devices that
form the network. The XBeeNetwork object provides a method for executing the discovery process:

Method Description

startDiscoveryProcess
()

Starts the discovery process, saving the remote XBee devices found inside
the XBeeNetwork object.

When a discovery process has started, you can monitor andmanage it using the following methods
provided by the XBeeNetwork object:

Method Description

isDiscoveryRunning() Returns whether the discovery process is running.

stopDiscoveryProcess() Stops the discovery process that is taking place.

Although you call the stopDiscoveryProcess method, DigiMesh and DigiPoint devices are
blocked until the configured discovery time has elapsed. If you try to get or set any
parameter during that time, a TimeoutException is thrown.

Discovering the network
Once the process has finished, you can retrieve the list of devices that form the network using the
getDevices() method provided by the network object.

import com.digi.xbee.api.XBeeDevice;
import com.digi.xbee.api.XBeeNetwork;

[...]

// Instantiate an XBee device object.
XBeeDevice myXBeeDevice = new XBeeDevice("COM1", 9600);
myXBeeDevice.open();

// Get the XBee Network object from the XBee device.
XBeeNetwork network = myXBeeDevice.getNetwork();

// Start the discovery process.
network.startDiscoveryProcess();

// Wait until the discovery process has finished.

Use the XBee Java Library Discover the XBee network

XBee Java Library User Guide 62

while (network.isDiscoveryRunning()) {
// Sleep.
}

// Retrieve the devices that form the network.
List<RemoteXBeeDevice> remotes = network.getDevices();

[...]

Click one of the following links to view the discovery methods:

n Discovering the network with a listener
n IDiscoveryListener implementation example, MyDiscoveryListener
n Removing the discovery listener
n Device discovery example

Discovering the network with a listener
The API also allows you to add a discovery listener to notify you when new devices are discovered, the
process finishes, or an error occurs during the process. In this case, you need to provide a listener
before starting the discovery process using the addDiscoveryListener(IDiscoveryListener) method.

import com.digi.xbee.api.XBeeDevice;
import com.digi.xbee.api.XBeeNetwork;
[...]

// Instantiate an XBee device object.
XBeeDevice myXBeeDevice = new XBeeDevice("COM1", 9600);
myXBeeDevice.open();

// Get the XBee Network object from the XBee device.
XBeeNetwork network = myXBeeDevice.getNetwork();

// Create the discovery listener.
MyDiscoveryListener myDiscoveryListener = ...

// Add the discovery listener.
network.addDiscoveryListener(myDiscoveryListener);

// Start the discovery process.
network.startDiscoveryProcess();

[...]

IDiscoveryListener implementation example, MyDiscoveryListener

import com.digi.xbee.api.RemoteXBeeDevice;
import com.digi.xbee.api.listeners.IDiscoveryListener;

public class MyDiscoveryListener implements IDiscoveryListener {

/*
* Device discovered callback.
*/
@Override
public void deviceDiscovered(RemoteXBeeDevice discoveredDevice) {

System.out.println("New device discovered: " +

Use the XBee Java Library Discover the XBee network

XBee Java Library User Guide 63

discoveredDevice.toString());
}

/*
* Discovery error callback.
*/
@Override
public void discoveryError(String error) {

System.out.println("There was an error during the discovery: " +
error);

}

/*
* Discovery finished callback.
*/
@Override
public void discoveryFinished(String error) {

if (error != null)
System.out.println("Discovery finished due to an error: " +

error);
else

System.out.println("Discovery finished successfully.");
}

}

Removing the discovery listener
To remove the registered discovery listener, use the removeDiscoveryListener(IDiscoveryListener)
method.

[...]

MyDiscoveryListener myDiscoveryListener = ...
network.addDiscoveryListener(myDiscoveryListener);

[...]

// Remove the discovery listener.
network.removeDiscoveryListener(myDiscoveryListener);

[...]

Device Discovery Example
The XBee Java Library includes a sample application that displays how to perform a device discovery
using a listener. It can be located in the following path:
/examples/network/DiscoverDevicesSample

Discover specific devices
The XBeeNetwork object also provides a methods to discover specific devices of the network. This is
useful, for example, if you only need to work with a particular remote device.

Use the XBee Java Library Discover the XBee network

XBee Java Library User Guide 64

Method Description

discoverDevice
(String)

Specifies the node identifier of the XBee device to be found. Returns the remote
XBee device whose node identifier equals the one provided. In the case of finding
more than one device, it returns the first one.

discoverDevices
(List<String>)

Specifies the node identifiers of the XBee devices to be found. Returns a list with
the remote XBee devices whose node identifiers equal those provided.

Note These are blocking methods, so the application blocks until the devices are found or the
configured timeout expires.

import com.digi.xbee.api.RemoteXBeeDevice;
import com.digi.xbee.api.XBeeDevice;
import com.digi.xbee.api.XBeeNetwork;

[...]

// Instantiate an XBee device object.
XBeeDevice myXBeeDevice = new XBeeDevice("COM1", 9600);
myXBeeDevice.open();

// Get the XBee Network object from the XBee device.
XBeeNetwork network = myXBeeDevice.getNetwork();

// Discover the remote device whose node ID is ‘Yoda’.
RemoteXBeeDevice discoveredDevice = network.discoverDevice("Yoda");

ArrayList<String> ids = new ArrayList<String>();
ids.add("R2D2");
ids.add("C3PO");

// Discover the remote devices whose node IDs are ‘R2D2’ and ‘C3PO’.
ArrayList<RemoteXBeeDevice> discoveredDevices = network.discoverDevices(ids);

[...]

IDiscoveryListener implementation example, MyDiscoveryListener
MyDiscoveryListenermust implement the IDiscoveryListener interface, which includes the methods
that are executed when discover events occur.
The behavior of the listener is as follows:

n When a new remote XBee device is discovered, the deviceDiscovered() method of the
IDiscoveryListener executes, providing the reference of the RemoteXBeeDevice discovered as
a parameter. It is a reference, because the XBee network already stores that device inside its
list of remote XBee devices.

n If there is an error during the discovery process, the discoveryError() method of the
IDiscoveryListener executes, providing an error message with the cause of that error.

n When the discovery process finishes or the configured timeout expires, the discoveryFinished
() method of the IDiscoveryListener executes, providing the error message with the reason
the process did not finish successfully, or null if the process finished successfully.

Use the XBee Java Library Discover the XBee network

XBee Java Library User Guide 65

IDiscoveryListener implementation example, MyDiscoveryListener

import com.digi.xbee.api.RemoteXBeeDevice;
import com.digi.xbee.api.listeners.IDiscoveryListener;

public class MyDiscoveryListener implements IDiscoveryListener {

/*
* Device discovered callback.
*/
@Override
public void deviceDiscovered(RemoteXBeeDevice discoveredDevice) {

System.out.println("New device discovered: " +
discoveredDevice.toString());

}

/*
* Discovery error callback.
*/
@Override
public void discoveryError(String error) {

System.out.println("There was an error during the discovery: " +
error);

}

/*
* Discovery finished callback.
*/
@Override
public void discoveryFinished(String error) {

if (error != null)
System.out.println("Discovery finished due to an error: " +

error);
else

System.out.println("Discovery finished successfully.");
}

}

Removing the discovery listener
To remove the registered discovery listener, use the removeDiscoveryListener(IDiscoveryListener)
method.

[...]

MyDiscoveryListener myDiscoveryListener = ...
network.addDiscoveryListener(myDiscoveryListener);

[...]

// Remove the discovery listener.
network.removeDiscoveryListener(myDiscoveryListener);

[...]

Device discovery example
The XBee Java Library includes a sample application that displays how to perform a device discovery
using a listener. It can be located in the following path:

Use the XBee Java Library Discover the XBee network

XBee Java Library User Guide 66

/examples/network/DiscoverDevicesSample

Access the discovered devices
Once a discovery process has finished, the nodes discovered are saved inside the XBeeNetwork
object. This means that you can get the devices stored inside at any time. Using the
getNumberOfDevices() method you determine the number of devices found before getting them.
The following table contains a list of methods provided by the XBeeNetwork object that allow you to
retrieve already discovered devices:

Method Description

getDevices() Returns the list of remote XBee devices.

getDevices(String) Specifies the node identifier of the remote XBee devices to get from the
network. Returns a list with the remote XBee devices whose node identifiers
match the one specified.

getDevice(String) Specifies the node identifier of the remote XBee device to get from the
network. Returns the remote XBee device whose node identifier matches
the one specified.

getDevice
(XBee16BitAddress)

Specifies the 16-bit address of the remote XBee device to get from the
network. Returns the remote XBee device whose 16-bit address matches
the one specified.

getDevice
(XBee64BitAddress)

Specifies the 64-bit address of the remote XBee device to be get from the
network. Returns the remote XBee device whose 64-bit address matches
the one specified.

Getting stored devices from the XBee network

import com.digi.xbee.api.RemoteXBeeDevice;
import com.digi.xbee.api.XBeeDevice;
import com.digi.xbee.api.XBeeNetwork;
import com.digi.xbee.api.models.XBee64BitAddress;

[...]

// Instantiate an XBee device object.
XBeeDevice myXBeeDevice = new XBeeDevice("COM1", 9600);
myXBeeDevice.open();

// Get the XBee Network object from the XBee device.
XBeeNetwork network = myXBeeDevice.getNetwork();

// Discover devices in the network.
[...]

System.out.println("There are " + network.getNumberOfDevices() + " device(s) in
the network.");

// Get the remote XBee device whose 64-bit address is 0123456789ABCDEF.
RemoteXBeeDevice remoteDevice = network.getDevice(new XBee64BitAddress
("0123456789ABCDEF"));

Use the XBee Java Library Discover the XBee network

XBee Java Library User Guide 67

[...]

Add and remove devices manually
This section provides information onmethods for adding, removing and clearing the list of remote
XBee devices.

Add devices to the XBee network manually
There are several methods for adding remote XBee devices to an XBee network, in addition to the
discovery methods provided by the XBeeNetwork object:

Method Description

addRemoteDevice
(RemoteXBeeDevice)

Specifies the remote XBee device to be added to the list of remote devices
of the XBeeNetwork object.

Note This operation does not join the remote XBee device to the network;
it tells the network that it contains the device. However, the device has
only been added to the device list andmay not be physically in the same
network.

addRemoteDevices
(List<RemoteDevice>)

Specifies the list of remote XBee devices to be added to the list of remote
devices of the XBeeNetwork object.

Note This operation does not join the remote XBee devices to the network;
it tells the network that it contains those devices. However, the devices
have only been added to the device list andmay not be physically in the
same network.

import com.digi.xbee.api.RemoteXBeeDevice;
import com.digi.xbee.api.XBeeDevice;
import com.digi.xbee.api.XBeeNetwork;
import com.digi.xbee.api.models.XBee64BitAddress;

[...]

// Instantiate an XBee device object.
XBeeDevice myXBeeDevice = new XBeeDevice("COM1", 9600);
myXBeeDevice.open();

// Get the XBee Network object from the XBee device.
XBeeNetwork network = myXBeeDevice.getNetwork();

// Instantiate a remote XBee device.
XBee64BitAddress remoteAddress = new XBee64BitAddress("0123456789ABCDEF");
RemoteXBeeDevice remoteDevice = new RemoteXBeeDevice(myXBeeDevice,
remoteAddress);

// Add the remote XBee device to the network.
network.addRemoteDevice(remoteDevice);

[...]

Use the XBee Java Library Discover the XBee network

XBee Java Library User Guide 68

Remove an existing device from the XBee network
It is possible to remove a remote XBee device from the list of remote XBee devices of the
XBeeNetwork object by calling the following method:

Method Description

removeRemoteDevice
(RemoteXBeeDevice)

Specifies the remote XBee device to be removed from the list of
remote devices of the XBeeNetwork object. If the device was not
contained in the list the method will do nothing.

Note This operation does not remove the remote XBee device
from the actual XBee network; it tells the network object that it
will no longer contain that device. However, next time you perform
a discovery, it could be added again automatically.

import com.digi.xbee.api.RemoteXBeeDevice;
import com.digi.xbee.api.XBeeDevice;
import com.digi.xbee.api.XBeeNetwork;
import com.digi.xbee.api.models.XBee64BitAddress;

[...]

// Instantiate an XBee device object.
XBeeDevice myXBeeDevice = new XBeeDevice("COM1", 9600);
myXBeeDevice.open();

// Get the XBee Network object from the XBee device.
XBeeNetwork network = myXBeeDevice.getNetwork();

// Discover devices in the network.
[...]

// Get the remote XBee device whose 64-bit address is 0123456789ABCDEF.
XBee64BitAddress remoteAddress = new XBee64BitAddress("0123456789ABCDEF");
RemoteXBeeDevice remoteDevice = network.getDeviceBy64BitAddress(remoteAddress);

// Remove the remote device from the network.
network.removeRemoteDevice(remoteDevice);

[...]

Clear the list of remote XBee devices from the XBee network
The XBeeNetwork object also includes a method to clear the list of remote devices. This can be useful
when you want to perform a clean discovery, cleaning the list before calling the discovery method.

Use the XBee Java Library Communicate with XBee devices

XBee Java Library User Guide 69

Method Description

clearDeviceList() Removes all the devices from the list of remote devices of the
network.

Note This does not imply removing the XBee devices from the
actual XBee network; it tells the object that the list should be
empty now. Next time you perform a discovery, the list could be
filled with the remote XBee devices found.

import com.digi.xbee.api.XBeeDevice;
import com.digi.xbee.api.XBeeNetwork;

[...]

// Instantiate an XBee device object.
XBeeDevice myXBeeDevice = new XBeeDevice("COM1", 9600);
myXBeeDevice.open();

// Get the XBee Network object from the XBee device.
XBeeNetwork network = myXBeeDevice.getNetwork();

// Discover devices in the network.
[...]

// Clear the list of devices.
network.clearDeviceList();

[...]

Communicate with XBee devices
The XBee Java Library provides the ability to communicate with remote nodes in the network, IoT
devices and other interfaces of the local device. This communication involves the transmission and
reception of data.

Communication features described in this topic and sub-topics are only applicable for local
XBee devices. Remote XBee device classes do not include methods for transmitting or
receiving data.

This section describes how to:

n Send and receive data
n Send and receive explicit data
n Send and receive IP data
n Send and receive IPv6 data
n Send and receive CoAP data
n Send and receive SMS messages
n Send and receive Bluetooth data

Use the XBee Java Library Communicate with XBee devices

XBee Java Library User Guide 70

n Send and receive MicroPython data
n Receive modem status events

Send and receive data
XBee devices can communicate with other devices that are on the same network and use the same
radio frequency. The XBee Java Library provides several methods to send and receive data between
the local XBee device and any remote on the network.

Send data
A data transmission operation sends data from your local (attached) XBee device to a remote device
on the network. The operation sends data in API frames, but the XBee Java library abstracts the
process so your only concern is the node you want to send data to and the data itself.
You can send data either using a unicast or broadcast transmission. Unicast transmissions route data
from one source device to one destination device, whereas broadcast transmissions are sent to all
devices in the network.

Send data to one device
Unicast transmissions are sent from one source device to another destination device. The destination
device could be an immediate neighbor of the source, or it could be several hops away.
Data transmission can be synchronous or asynchronous, depending on the method used.

Synchronous operation
This kind of operation is blocking. This means the method waits until the transmit status response is
received or the default timeout is reached.
The XBeeDevice class of the API provides the following method to perform a synchronous unicast
transmission with a remote node of the network:

Method Description

sendData(RemoteXBeeDevice, byte[]) Specifies the remote XBee destination object and
the data.

Protocol-specific classes offer additional synchronous unicast transmission methods apart from the
one provided by the XBeeDevice object:

XBee class Method Description

ZigbeeDevice sendData
(XBee64BitAddress,
XBee16BitAddress,
byte[])

Specifies the 64-bit and 16-bit destination addresses and
the data to send. If you do not know the 16-bit address, use
the XBee16BitAddress.UNKNOWN_ADDRESS.

Use the XBee Java Library Communicate with XBee devices

XBee Java Library User Guide 71

XBee class Method Description

Raw802Device sendData
(XBee16BitAddress,
byte[])

Specifies the 16-bit destination address and the data to
send.

sendData
(XBee64BitAddress,
byte[])

Specifies the 64-bit destination address and the data to
send.

DigiMeshDevice sendData
(XBee64BitAddress,
byte[])

Specifies the 64-bit destination address and the data to
send.

DigiPointDevice sendData
(XBee64BitAddress,
XBee16BitAddress,
byte[])

Specifies the 64-bit and 16-bit destination addresses and
the data to send. If the 16-bit address is unknown the
XBee16BitAddress.UNKNOWN_ADDRESS can be used.

Sending data synchronously

import com.digi.xbee.api.RemoteXBeeDevice;
import com.digi.xbee.api.XBeeDevice;
import com.digi.xbee.api.models.XBee64BitAddress;

[...]

String data = "Hello XBee!";

// Instantiate an XBee device object.
XBeeDevice myLocalXBeeDevice = new XBeeDevice("COM1", 9600);
myLocalXBeeDevice.open();

// Instantiate a remote XBee device object.
RemoteXBeeDevice myRemoteXBeeDevice = new RemoteXBeeDevice(myLocalXBeeDevice,

new XBee64BitAddress("0013A20040XXXXXX"));

// Send data using the remote object.
myLocalXBeeDevice.sendData(myRemoteXBeeDevice, data.getBytes());

[...]

The sendData() methodmay fail for the following reasons:

n ACK of the command sent is not received in the configured timeout, throwing a
TimeoutException.

n Other errors caught as XBeeException:
l The operating mode of the device is not API or API_ESCAPE, throwing an

InvalidOperatingModeException.
l The response of the command is not valid, throwing an ATCommandException.
l There is an error writing to the XBee interface, throwing a generic XBeeException.

The default timeout to wait for the send status is two seconds. However, you can configure the
timeout using the getReceivedTimeout and setReceiveTimeoutmethods of an XBee device class.

Use the XBee Java Library Communicate with XBee devices

XBee Java Library User Guide 72

Get/set the timeout for synchronous operations

import com.digi.xbee.api.XBeeDevice;

[...]

public static final int NEW_TIMEOUT_FOR_SYNC_OPERATIONS = 5 * 1000; // 5 seconds

XBeeDevice myXBeeDevice = [...]

// Retrieving the configured timeout for synchronous operations.
System.out.println("Current timeout: " + myXBeeDevice.getReceiveTimeout() + "
milliseconds.");

[...]

// Configuring the new timeout (in milliseconds) for synchronous operations.
myXBeeDevice.setReceiveTimeout(NEW_TIMEOUT_FOR_SYNC_OPERATIONS);

[...]

Synchronous Unicast Transmission Example
The XBee Java Library includes a sample application that shows you how to send data to another
XBee device on the network. The example is located in the following path:
/examples/communication/SendDataSample

Asynchronous operation
Transmitting data asynchronously means that your application does not block during the transmit
process. However, you cannot ensure that the data was successfully sent to the remote device.
The XBeeDevice class of the API provides the following method to perform an asynchronous unicast
transmission with a remote node on the network:

Method Description

sendDataAsync(RemoteXBeeDevice,
byte[])

Specifies the remote XBee destination object and the
data.

Protocol-specific classes offer some other asynchronous unicast transmission methods in addition to
the one provided by the XBeeDevice object:

XBee class Method Description

ZigbeeDevice sendDataAsync
(XBee64BitAddress,
XBee16BitAddress,
byte[])

Specifies the 64-bit and 16-bit destination addresses and
the data to send. If you do not know the 16-bit address,
you can use XBee16BitAddress.UNKNOWN_ADDRESS.

Use the XBee Java Library Communicate with XBee devices

XBee Java Library User Guide 73

XBee class Method Description

Raw802Device sendDataAsync
(XBee16BitAddress,
byte[])

Specifies the 16-bit destination address and the data to
send.

sendDataAsync
(XBee64BitAddress,
byte[])

Specifies the 64-bit destination address and the data to
send.

DigiMeshDevice sendDataAsync
(XBee64BitAddress,
byte[])

Specifies the 64-bit destination address and the data to
send.

DigiPointDevice sendDataAsync
(XBee64BitAddress,
XBee16BitAddress,
byte[])

Specifies the 64-bit and 16-bit destination addresses and
the data to send. If you do not know the 16-bit address,
you can use XBee16BitAddress.UNKNOWN_ADDRESS.

Sending data asynchronously

import com.digi.xbee.api.RemoteXBeeDevice;
import com.digi.xbee.api.XBeeDevice;
import com.digi.xbee.api.models.XBee64BitAddress;

[...]

String data = "Hello XBee!";

// Instantiate an XBee device object.
XBeeDevice myLocalXBeeDevice = new XBeeDevice("COM1", 9600);
myLocalXBeeDevice.open();

// Instantiate a remote XBee device object.
RemoteXBeeDevice myRemoteXBeeDevice = new RemoteXBeeDevice(myLocalXBeeDevice,

new XBee64BitAddress("000000409D5EXXXX"));

// Send data using the remote object.
myLocalXBeeDevice.sendDataAsync(myRemoteXBeeDevice, data.getBytes());

The sendDataAsync() methodmay fail for the following reasons:

n All the possible errors are caught as an XBeeException:
l The operating mode of the device is not API or API_ESCAPE, throwing an

InvalidOperatingModeException.
l There is an error writing to the XBee interface, throwing a generic XBeeException.

Asynchronous Unicast Transmission Example
The XBee Java Library includes a sample application that shows you how to send data to another
XBee device asynchronously. The example is located in the following path:
/examples/communication/SendDataAsyncSample

Send data to all devices of the network
Broadcast transmissions are sent from one source device to all the other devices on the network.

Use the XBee Java Library Communicate with XBee devices

XBee Java Library User Guide 74

All the XBee device classes (generic and protocol specific) provide the same method to send broadcast
data:

Method Description

sendBroacastData(byte[]) Specifies the data to send.

Sending broadcast data
import com.digi.xbee.api.XBeeDevice;

[...]

String data = "Hello XBees!";

// Instantiate an XBee device object.
XBeeDevice myXBeeDevice = new XBeeDevice("COM1", 9600);
myXBeeDevice.open();

// Send broadcast data.
myXBeeDevice.sendBroadcastData(data.getBytes());

[...]

The sendBroadcastData() methodmay fail for the following reasons:

n Transmit status is not received in the configured timeout, throwing a TimeoutException
exception.

n Error types catch as XBeeException:
l The operating mode of the device is not API or API_ESCAPE, throwing an

InvalidOperatingModeException.
l The transmit status is not SUCCESS, throwing a TransmitException.
l There is an error writing to the XBee interface, throwing a generic XBeeException.

Broadcast Transmission Example
The XBee Java Library includes a sample application that shows you how to send data to all the
devices on the network (broadcast). The example is located in the following path:
/examples/communication/SendBroadcastDataSample

Receive data
The data reception operation allows you to receive and handle data sent by other remote nodes of the
network.
There are two different ways to read data from the device:

n Polling for data. This mechanism allows you to read (ask) for new data in a polling sequence.
The readmethod blocks until data is received or until a configurable timeout has expired.

n Data reception callback. In this case, you must register a listener that executes a callback each
time new data is received by the local XBee device (that is, the device attached to your
computer) providing data and other related information.

Use the XBee Java Library Communicate with XBee devices

XBee Java Library User Guide 75

Polling for data
The simplest way to read for data is by executing the readDatamethod of the local XBee device. This
method blocks your application until data from any XBee device of the network is received or the
timeout provided has expired:

Method Description

readData
(int)

Specifies the time to wait for data reception (method blocks during that time or until
data is received). If you do not specify a timeout the method uses the default receive
timeout configured in the XBeeDevice.

Reading data from any remote XBee device (polling)

import com.digi.xbee.api.XBeeDevice;
import com.digi.xbee.api.models.XBeeMessage;

[...]

// Instantiate an XBee device object.
XBeeDevice myXBeeDevice = new XBeeDevice("COM1", 9600);
myXBeeDevice.open();

// Read data.
XBeeMessage xbeeMessage = myXBeeDevice.readData();

[...]

The method returns the read data inside an XBeeMessage object. This object contains the following
information:

n RemoteXBeeDevice that sent the message.
n Byte array with the contents of the received data.
n Flag indicating if the data was sent via broadcast.

You can retrieve the previous information using the corresponding getters of the XBeeMessage
object:

Get the XBeeMessage information

import com.digi.xbee.api.XBeeAddress;
import com.digi.xbee.api.XBeeDevice;
import com.digi.xbee.api.models.XBeeMessage;

[...]

// Instantiate an XBee device object.
XBeeDevice myXBeeDevice = [...]

// Read data.
XBeeMessage xbeeMessage = myXBeeDevice.readData();

RemoteXBeeDevice remote = xbeeMessage.getDevice();
byte[] data = xbeeMessage.getData();
boolean isBroadcast = xbeeMessage.isBroadcast();

[...]

Use the XBee Java Library Communicate with XBee devices

XBee Java Library User Guide 76

You can also read data from a specific remote XBee device of the network. For that purpose, the XBee
device object provides the readDataFrom method:

Method Description

readDataFrom
(RemoteXBeeDevice,
int)

Specifies the remote XBee device to read data from and the time to wait for
data reception (method blocks during that time or until data is received). If
you do not specify a timeout the method uses the default receive timeout
configured in the XBeeDevice.

Read data from a specific remote XBee device (polling)

import com.digi.xbee.api.RemoteXBeeDevice;
import com.digi.xbee.api.XBeeDevice;
import com.digi.xbee.api.models.XBeeMessage;

[...]

// Instantiate an XBee device object.
XBeeDevice myXBeeDevice = new XBeeDevice("COM1", 9600);
myXBeeDevice.open();

// Instantiate a remote XBee device object.
RemoteXBeeDevice myRemoteXBeeDevice = [...]

// Read data sent by the remote XBee device.
XBeeMessage xbeeMessage = myXBeeDevice.readDataFrom(myRemoteXBeeDevice);

[...]

As in the previous method, this method also returns an XBeeMessage object with all the information
inside.
In either case, the default timeout to wait for data is two seconds. However, it can be consulted and
configured using the getReceiveTimeout and setReceiveTimeoutmethods of an XBee device class.

Get/set the timeout for synchronous operations

import com.digi.xbee.api.XBeeDevice;

[...]

public static final int NEW_TIMEOUT_FOR_SYNC_OPERATIONS = 5 * 1000; // 5 seconds

XBeeDevice myXBeeDevice = [...]

// Retrieving the configured timeout for synchronous operations.
System.out.println("Current timeout: " + myXBeeDevice.getReceiveTimeout() + "
milliseconds.");

[...]

// Configuring the new timeout (in milliseconds) for synchronous operations
myXBeeDevice.setReceiveTimeout(NEW_TIMEOUT_FOR_SYNC_OPERATIONS);

[...]

Use the XBee Java Library Communicate with XBee devices

XBee Java Library User Guide 77

Data reception polling example
The XBee Java Library includes a sample application that shows you how to receive data using the
polling mechanism. The example is located in the following path:
/examples/communication/ReceiveDataPollingSample

Data reception callback
This secondmechanism to read data does not block your application. Instead, you can be notified
when new data has been received if you are subscribed or registered to the data reception service
using the addDataListener(IDataReceiveListener) method with a data reception listener as
parameter.

Data reception registration

import com.digi.xbee.api.XBeeDevice;
[...]

// Instantiate an XBee device object.
XBeeDevice myXBeeDevice = new XBeeDevice("COM1", 9600);
myXBeeDevice.open();

// Create the data reception listener.
MyDataReceiveListener myDataReceiveListener = ...

// Subscribe to data reception.
myXBeeDevice.addDataListener(myDataReceiveListener);

[...]

The listener that is provided to the subscribe method,MyDataReceiveListener, must implement the
IDataReceiveListener interface. This interface includes the method executed when new data is
received by the XBee device.
It does not matter which type of local XBee device you have instanced, as this data reception
operation is implemented in the same way for all the local XBee device classes that support the
receive data mechanism.
When new data is received, the dataReceived() method of the IDataReceiveListener is executed
providing an XBeeMessage object as a parameter, which contains the data and other useful
information.

IDataReceiveListener implementation example, MyDataReceiveListener

import com.digi.xbee.api.listeners.IDataReceiveListener;

public class MyDataReceiveListener implements IDataReceiveListener {
/*
* Data reception callback.
*/
@Override
public void dataReceived(XBeeMessage xbeeMessage) {

String address = xbeeMessage.getDevice().get64BitAddress().toString();
String dataString = xbeeMessage.getDataString();
System.out.println("Received data from " + address +

": " + dataString);
}

}

The XBeeMessage object provides the following information:

Use the XBee Java Library Communicate with XBee devices

XBee Java Library User Guide 78

n RemoteXBeeDevice that sent the message.
n Byte array with the contents of the received data.
n Flag indicating if the data was sent via broadcast.

You can retrieve the previous information using the corresponding getters of the XBeeMessage
object:

Get the XBeeMessage information

[...]

public class MyDataReceiveListener implements IDataReceiveListener {

/*

* Data reception callback.

*/

@Override

public void dataReceived(XBeeMessage xbeeMessage) {

XBee64BitAddress address = xbeeMessage.getDevice().get64BitAddress();

byte[] data = xbeeMessage.getData();

boolean isBroadcast = xbeeMessage.isBroadcast();

}

}

[...]

To stop listening to new received data, use the removeDataListener(IDataReceiveListener) method
to unsubscribe the already registered listener.

Data reception deregistration

[...]

XBeeDevice myXBeeDevice = ...
MyDataReceiveListener myDataReceiveListener = ...

myXBeeDevice.addDataListener(myDataReceiveListener);

[...]

// Remove the new data reception listener.
myXBeeDevice.removeDataListener(myDataReceiveListener);

[...]

Use the XBee Java Library Communicate with XBee devices

XBee Java Library User Guide 79

Data reception callback example
The XBee Java Library includes a sample application that shows you how to subscribe to the data
reception service to receive data. The example is located in the following path:
/examples/communication/ReceiveDataSample

Send and receive explicit data
Some Zigbee applications may require communication with third-party (non-Digi) RF modules. These
applications often send and receive data of different public profiles such as Home Automation or
Smart Energy to other devices.
XBee Zigbee modules offer a special type of frame for this purpose. Explicit frames are used to
transmit and receive explicit data. When sending public profile packets, the frames transmit the data
itself plus the application layer-specific fields—the source and destination endpoints, profile ID, and
cluster ID.

Note Only Zigbee, DigiMesh, and Point-to-Multipoint protocols support the transmission and reception
of data in explicit format. This means you cannot transmit or receive explicit data using a generic
XBeeDevice object. You must use a protocol-specific XBee device object such as a ZigbeeDevice.

Send explicit data
You can send explicit data as either unicast or broadcast transmissions. Unicast transmissions route
data from one source device to one destination device, whereas broadcast transmissions are sent to
all devices in the network.

Send explicit data to one device
Unicast transmissions are sent from one source device to another destination device. The destination
device could be an immediate neighbor of the source, or it could be several hops away.
Unicast explicit data transmission can be a synchronous or asynchronous operation, depending on the
method used.

Synchronous operation
The synchronous data transmission is a blocking operation. That is, the method waits until it either
receives the transmit status response or the default timeout is reached.
All local XBee device classes that support explicit data transmission provide a method to transmit
unicast and synchronous explicit data to a remote node of the network:

Method Description

sendExplicitData
(RemoteXBeeDevice, int,
int, int, int, byte[])

Specifies remote XBee destination object, four application layer
fields (source endpoint, destination endpoint, cluster ID, and profile
ID), and data to send.

Every protocol-specific XBee device object with support for explicit data includes at least one more
method to transmit unicast explicit data synchronously:

Use the XBee Java Library Communicate with XBee devices

XBee Java Library User Guide 80

XBee class Method Description

ZigbeeDevice sendExplicitData
(XBee64BitAddress,
XBee16BitAddress,
int, int, int, int,
byte[])

Specifies the 64-bit and 16-bit destination addresses in
addition to the four application layer fields (source
endpoint, destination endpoint, cluster ID, and profile ID)
and the data to send. If the 16-bit address is unknown, use
the XBee16BitAddress.UNKNOWN_ADDRESS.

DigiMeshDevice sendExplicitData
(XBee64BitAddress,
int, int, int, int,
byte[])

Specifies the 64-bit destination address, the four
application layer fields (source endpoint, destination
endpoint, cluster ID, and profile ID) and the data to send.

DigiPointDevice sendExplicitData
(XBee64BitAddress,
XBee16BitAddress,
int, int, int, int,
byte[])

Specifies the 64-bit and 16-bit destination addresses in
addition to the four application layer fields (source
endpoint, destination endpoint, cluster ID, and profile ID)
and the data to send. If the 16-bit address is unknown, use
the XBee16BitAddress.UNKNOWN_ADDRESS.

Send unicast explicit data synchronously

import com.digi.xbee.api.RemoteZigbeeDevice;
import com.digi.xbee.api.ZigbeeDevice;
import com.digi.xbee.api.models.XBee64BitAddress;

[...]

String data = "Hello XBee!";

// Instantiate a Zigbee device object.
ZigbeeDevice myLocalZigbeeDevice = new ZigbeeDevice("COM1", 9600);
myLocalXBeeDevice.open();

// Instantiate a remote Zigbee device object.
RemoteXBeeDevice myRemoteXBeeDevice = new RemoteZigbeeDevice(myLocalXBeeDevice,

new XBee64BitAddress("0013A20040XXXXXX"));

// Send explicit data synchronously using the remote object.
int sourceEndpoint = 0xA0;
int destinationEndpoint = 0xA1;
int clusterID = 0x1554;
int profileID = 0xC105;

myLocalZigbeeDevice.sendExplicitData(myRemoteXBeeDevice, sourceEndpoint,
destinationEndpoint, clusterID, profileID, data.getBytes());

[...]

The sendExplicitDatamethodmay fail for the following reasons:

n The method throws a TimeoutException exception if the response is not received in the
configured timeout.

n Other errors register as XBeeException:
l If the operating mode of the device is not API or API_ESCAPE, the method throws an

InvalidOperatingModeException.

Use the XBee Java Library Communicate with XBee devices

XBee Java Library User Guide 81

l If the transmit status is not SUCCESS, the method throws a TransmitException.
l If there is an error writing to the XBee interface, the method throws a generic

XBeeException.

The default timeout to wait for send status is two seconds. You can configure this value using the
getReceivedTimeout and setReceiveTimeoutmethods of a local XBee device class.

Get/set the timeout for synchronous operations

import com.digi.xbee.api.XBeeDevice;
[...]

public static final int NEW_TIMEOUT_FOR_SYNC_OPERATIONS = 5 * 1000; // 5 seconds

XBeeDevice myXBeeDevice = [...]

// Retrieving the configured timeout for synchronous operations.
System.out.println("Current timeout: " + myXBeeDevice.getReceiveTimeout() + "
milliseconds.");

[...]

// Configuring the new timeout (in milliseconds) for synchronous operations.
myXBeeDevice.setReceiveTimeout(NEW_TIMEOUT_FOR_SYNC_OPERATIONS);

[...]

Example: Transmit explicit synchronous unicast data
The XBee Java Library includes a sample application that demonstrates how to send explicit data to a
remote device of the network (unicast). It can be located in the following path:
/examples/communication/explicit/SendExplicitDataSample

Asynchronous operation
Transmitting explicit data asynchronously means that your application does not block during the
transmit process. However, you cannot ensure that the data was successfully sent to the remote
device.
All local XBee device classes that support explicit data transmission provide a method to transmit
unicast and asynchronous explicit data to a remote node of the network:

Method Description

sendExplicitDataAsync
(RemoteXBeeDevice, int,
int, int, int, byte[])

Specifies the remote XBee destination object, four application layer
fields (source endpoint, destination endpoint, cluster ID, and profile
ID), and data to send.

Every protocol-specific XBee device object that supports explicit data includes at least one additional
method to transmit unicast explicit data asynchronously:

Use the XBee Java Library Communicate with XBee devices

XBee Java Library User Guide 82

XBee class Method Description

ZigbeeDevice sendExplicitDataAsync
(XBee64BitAddress,
XBee16BitAddress,
int, int, int, int, byte
[])

Specifies the 64-bit and 16-bit destination addresses in
addition to the four application layer fields (source
endpoint, destination endpoint, cluster ID, and profile ID)
and the data to send. If the 16-bit address is unknown,
use the XBee16BitAddress.UNKNOWN_ADDRESS.

DigiMeshDevice sendExplicitDataAsync
(XBee64BitAddress,
int, int, int, int, byte
[])

Specifies the 64-bit destination address, the four
application layer fields (source endpoint, destination
endpoint, cluster ID, and profile ID) and the data to send.

DigiPointDevice sendExplicitDataAsync
(XBee64BitAddress,
XBee16BitAddress,
int, int, int, int, byte
[])

Specifies the 64-bit and 16-bit destination addresses in
addition to the four application layer fields (source
endpoint, destination endpoint, cluster ID, and profile ID)
and the data to send. If the 16-bit address is unknown,
use the XBee16BitAddress.UNKNOWN_ADDRESS.

Send unicast explicit data asynchronously

import com.digi.xbee.api.RemoteZigbeeDevice;
import com.digi.xbee.api.ZigbeeDevice;
import com.digi.xbee.api.models.XBee64BitAddress;

[...]

String data = "Hello XBee!";

// Instantiate a Zigbee device object.
ZigbeeDevice myLocalZigbeeDevice = new ZigbeeDevice("COM1", 9600);
myLocalXBeeDevice.open();

// Instantiate a remote Zigbee device object.
RemoteXBeeDevice myRemoteXBeeDevice = new RemoteZigbeeDevice(myLocalXBeeDevice,

new XBee64BitAddress("0013A20040XXXXXX"));

// Send explicit data asynchronously using the remote object.
int sourceEndpoint = 0xA0;
int destinationEndpoint = 0xA1;
int clusterID = 0x1554;
int profileID = 0xC105;

myLocalZigbeeDevice.sendExplicitDataAsync(myRemoteXBeeDevice, sourceEndpoint,
destinationEndpoint, clusterID, profileID, data.getBytes());

[...]

The sendExplicitDataAsyncmethodmay fail for the following reasons:

n All possible errors are caught as an XBeeException:
l If the operating mode of the device is not API or API_ESCAPE, the method throws an

InvalidOperatingModeException.
l If there is an error writing to the XBee interface, the method throws a generic

XBeeException.

Use the XBee Java Library Communicate with XBee devices

XBee Java Library User Guide 83

Example: Transmit explicit asynchronous unicast data
The XBee Java API includes a sample application that demonstrates how to send explicit data to other
XBee devices asynchronously. It can be located in the following path:
/examples/communication/explicit/SendExplicitDataAsyncSample

Send explicit data to all devices in the network
Broadcast transmissions are sent from one source device to all other devices in the network.
All protocol-specific XBee device classes that support the transmission of explicit data provide the
same method to send broadcast explicit data:

Method Description

sendBroacastExplicitData
(int, int, int, int, byte[])

Specifies the four application layer fields (source endpoint,
destination endpoint, cluster ID, and profile ID) and the data to send.

Send explicit broadcast data

import com.digi.xbee.api.ZigbeeDevice;

[...]

String data = "Hello XBees!";

// Instantiate a Zigbee device object.
ZigbeeDevice myXBeeDevice = new ZigbeeDevice("COM1", 9600);
myXBeeDevice.open();

// Send broadcast data.
int sourceEndpoint = 0xA0;
int destinationEndpoint = 0xA1;
int clusterID = 0x1554;
int profileID = 0xC105;

myXBeeDevice.sendBroadcastExplicitData(sourceEndpoint, destinationEndpoint
clusterID, profileID, data.getBytes());

[...]

The sendBroadcastExplicitDatamethodmay fail for the following reasons:

n If the transmit status is not received in the configured timeout, the method throws a
TimeoutException.

n Other errors register as XBeeException:
l If the operating mode of the device is not API or API_ESCAPE, the method throws an

InvalidOperatingModeException.
l If the transmit status is not SUCCESS, the method throws a TransmitException.
l If there is an error writing to the XBee interface, the method throws a generic

XBeeException.

Example: Send explicit broadcast data
The XBee Java Library includes a sample application that demonstrates how to send explicit data to
all devices in the network (broadcast). It can be located in the following path:
/examples/communication/explicit/SendBroadcastExplicitDataSample

Use the XBee Java Library Communicate with XBee devices

XBee Java Library User Guide 84

Receive explicit data
Some applications developed with the XBee Java Library may require modules to receive data in
application layer, or explicit, data format.
To receive data in explicit format, you must first configure the data output mode of the receiver XBee
device to explicit format using the setAPIOutputMode method.

Method Description

getAPIOutputMode
()

Returns the API output mode of the data received by the XBee device.

setAPIOutputMode
(APIOutputMode)

Specifies the API output mode of the data received by the XBee device. The
mode can be one of the following:

n APIOutputMode.NATIVE: The data received by the device will be
output as standard received data and it must be read using standard
data-reading methods. It does not matter if the data sent by the
remote device was sent in standard or explicit format.

n APIOutputMode.EXPLICIT: The data received by the device will be
output as explicit received data and it must be read using explicit data-
reading methods. It does not matter if the data sent by the remote
device was sent in standard or explicit format.

n APIOutputMode.EXPLICIT_ZDO_PASSTHRU: The data received by the
device will be output as explicit received data, like the
APIOutputMode.EXPLICIT option. In addition, this mode also outputs
as explicit data Zigbee Device Object (ZDO) packets received by the
XBee module through the serial interface.

Once you have configured the device to receive data in explicit format, you can read it using one of the
following mechanisms provided by the XBee device object:

Polling for data
The simplest way to read for explicit data is by executing the readExplicitDatamethod of the local
XBee device. This method blocks your application until explicit data from any XBee device of the
network is received or the provided timeout has expired:

Method Description

readExplicitData
(int)

Specifies the time to wait in milliseconds for explicit data reception (method
blocks during that time or until explicit data is received). If you don't specify a
timeout, the method uses the default receive timeout configured in XBeeDevice.

Read explicit data from any remote XBee device (polling)

import com.digi.xbee.api.ZigbeeDevice;
import com.digi.xbee.api.models.ExplicitXBeeMessage;

[...]

// Instantiate a Zigbee device object.

Use the XBee Java Library Communicate with XBee devices

XBee Java Library User Guide 85

ZigbeeDevice myZigbeeDevice = new ZigbeeDevice("COM1", 9600);
myZigbeeDevice.open();

// Read explicit data.
ExplicitXBeeMessage xbeeMessage = myZigbeeDevice.readExplicitData();

[...]

The read data is returned inside an ExplicitXBeeMessage object. This object also contains the
application layer fields as well as the following information:

n RemoteXBeeDevice that sent the data.
n Endpoint of the source that initiated the transmission.
n Endpoint of the destination where the message is addressed.
n Cluster ID where the data was addressed.
n Profile ID where the data was addressed.
n Byte array with the contents of the received data.
n Flag indicating if the data was sent via broadcast.

You can retrieve the previous information using the corresponding getters of the
ExplicitXBeeMessage object:

Get the ExplicitXBeeMessage information

import com.digi.xbee.api.ZigbeeDevice;
import com.digi.xbee.api.XBeeAddress;
import com.digi.xbee.api.models.ExplicitXBeeMessage;

[...]

// Instantiate a Zigbee device object.
ZigbeeDevice myZigbeeDevice = [...]

// Read explicit data.
ExplicitXBeeMessage xbeeMessage = myZigbeeDevice.readExplicitData();

RemoteXBeeDevice remote = xbeeMessage.getDevice();
int sourceEndpoint = xbeeMessage.getSourceEndpoint();
int destEndpoint = xbeeMessage.getDestinationEndpoint();
int clusterID = xbeeMessage.getClusterID();
int profileID = xbeeMessage.getProfileID();
byte[] data = xbeeMessage.getData();
boolean isBroadcast = xbeeMessage.isBroadcast();

[...]

You can also read explicit data from a specific remote XBee device of the network. For that purpose,
the XBee device object provides the readExplicitDataFrommethod:

Method Description

readExplicitDataFrom
(RemoteXBeeDevice,
int)

Specifies the remote XBee device to read explicit data from and the time to
wait for explicit data reception (method blocks during that time or until
explicit data is received). If you do not specify a timeout, the method uses
the default receive timeout configured in the XBee device object.

Use the XBee Java Library Communicate with XBee devices

XBee Java Library User Guide 86

Read explicit data from a specific remote XBee device (polling)

import com.digi.xbee.api.RemoteXBeeDevice;
import com.digi.xbee.api.ZigbeeDevice;
import com.digi.xbee.api.models.ExplicitXBeeMessage;

[...]

// Instantiate a Zigbee device object.
ZigbeeDevice myZigbeeDevice = new ZigbeeDevice("COM1", 9600);
myZigbeeDevice.open();

// Instantiate a remote XBee device object.
RemoteXBeeDevice myRemoteXBeeDevice = [...]

// Read data sent by the remote XBee device.
ExplicitXBeeMessage xbeeMessage = myZigbeeDevice.readExplicitDataFrom
(myRemoteXBeeDevice);

[...]

This method also returns an ExplicitXBeeMessage object containing the same information as the
ExplicitXBeeMessage object returned by the readExplicitDatamethod.
In either case, the default timeout to wait for data is two seconds. You can configure this timeout with
the getReceiveTimeout and setReceiveTimeoutmethods of an XBee device class.

Get/set the timeout for synchronous operations

import com.digi.xbee.api.ZigbeeDevice;

[...]

public static final int NEW_TIMEOUT_FOR_SYNC_OPERATIONS = 5 * 1000; // 5 seconds

ZigbeeDevice myZigbeeDevice = [...]

// Retrieving the configured timeout for synchronous operations.
System.out.println("Current timeout: " + myZigbeeDevice.getReceiveTimeout() + "
milliseconds.");

[...]

// Configuring the new timeout (in milliseconds) for synchronous operations.
myZigbeeDevice.setReceiveTimeout(NEW_TIMEOUT_FOR_SYNC_OPERATIONS);

[...]

Example: Receive explicit data with polling
The XBee Java Library includes a sample application that demonstrates how to receive explicit data
using the polling mechanism. It can be located in the following path:
/examples/communication/explicit/ReceiveExplicitDataPollingSample

Explicit data reception callback
This mechanism for reading explicit data does not block your application. Instead, you can be notified
when new explicit data has been received if you are subscribed or registered to the explicit data
reception service by the addExplicitDataListener(IExplicitDataReceiveListener).

Use the XBee Java Library Communicate with XBee devices

XBee Java Library User Guide 87

Explicit data reception registration

import com.digi.xbee.api.ZigbeeDevice:
import com.digi.xbee.api.listeners.IExplicitDataReceiveListener;

[...]

// Instantiate a Zigbee device object.
ZigbeeDevice myZigbeeDevice = new ZigbeeDevice("COM1", 9600);
myZigbeeDevice.open();

// Subscribe to explicit data reception.
myZigbeeDevice.addExplicitDataListener(new MyExplicitDataReceiveListener());

[...]

The listener provided to the subscribedmethod,MyExplicitDataReceiveListener, must implement
the IExplicitDataReceiveListener interface. This interface includes the method that is executed when
new explicit data is received by the XBee device.
This explicit data reception operation is implemented the same way for all local XBee device classes.

Remember that 802.15.4, Cellular andWi-Fi protocols do not support transmitting explicit
data, so you cannot use the methods explained in this section when working with these
protocols.

When new explicit data is received, the explicitDataReceived() method of the
IExplicitDataReceiveListener is executed providing as parameter an ExplicitXBeeMessage object
which contains the data and other useful information such as the application layer fields.

ExplicitDataReceiveListener implementation example

import com.digi.xbee.api.listeners.IExplicitDataReceiveListener;
import com.digi.xbee.api.models.ExplicitXBeeMessage;

public class MyExplicitDataReceiveListener implements
IExplicitDataReceiveListener {

/*
* Explicit data reception callback.
*/
@Override
public void explicitDataReceived(ExplicitXBeeMessage xbeeMessage) {

String address = xbeeMessage.getDevice().get64BitAddress().toString();
int sourceEndpoint = xbeeMessage.getSourceEndpoint();
int destEndpoint = xbeeMessage.getDestinationEndpoint();
int cluster = xbeeMessage.getClusterID();
int profile = xbeeMessage.getProfileID();
String dataString = xbeeMessage.getDataString();
System.out.println("Received explicit data from " + address +

": " + dataString);
System.out.println("Application layer fields:");
System.out.println(" - Source endpoint: " + HexUtils.integerToHexString

(sourceEndpoint, 1));
System.out.println(" - Destination endpoint: " + HexUtils.integerToHexString

(destEndpoint, 1));
System.out.println(" - Cluster ID: " + HexUtils.integerToHexString(cluster,

2));

Use the XBee Java Library Communicate with XBee devices

XBee Java Library User Guide 88

System.out.println(" - Profile ID: " + HexUtils.integerToHexString(profile,
2));

}
}

The ExplicitXBeeMessage object provides the following information:

n RemoteXBeeDevice that sent the data
n Endpoint of the source that initiated the transmission
n Endpoint of the destination where the message is addressed
n Cluster ID where the data was addressed
n Profile ID where the data was addressed
n Byte array with the contents of the received data
n Flag indicating if the data was sent via broadcast

You can retrieve the previous information using the corresponding getters of the
ExplicitXBeeMessage object:

Get the ExplicitXBeeMessage information

import com.digi.xbee.api.RemoteXBeeDevice;
import com.digi.xbee.api.listeners.IExplicitDataReceiveListener;
import com.digi.xbee.api.models.ExplicitXBeeMessage;

public class MyExplicitDataReceiveListener implements
IExplicitDataReceiveListener {

/*
* Explicit data reception callback.
*/
@Override
public void explicitDataReceived(ExplicitXBeeMessage xbeeMessage) {

RemoteXBeeDevice remoteDevice = xbeeMessage.getDevice();
int sourceEndpoint = xbeeMessage.getSourceEndpoint();
int destEndpoint = xbeeMessage.getDestinationEndpoint();
int clusterID = xbeeMessage.getClusterID();
int profileID = xbeeMessage.getProfileID();
String dataString = xbeeMessage.getDataString();

}
}

[...]

To stop listening to new received explicit data, use the removeExplicitDataListener
(IExplicitDataReceiveListener) method to unsubscribe the already-registered listener.

Data reception deregistration

[...]

ZigbeeDevice myZigbeeDevice = ...
MyExplicitDataReceiveListener myExplicitDataReceiveListener = ...
myZigbeeDevice.addExplicitDataListener(myExplicitDataReceiveListener);

[...]

// Remove the new explicit data reception listener.

Use the XBee Java Library Communicate with XBee devices

XBee Java Library User Guide 89

myZigbeeDevice.removeExplicitDataListener(myExplicitDataReceiveListener);

[...]

Example: Receive explicit data via callback
The XBee Java Library includes a sample application that demonstrates how to subscribe to the
explicit data reception service in order to receive explicit data. It can be located in the following path:
/examples/communication/explicit/ReceiveExplicitDataSample

Notes:
If your XBee device is configured to receive explicit data (APIOutputMode.EXPLICIT or
APIOutputMode.EXPLICIT_ZDO_PASSTHRU) and another device sends non-explicit data, you receive
an explicit message whose application layer field values are:

n Source endpoint: 0xE8
n Destination endpoint: 0xE8
n Cluster ID: 0x0011
n Profile ID: 0xC10

When an XBee device receives explicit data with these values, the message notifies both data
reception callbacks (explicit and non-explicit) in case you have registered them. If you read the
received data with the polling mechanism, you also receive the message through both methods.

Send and receive IP data
In contrast to XBee protocols like Zigbee, DigiMesh or 802.15.4, where the devices are connected each
other, in Cellular andWi-Fi protocols the devices are part of the Internet.
XBee Cellular andWi-Fi modules offer a special type of frame for communicating with other Internet-
connected devices. It allows sending and receiving data specifying the destination IP address, port,
and protocol (TCP, TCP SSL or UDP).

Note Only Cellular, NB-IoT andWi-Fi protocols support the transmission and reception of IP data. This
means you cannot transmit or receive IP data using a generic XBeeDevice object; you must use the
protocol-specific XBee device objects CellularDevice or WiFiDevice.

Send IP data
IP data transmission can be a synchronous or asynchronous operation, depending on the method you
use.

Synchronous operation
The synchronous data transmission is a blocking operation; that is, the method waits until it either
receives the transmit status response or it reaches the default timeout.
The CellularDevice, NBIoTDevice andWiFiDevice classes include several methods to transmit IP
data synchronously:

Use the XBee Java Library Communicate with XBee devices

XBee Java Library User Guide 90

Method Description

sendIPData
(Inet4Address, int,
IPProtocol, byte[])

Specifies the destination IP address, destination port, IP protocol (UDP,
TCP or TCP SSL) and data to send for transmissions.

sendIPData
(Inet4Address, int,
IPProtocol, boolean,
byte[])

Specifies the destination IP address, destination port, IP protocol (UDP,
TCP or TCP SSL), whether the socket should be closed after the
transmission or not and data to send for transmissions.

Note NB-IoT modules only support UDP transmissions, so make sure that you use that protocol when
calling the previous methods.

Send network data synchronously
import java.net.Inet4Address;

import com.digi.xbee.api.CellularDevice;
import com.digi.xbee.api.models.IPProtocol;

[...]

// Instantiate a Cellular device object.
CellularDevice myDevice = new CellularDevice("COM1", 9600);
myDevice.open();

// Send IP data using TCP.
Inet4Address destAddr = (Inet4Address) Inet4Address.getByName("56.23.102.96");
int destPort = 5050;
boolean closeSocket = false;
IPProtocol protocol = IPProtocol.TCP;
String data = "Hello XBee!";

myDevice.sendIPData(destAddr, destPort, closeSocket, protocol, data.getBytes());

[...]

The previous may fail for the following reasons:
There is a timeout setting the IP addressing parameter, throwing a TimeoutException.

n Other errors caught as XBeeException:
l The operating mode of the device is not API or API_ESCAPE, throwing an

InvalidOperatingModeException.
l If the transmit status is not SUCCESS, the method throws a TransmitException.
l There is an error writing to the XBee interface, throwing a generic XBeeException.

The default timeout to wait for the send status is two seconds. You can configure this value using the
getReceiveTimeout and setReceiveTimeoutmethods of a local XBee device class.

Use the XBee Java Library Communicate with XBee devices

XBee Java Library User Guide 91

Get/set the timeout for synchronous operations
import com.digi.xbee.api.CellularDevice;

[...]

public static final int NEW_TIMEOUT_FOR_SYNC_OPERATIONS = 5 * 1000; // 5 seconds

CellularDevice myDevice = [...]

// Retrieving the configured timeout for synchronous operations.
System.out.println("Current timeout: " + myDevice.getReceiveTimeout() + "
milliseconds.");

[...]

// Configuring the new timeout (in milliseconds) for synchronous operations.
myDevice.setReceiveTimeout(NEW_TIMEOUT_FOR_SYNC_OPERATIONS);

[...]

Example: Transmit IP data synchronously
The XBee Java Library includes a sample application that demonstrates how to send IP data. You can
locate the example in the following path:
/examples/communication/ip/SendIPDataSample

Example: Transmit UDP data
The XBee Java Library includes a sample application that demonstrates how to send UDP data. You
can locate the example in the following path:
/examples/communication/ip/SendUDPDataSample

Example: Connect to echo server
The XBee Java Library includes a sample application that demonstrates how to connect to an echo
server, send a message to it and receive its response. You can locate the example in the following
path:
/examples/communication/ip/ConnectToEchoServerSample

Example: Knock knock
The XBee Java Library includes a sample application that demonstrates how to connect to a web
server and establish a conversation with knock-knock jokes. You can locate the example in the
following path:
/examples/communication/ip/KnockKnockSample

Asynchronous operation
Transmitting IP data asynchronously means that your application does not block during the transmit
process. However, you cannot ensure that the data was successfully sent.
The CellularDevice, NBIoTDevice, andWiFiDevice classes include several methods to transmit IP
data asynchronously:

Use the XBee Java Library Communicate with XBee devices

XBee Java Library User Guide 92

Method Description

sendIPDataAsync
(Inet4Address, int,
IPProtocol, byte[])

Specifies the destination IP address, destination port, IP protocol (UDP,
TCP or TCP SSL) and data to send for asynchronous transmissions.

sendIPDataAsync
(Inet4Address, int,
IPProtocol, boolean,
byte[])

Specifies the destination IP address, destination port, IP protocol (UDP,
TCP or TCP SSL), whether the socket should be closed after the
transmission or not and data to send for asynchronous transmissions.

Note NB-IoT modules only support UDP transmissions, so make sure that you use that protocol when
calling the previous methods.

Send network data asynchronously
import java.net.Inet4Address;
import com.digi.xbee.api.CellularDevice;

import com.digi.xbee.api.models.IPProtocol;

[...]

// Instantiate a Cellular device object.
CellularDevice myDevice = new CellularDevice("COM1", 9600);
myDevice.open();

// Send IP data using TCP.
Inet4Address destAddr = (Inet4Address) Inet4Address.getByName("56.23.102.96");
int destPort = 5050;
boolean closeSocket = false;
IPProtocol protocol = IPProtocol.TCP;
String data = "Hello XBee!";

myDevice.sendIPDataAsync(destAddr, destPort, protocol, closeSocket, data.getBytes
());

[...]

The previous methods may fail for the following reasons:

n All possible errors are caught as an XBeeException:
l If the operating mode of the device is not API or API_ESCAPE, the method throws an

InvalidOperatingModeException.
l If there is an error writing to the XBee interface, the method throws a generic

XBeeException.

Receive IP data
Some applications developed with the XBee Java Library may require modules to receive IP data.
XBee Cellular andWi-Fi modules operate the same way as other TCP/IP devices. They can initiate
communications with other devices or listen for TCP or UDP transmissions at a specific port. In either
case, you must apply any of the receive methods explained in this section in order to read IP data from
other devices.

Use the XBee Java Library Communicate with XBee devices

XBee Java Library User Guide 93

Listening for incoming transmissions
If the Cellular or Wi-Fi module operates as a server, listening for incoming TCP or UDP transmissions,
you must start listening at a specific port, something similar to the bind operation of a socket. The
XBee Java Library provides a method to listen for incoming transmissions:

Method Description

startListening(int) Starts listening for incoming IP transmissions in the provided port.

Listening for incoming transmissions
import com.digi.xbee.api.CellularDevice;

[...]

// Instantiate a Cellular device object.
CellularDevice myDevice = new CellularDevice("COM1", 9600);
myDevice.open();

// Listen for TCP or UDP transmissions at port 1234.
myDevice.startListening(1234);

[...]

The startListeningmethodmay fail for the following reasons:

n If the listening port provided is lesser than 0 or greater than 65535, the method throws an
IllegalArgumentException exception.

n If there is a timeout setting the listening port, the method throws a TimeoutException
exception .

n Errors that register as an XBeeException:
l If the operating mode of the device is not API or API_ESCAPE, the method throws an

InvalidOperatingModeException.
l If the response of the listening port command is not valid, the method throws an

ATCommandException.
l If there is an error writing to the XBee interface, the method throws a generic

XBeeException.

You can call the stopListeningmethod to stop listening for incoming TCP or UDP transmissions:

Method Description

stopListening() Stops listening for incoming IP transmissions.

Stop listening for incoming transmissions
import com.digi.xbee.api.CellularDevice;

[...]

// Instantiate a Cellular device object.

Use the XBee Java Library Communicate with XBee devices

XBee Java Library User Guide 94

CellularDevice myDevice = new CellularDevice("COM1", 9600);
myDevice.open();

// Stop listen for TCP or UDP transmissions.
myDevice.stopListening();

[...]

The stopListeningmethodmay fail for the following reasons:

n There is a timeout setting the listening port, throwing a TimeoutException.
n Other errors caught as XBeeException:

l The operating mode of the device is not API or API_ESCAPE, throwing an
InvalidOperatingModeException.

l The response of the command is not valid, throwing an ATCommandException.
l There is an error writing to the XBee interface, throwing a generic XBeeException.

Polling for data
The simplest way to read IP data is by executing the readIPDatamethod of the local Cellular or Wi-Fi
devices. This method blocks your application until IP data is received or the provided timeout has
expired.

Method Description

readIPData
(int)

Specifies the time to wait in milliseconds for IP data reception (method blocks during
that time or until IP data is received). If you don't specify a timeout, the method uses
the default receive timeout configured in XBeeDevice.

Read network data (polling)
import com.digi.xbee.api.CellularDevice;
import com.digi.xbee.api.models.IPMessage;

[...]

// Instantiate a Cellular device object.
CellularDevice myDevice = new CellularDevice("COM1", 9600);
myDevice.open();

// Read IP data.
IPMessage ipMessage = myDevice.readIPData();

[...]

The method returns the read data inside a IPMessage object and contains the following information:

n IP address of the device that sent the data
n Transmission protocol
n Source and destination ports
n Byte array with the contents of the received data

You can retrieve the previous information using the corresponding getters of the IPMessage object:

Use the XBee Java Library Communicate with XBee devices

XBee Java Library User Guide 95

Get the IPMessage information
import java.net.Inet4Address;
import com.digi.xbee.api.CellularDevice;
import com.digi.xbee.api.models.IPMessage;
import com.digi.xbee.api.models.IPProtocol;

[...]

// Instantiate a Cellular device object.
CellularDevice myDevice = [...]

// Read IP data.
IPMessage ipMessage = myDevice.readIPData();

Inet4Address destAddr = ipMessage .getIPAddress();
IPProtocol protocol = ipMessage .getProtocol();
int srcPort = ipMessage .getSourcePort();
int destPort = ipMessage .getDestPort();
byte[] data = ipMessage .getData();

[...]

You can also read IP data that comes from a specific IP address. For that purpose, the Cellular andWi-
Fi device objects provide the readIPDataFrommethod:

Read network data from a specific remote XBee device (polling)
import java.net.Inet4Address;
import com.digi.xbee.api.CellularDevice;
import com.digi.xbee.api.models.IPMessage;

[...]

Inet4Address ipAddr = (Inet4Address) Inet4Address.getByName("52.36.102.96");

// Instantiate a Cellular device object.
CellularDevice myDevice = new CellularDevice("COM1", 9600);
myDevice.open();

// Read IP data.
IPMessage ipMessage = myDevice.readIPDataFrom(ipAddr);

[...]

This method also returns an IPMessage object containing the same information described before.
In either case, the default timeout to wait for data is two seconds. You can configure this timeout with
the getReceiveTimeout and setReceiveTimeoutmethods of an XBee device class.

Get/set the timeout for synchronous operations
import com.digi.xbee.api.CellularDevice;

[...]

public static final int NEW_TIMEOUT_FOR_SYNC_OPERATIONS = 5 * 1000; // 5 seconds

Use the XBee Java Library Communicate with XBee devices

XBee Java Library User Guide 96

CellularDevice myDevice = [...]

// Retrieving the configured timeout for synchronous operations.
System.out.println("Current timeout: " + myDevice.getReceiveTimeout() + "
milliseconds.");

[...]

// Configuring the new timeout (in milliseconds) for synchronous operations.
myDevice.setReceiveTimeout(NEW_TIMEOUT_FOR_SYNC_OPERATIONS);

[...]

Example: Receive IP data with polling
The XBee Java Library includes a sample application that demonstrates how to receive IP data using
the polling mechanism. You can locate the example in the following path:
/examples/communication/ip/ConnectToEchoServerSample

IP data reception callback
This mechanism for reading IP data does not block your application. Instead, you can be notified when
new IP data has been received if you have subscribed or registered with the IP data reception service
by using the addIPDataListener(IIPDataReceiveListener) method.

Network data reception registration
import com.digi.xbee.api.CellularDevice;
import com.digi.xbee.api.listeners.IIPDataReceiveListener;

[...]

// Instantiate a Cellular device object.
CellularDevice myDevice = new CellularDevice("COM1", 9600);
myDevice.open();

// Subscribe to IP data reception.
myDevice.addIPDataListener(new MyIPDataReceiveListener());

[...]

The listener provided to the subscribedmethod,MyIPDataReceiveListener, must implement the
IIPDataReceiveListener interface. This interface includes the method that is executed when a new IP
data is received by the XBee device.
When new IP data is received, the ipDataReceived() method of the IIPDataReceiveListener is
executed providing as parameter an IPMessage object which contains the data and other useful
information.

IPDataReceiveListener implementation example
import com.digi.xbee.api.listeners.IIPDataReceiveListener;
import com.digi.xbee.api.models.IPMessage;

Use the XBee Java Library Communicate with XBee devices

XBee Java Library User Guide 97

public class MyIPDataReceiveListener implements IIPDataReceiveListener {
/*
* IP data reception callback.
*/
@Override
public void ipDataReceived(IPMessage ipMessage) {

Inet4Address destAddr = ipMessage.getIPAddress();
IPProtocol protocol = ipMessage.getProtocol();
int srcPort = ipMessage.getSourcePort();
int destPort = ipMessage.getDestPort();
String dataString = ipMessage.getDataString();
System.out.println("Received IP data from " + destAddr + ": " +

dataString);
}

}

The IPMessage object provides the following information:

n IP address of the device that sent the data
n Transmission protocol
n Source and destination ports
n Byte array with the contents of the received data

You can retrieve the previous information using the corresponding getters of the IPMessage object.
To stop listening to new received IP data, use the removeIPDataListener(IIPDataReceiveListener)
method to unsubscribe the already-registered listener.

Data reception deregistration
[...]

CellularDevice myDevice = ...
MyIPDataReceiveListener myipDataReceiveListener = ...

myDevice.addIPDataListener(myIPDataReceiveListener);

[...]

// Remove the IP data reception listener.
myDevice.removeIPDataListener(myIPDataReceiveListener);

[...]

Example: Receive IP data with listener
The XBee Java Library includes a sample application that demonstrates how to receive IP data using
the listener. You can locate the example in the following path:
/examples/communication/ip/ReceiveIPDataSample

Send and receive IPv6 data
The XBee Thread radio modules use the IPv6 network protocol instead of IPv4 to communicate
between modules. These modules allow sending and receiving data in a similar manner as IPv4
devices, but it is necessary to specify an IPv6 address.

Use the XBee Java Library Communicate with XBee devices

XBee Java Library User Guide 98

Note Only the Thread protocol supports the transmission and reception of IPv6 data. This means you
cannot transmit or receive IPv6 data using a generic XBeeDevice object; you must use the protocol-
specific XBee device object ThreadDevice.

Send IPv6 data
IPv6 data transmission can be a synchronous or asynchronous operation, depending on the method
you use.

Synchronous operation
The synchronous IPv6 data transmission is a blocking operation; that is, the method waits until it
either receives the transmit status response or it reaches the default timeout.
The ThreadDevice class includes the following method to transmit IPv6 data synchronously:

Method Description

sendIPData
(Inet6Address, int,
IPProtocol, byte[])

Specifies the destination IPv6 address, destination port, IP protocol
(UDP, TCP, TCP SSL or CoAP) and data to send for transmissions.

Send IPv6 data synchronously
import java.net.Inet6Address;

import com.digi.xbee.api.ThreadDevice;
import com.digi.xbee.api.models.IPProtocol;

[...]

// Instantiate a Thread device object.
ThreadDevice myDevice = new ThreadDevice("COM1", 9600);
myDevice.open();

// Send IPv6 data using UDP.
Inet6Address destAddr = (Inet6Address) Inet6Address.getByName
("FDB3:0001:0002:0000:0004:0005:0006:0007");
int destPort = 9750;
IPProtocol protocol = IPProtocol.UDP;
String data = "Hello XBee!";

myDevice.sendIPData(destAddr, destPort, protocol, data.getBytes());

[...]

The previous methodmay fail for the following reasons:

n Transmit status of the packet sent is not received, throwing a TimeoutException.
n Other errors caught as XBeeException:

l The operating mode of the device is not API or API_ESCAPE, throwing an
InvalidOperatingModeException.

Use the XBee Java Library Communicate with XBee devices

XBee Java Library User Guide 99

l If the transmit status is not SUCCESS, the method throws a TransmitException.
l There is an error writing to the XBee interface, throwing a generic XBeeException.

The default timeout to wait for the send status is two seconds. You can configure this value using the
getReceiveTimeout and setReceiveTimeoutmethods of a local XBee device class.

Get/set the timeout for synchronous operations
import com.digi.xbee.api.ThreadDevice;

[...]

public static final int NEW_TIMEOUT_FOR_SYNC_OPERATIONS = 5 * 1000; // 5 seconds

ThreadDevice myDevice = [...]

// Retrieving the configured timeout for synchronous operations.
System.out.println("Current timeout: " + myDevice.getReceiveTimeout() + "
milliseconds.");

[...]

// Configuring the new timeout (in milliseconds) for synchronous operations.
myDevice.setReceiveTimeout(NEW_TIMEOUT_FOR_SYNC_OPERATIONS);

[...]

Example: Transmit IPv6 data synchronously
The XBee Java Library includes a sample application that demonstrates how to send IPv6 data. You
can locate the example in the following path:
/examples/communication/ip/SendIPv6DataSample

Asynchronous operation
Transmitting IPv6 data asynchronously means that your application does not block during the
transmit process. However, you cannot ensure that the data was sent successfully.
The ThreadDevice class includes the following method to transmit IPv6 data asynchronously:

Method Description

sendIPDataAsync
(Inet6Address, int,
IPProtocol, byte[])

Specifies the destination IPv6 address, destination port, IP protocol
(UDP, TCP, TCP SSL or CoAP) and data to send for asynchronous
transmissions.

Send IPv6 data asynchronously
import java.net.Inet6Address;

import com.digi.xbee.api.ThreadDevice;
import com.digi.xbee.api.models.IPProtocol;

[...]

Use the XBee Java Library Communicate with XBee devices

XBee Java Library User Guide 100

// Instantiate a Thread device object.
ThreadDevice myDevice = new ThreadDevice("COM1", 9600);
myDevice.open();

// Send IPv6 data using UDP.
Inet6Address destAddr = (Inet6Address) Inet6Address.getByName
("FDB3:0001:0002:0000:0004:0005:0006:0007");
int destPort = 9750;
IPProtocol protocol = IPProtocol.UDP;
String data = "Hello XBee!";

myDevice.sendIPDataAsync(destAddr, destPort, protocol, data.getBytes());

[...]

The previous methodmay fail for the following reasons:

n All possible errors are caught as an XBeeException:
l If the operating mode of the device is not API or API_ESCAPE, the method throws an

InvalidOperatingModeException.
l If there is an error writing to the XBee interface, the method throws a generic

XBeeException.

Receive IPv6 data
Some applications using IPv6 based devices require modules to receive IPv6 data
XBee Thread radio devices can initiate communications with other Thread devices in the network or
listen for UDP transmissions at a specific port. You must apply any of the receive methods explained in
this section to read IPv6 data from other Thread devices:

n Listening for incoming transmissions
n Read IPv6 data (polling)
n Network data reception registration

Listening for incoming transmissions
If the Threadmodule operates as a server listening for incoming UDP transmissions, you must start
listening at a specific port, similarly to the bind operation of a socket. The XBee Java Library provides a
method to listen for incoming transmissions:

Method Description

startListening(int) Starts listening for incoming UDP transmissions in the provided port.

Listening for incoming transmissions
import com.digi.xbee.api.ThreadDevice;

[...]

// Instantiate a Thread device object.

Use the XBee Java Library Communicate with XBee devices

XBee Java Library User Guide 101

ThreadDevice myDevice = new ThreadDevice("COM1", 9600);
myDevice.open();

// Listen for UDP transmissions at port 1234.
myDevice.startListening(1234);

[...]

The startListeningmethodmay fail for the following reasons:

n If the listening port provided is lesser than 0 or greater than 65535, the method throws an
IllegalArgumentException.

n If there is a timeout setting the listening port, the method throws a TimeoutException.
n Errors that register as an XBeeException:

l If the operating mode of the device is not API or API_ESCAPE, the method throws an
InvalidOperatingModeException.

l The response of the listening port command is not valid, throwing an
ATCommandException.

l If there is an error writing to the XBee interface, the method throws a generic
XBeeException.

You can call the stopListeningmethod to stop listening for incoming UDP transmissions:

Method Description

stopListening() Stops listening for incoming UDP transmissions.

Stop listening for incoming transmissions
import com.digi.xbee.api.ThreadDevice;

[...]

// Instantiate a Thread device object.
ThreadDevice myDevice = new ThreadDevice("COM1", 9600);
myDevice.open();

// Stop listening for UDP.
myDevice.stopListening();

[...]

The stopListeningmethodmay fail for the following reasons:

n There is a timeout setting the listening port, throwing a TimeoutException.
n Other errors caught as XBeeException:

l The operating mode of the device is not API or API_ESCAPE, throwing an
InvalidOperatingModeException.

l The response of the command is not valid, throwing an ATCommandException.
l There is an error writing to the XBee interface, throwing a generic XBeeException.

Use the XBee Java Library Communicate with XBee devices

XBee Java Library User Guide 102

Polling for data
The simplest way to read IPv6 data is by executing the readIPDatamethod of the local Thread device.
This method blocks your application until IPv6 data is received or the provided timeout has expired.

Method Description

readIPData
(int)

Specifies the time to wait in milliseconds for IPv6 data reception (method blocks
during that time or until IPv6 data is received). If you don't specify a timeout, the
method uses the default receive timeout configured in XBeeDevice.

Read IPv6 data (polling)
import com.digi.xbee.api.ThreadDevice;
import com.digi.xbee.api.models.IPMessage;

[...]

// Instantiate a Thread device object
ThreadDevice myDevice = new ThreadDevice("COM1", 9600);
myDevice.open();

// Read IPv6 data.
IPMessage ipMessage = myDevice.readIPData();

[...]

The method returns the read data inside a IPMessage object and contains the following information:

n IPv6 address of the device that sent the data
n Transmission protocol
n Source and destination ports
n Byte array with the contents of the received data

n You can retrieve the previous information using the corresponding getters of the IPMessage
object:

Get the IPMessage information
import java.net.Inet6Address;
import com.digi.xbee.api.ThreadDevice;
import com.digi.xbee.api.models.IPMessage;
import com.digi.xbee.api.models.IPProtocol;

[...]

// Instantiate a Thread device object.
ThreadDevice myDevice = [...]

// Read IP data.
IPMessage ipMessage = myDevice.readIPData();

Inet6Address destAddr = ipMessage .getIPAddress();
IPProtocol protocol = ipMessage .getProtocol();
int srcPort = ipMessage .getSourcePort();

Use the XBee Java Library Communicate with XBee devices

XBee Java Library User Guide 103

int destPort = ipMessage .getDestPort();
byte[] data = ipMessage .getData();

[...]

You can also read IPv6 data that comes from a specific IPv6 address. For that purpose, the Thread
device objects provide the readIPDataFrommethod:

Read network data from a specific remote XBee device (polling)
import java.net.Inet6Address;
import com.digi.xbee.api.ThreadDevice;
import com.digi.xbee.api.models.IPMessage;

[...]

Inet6Address ipAddr = (Inet6Address) Inet6Address.getByName
("FDB3:0001:0002:0000:0004:0005:0006:0007");

// Instantiate a Thread device object.
ThreadDevice myDevice = new ThreadDevice("COM1", 9600);
myDevice.open();

// Read IPv6 data.
IPMessage ipMessage = myDevice.readIPDataFrom(ipAddr);

[...]

This method also returns an IPMessage object containing the same information described before.
In either case, the default timeout to wait for data is two seconds. You can configure this timeout with
the getReceiveTimeout and setReceiveTimeoutmethods of an XBee device class.

Get/set the timeout for synchronous operations
import com.digi.xbee.api.ThreadDevice;

[...]

public static final int NEW_TIMEOUT_FOR_SYNC_OPERATIONS = 5 * 1000; // 5 seconds

ThreadDevice myDevice = [...]

// Retrieving the configured timeout for synchronous operations.
System.out.println("Current timeout: " + myDevice.getReceiveTimeout() + "
milliseconds.");

[...]

// Configuring the new timeout (in milliseconds) for synchronous operations.
myDevice.setReceiveTimeout(NEW_TIMEOUT_FOR_SYNC_OPERATIONS);

[...]

IPv6 data reception callback
This mechanism for reading IPv6 data does not block your application. Instead, you can be notified
when new IPv6 data has been received if you have subscribed or registered with the IPv6 data

Use the XBee Java Library Communicate with XBee devices

XBee Java Library User Guide 104

reception service by using the addIPDataListener(IIPDataReceiveListener) method.

Network data reception registration
import com.digi.xbee.api.ThreadDevice;
import com.digi.xbee.api.listeners.IIPDataReceiveListener;

[...]

// Instantiate a Thread device object.
ThreadDevice myDevice = new ThreadDevice("COM1", 9600);
myDevice.open();

// Subscribe to IPv6 data reception.
myDevice.addIPDataListener(new MyIPDataReceiveListener());

[...]

The listener provided to the subscribedmethod,MyIPDataReceiveListener, must implement the
IIPDataReceiveListener interface. This interface includes the method that executes when a new IP
data is received by the XBee device.
When new IP data is received, the ipDataReceived() method of the IIPDataReceiveListener is
executed providing as parameter an IPMessage object which contains the data and other useful
information.

IPDataReceiveListener implementation example
import java.net.Inet6Address;
import com.digi.xbee.api.listeners.IIPDataReceiveListener;
import com.digi.xbee.api.models.IPMessage;

public class MyIPDataReceiveListener implements IIPDataReceiveListener {
/*
* IP data reception callback.
*/
@Override
public void ipDataReceived(IPMessage ipMessage) {

Inet6Address destAddr = ipMessage.getIPv6Address();
IPProtocol protocol = ipMessage.getProtocol();
int srcPort = ipMessage.getSourcePort();
int destPort = ipMessage.getDestPort();
String dataString = ipMessage.getDataString();
System.out.println("Received IPv6 data from " + destAddr + ": " +

dataString);
}

}

The IPMessage object provides the following information:

n IP address of the device that sent the data
n Transmission protocol
n Source and destination ports
n Byte array with the contents of the received data

You can retrieve the previous information using the corresponding getters of the IPMessage object.

Use the XBee Java Library Communicate with XBee devices

XBee Java Library User Guide 105

To stop listening to new received IP data, use the removeIPDataListener(IIPDataReceiveListener)
method to unsubscribe the already-registered listener.

Data reception deregistration
[...]

ThreadDevice myDevice = ...
MyIPDataReceiveListener myipDataReceiveListener = ...

myDevice.addIPDataListener(myIPDataReceiveListener);

[...]

// Remove the IP data reception listener.
myDevice.removeIPDataListener(myIPDataReceiveListener);

[...]

Example: Receive IPv6 data with listener
The XBee Java Library includes a sample application that demonstrates how to receive IPv6 data
using the listener. You can locate the example in the following path:
/examples/communication/ip/ReceiveIPv6DataSample

Send and receive CoAP data
Constrained Application Protocol (CoAP) is an application layer protocol used by devices with limited
RAM and Flash capacity to interact with the Internet. It uses a client-server model where a client
sends requests to a server, and the server sends back acknowledgments and responses.
Digi's XBee Thread devices support this protocol, and the XBee Java Library provides an API to send
CoAP data.

Note Only Thread protocol supports the transmission and reception of CoAP data. This means you
cannot transmit or receive CoAP data using a generic XBeeDevice object; you must use the protocol-
specific XBee device object ThreadDevice.

Send CoAP data
CoAP data transmission can be a synchronous or asynchronous operation, depending on the method
you use.

Synchronous operation
The synchronous CoAP data transmission is a blocking operation; that is, the method waits until it
either receives the transmit status response and the CoAP response or it reaches the default timeout.
The ThreadDevice class includes the following method to transmit CoAP data synchronously:

Use the XBee Java Library Communicate with XBee devices

XBee Java Library User Guide 106

Method Description

sendCoAPData
(Inet6Address,
String, HTTPMethod,
byte[])

Specifies the destination IPv6 address, URI, HTTP method (EMPTY, GET,
POST, PUT or DELETE) and payload to send.

sendCoAPData
(Inet6Address,
String, HTTPMethod,
boolean, byte[])

Specifies the destination IPv6 address, URI, HTTP method (EMPTY, GET,
POST, PUT or DELETE), whether to apply remote AT command changes and
payload to send. This method should be used only when setting a remote AT
command.

The Uniform Resource Identifier (URI) is a printable string that must be present in each CoAP
transmission. The XBee Java Library provides some fixed URIs for the transmissions:

n CoAPURI.URI_DATA_TRANSMISSION: "XB/TX" for data transmissions (use PUT as HTTP
method)

n CoAPURI.URI_AT_COMMAND: "XB/AT" for AT Command operation (use PUT to set an AT
command or GET to read an AT command). After the URI, an AT command needs to be
specified, for example:
l CoAPURI.URI_AT_COMMAND + "/NI"

n CoAPURI.URI_IO_SAMPLING: "XB/IO" for IO operation (use POST as HTTP method)

Send CoAP data synchronously
import java.net.Inet6Address;

import com.digi.xbee.api.ThreadDevice;
import com.digi.xbee.api.models.HTTPMethod;

[...]

// Instantiate a Thread device object.
ThreadDevice myDevice = new ThreadDevice("COM1", 9600);
myDevice.open();

// Send IPv6 data using UDP. Set the remote AT command "NI" with "Device 1".
Inet6Address destAddr = (Inet6Address) Inet6Address.getByName
("FDB3:0001:0002:0000:0004:0005:0006:0007");
HTTPMethod method = HTTPMethod.PUT;
String uri = CoAPURI.URI_AT_COMMAND + "/NI";
String data = "Device 1";

myDevice.sendCoAPData(destAddr, uri, method, true, data.getBytes());

[...]

The previous methodmay fail for the following reasons:

n Transmit status of the packet sent is not received, throwing a TimeoutException.
n Other errors caught as XBeeException:

l The operating mode of the device is not API or API_ESCAPE, throwing an
InvalidOperatingModeException.

Use the XBee Java Library Communicate with XBee devices

XBee Java Library User Guide 107

l If the transmit status is not SUCCESS, the method throws a TransmitException.
l There is an error writing to the XBee interface or the CoAP response is not received,

throwing a generic XBeeException.

The default timeout to wait for the send status is two seconds. You can configure this value using the
getReceiveTimeout and setReceiveTimeoutmethods of a local XBee device class.

Get/set the timeout for synchronous operations
import com.digi.xbee.api.ThreadDevice;

[...]

public static final int NEW_TIMEOUT_FOR_SYNC_OPERATIONS = 5 * 1000; // 5 seconds

ThreadDevice myDevice = [...]

// Retrieving the configured timeout for synchronous operations.
System.out.println("Current timeout: " + myDevice.getReceiveTimeout() + "
milliseconds.");

[...]

// Configuring the new timeout (in milliseconds) for synchronous operations.
myDevice.setReceiveTimeout(NEW_TIMEOUT_FOR_SYNC_OPERATIONS);

[...]

Example: Transmit CoAP data synchronously
The XBee Java Library includes a sample application that demonstrates how to send CoAP data. You
can locate the example in the following path:
/examples/communication/coap/SendCoAPDataSample

Asynchronous operation
Transmitting CoAP data asynchronously means that your application does not block during the
transmit process. However, you cannot ensure that the data was successfully sent.
The ThreadDevice class includes the following method to transmit CoAP data asynchronously:

Method Description

sendCoAPDataAsync
(Inet6Address,
String,
HTTPMethod, byte
[])

Specifies the destination IPv6 address, URI, HTTP method (EMPTY, GET,
POST, PUT or DELETE) and payload to send for asynchronous transmissions.

sendCoAPDataAsync
(Inet6Address,
String,
HTTPMethod,
boolean, byte[])

Specifies the destination IPv6 address, URI, HTTP method (EMPTY, GET,
POST, PUT or DELETE), whether to apply remote AT command changes and
payload to send for asynchronous transmissions. This method should be
used only when setting a remote AT command.

Use the XBee Java Library Communicate with XBee devices

XBee Java Library User Guide 108

The Uniform Resource Identifier (URI) is a printable string that must be present in each CoAP
transmission. The XBee Java Library provides some fixed URIs for the transmissions:

n CoAPURI.URI_DATA_TRANSMISSION: "XB/TX" for data transmissions (use PUT as HTTP
method)

n CoAPURI.URI_AT_COMMAND: "XB/AT" for AT Command operation (use PUT to set an AT
command or GET to read an AT command). After the URI, an AT command needs to be
specified, for example:
l CoAPURI.URI_AT_COMMAND + "/NI"

n CoAPURI.URI_IO_SAMPLING: "XB/IO" for IO operation (use POST as HTTP method)

Send CoAP data asynchronously
import java.net.Inet6Address;

import com.digi.xbee.api.ThreadDevice;
import com.digi.xbee.api.models.HTTPMethod;

[...]

// Instantiate a Thread device object.
ThreadDevice myDevice = new ThreadDevice("COM1", 9600);
myDevice.open();

// Send IPv6 data using UDP. Set the remote AT command "NI" with "Device 1".
Inet6Address destAddr = (Inet6Address) Inet6Address.getByName
("FDB3:0001:0002:0000:0004:0005:0006:0007");
HTTPMethod method = HTTPMethod.PUT;
String uri = CoAPURI.URI_AT_COMMAND + "/NI";
String data = "Device 1";

myDevice.sendCoAPDataAsync(destAddr, uri, method, true, data.getBytes());

[...]

The previous methodmay fail for the following reasons:

n All possible errors are caught as an XBeeException:
l If the operating mode of the device is not API or API_ESCAPE, the method throws an

InvalidOperatingModeException.
l If there is an error writing to the XBee interface, the method throws a generic

XBeeException.

Receive CoAP data
Received CoAP data is captured as IPv6 data, which means that you receive CoAP data the same as
you receive IPv6 data. See Receive IPv6 data for more information.

Example: Receive CoAP data with listener
The XBee Java Library includes a sample application that demonstrates how to receive CoAP data
using the listener. You can locate the example in the following path:
/examples/communication/coap/ReceiveCoAPDataSample

Use the XBee Java Library Communicate with XBee devices

XBee Java Library User Guide 109

Send and receive SMS messages
A feature of the XBee Cellular device is the ability to send and receive Short Message Service (SMS)
transmissions. This allows you to send and receive text messages to and from an SMS capable device
such as a mobile phone.
For that purpose, these devices offer a special type of frame for sending and receiving text messages,
specifying the destination phone number and data.

Note Only the Cellular protocol supports the transmission and reception of SMS. This means you
cannot send or receive text messages using a generic XBeeDevice object; you must use the protocol-
specific XBee device object CellularDevice.

Send SMS messages
SMS transmissions can be a synchronous or asynchronous operation, depending on the usedmethod.

Synchronous Operation
The synchronous SMS transmission is a blocking operation; that is, the method waits until it either
receives the transmit status response or it reaches the default timeout.
The CellularDevice class includes the following method to send SMS messages synchronously:

Method Description

sendSMS(String,
String)

Specifies the the phone number to send the SMS to and the data to send as the
body of the SMS message.

Send SMS message synchronously
import com.digi.xbee.api.CellularDevice;

[...]

// Instantiate a Cellular device object.
CellularDevice myDevice = new CellularDevice("COM1", 9600);
myDevice.open();

String phoneNumber = "+34665963205";
String data = "Hello XBee!";

// Send SMS message.
myDevice.sendSMS(phoneNumber, data);

[...]

The sendSMSmethodmay fail for the following reasons:

n If the response is not received in the configured timeout, the method throws a
TimeoutException exception.

n If the phone number has an invalid format, the method throws an IllegalArgumentException
exception.

Use the XBee Java Library Communicate with XBee devices

XBee Java Library User Guide 110

n Errors register as XBeeException:
l If the operating mode of the device is not API or API_ESCAPE, the method throws an

InvalidOperatingModeException.
l If the transmit status is not SUCCESS, the method throws a TransmitException.
l If there is an error writing to the XBee interface, the method throws a generic

XBeeException.

The default timeout to wait for send status is two seconds. You can configure this value using the
getReceivedTimeout and setReceiveTimeoutmethods of a local XBee device class.

Get/set the timeout for synchronous operations
import com.digi.xbee.api.CellularDevice;

[...]

public static final int NEW_TIMEOUT_FOR_SYNC_OPERATIONS = 5 * 1000; // 5 seconds

CellularDevice myDevice = [...]

// Retrieving the configured timeout for synchronous operations.
System.out.println("Current timeout: " + myDevice.getReceiveTimeout() + "
milliseconds.");

[...]

// Configuring the new timeout (in milliseconds) for synchronous operations.
myDevice.setReceiveTimeout(NEW_TIMEOUT_FOR_SYNC_OPERATIONS);

[...]

Example: Send synchronous SMS
The XBee Java Library includes a sample application that demonstrates how to send SMS messages.
You can locate the example in the following path:
/examples/communication/cellular/SendSMSSample

Asynchronous operation
Transmitting SMS messages asynchronously means that your application does not block during the
transmit process. However, you cannot verify the SMS was successfully sent.
The CellularDevice class includes the following method to send SMS asynchronously:

Method Description

sendSMSAsync
(String, String)

Specifies the the phone number to send the SMS to and the data to send as
the body of the SMS message.

Send SMS message asynchronously
import com.digi.xbee.api.CellularDevice;

Use the XBee Java Library Communicate with XBee devices

XBee Java Library User Guide 111

[...]

// Instantiate a Cellular device object.
CellularDevice myDevice = new CellularDevice("COM1", 9600);
myDevice.open();

String phoneNumber = "+34665963205";
String data = "Hello XBee!";

// Send SMS message.
myDevice.sendSMSAsync(phoneNumber, data);

[...]

The previous methodmay fail for the following reasons:

n If the phone number has an invalid format, the method throws an IllegalArgumentException
exception.

n Errors register as XBeeException:
l If the operating mode of the device is not API or API_ESCAPE, the method throws an

InvalidOperatingModeException.
l If there is an error writing to the XBee interface, the method throws a generic

XBeeException.

Receive SMS messages
Some applications developed with the XBee Java Library may require modules to receive SMS
messages.

SMS reception callback
You can be notified when a new SMS has been received if you are subscribed or registered to the SMS
reception service by using the addSMSListenerListener(ISMSReceiveListener) method.

SMS reception registration
import com.digi.xbee.api.CellularDevice;
import com.digi.xbee.api.listeners.ISMSReceiveListener;

[...]

// Instantiate a Cellular device object.
CellularDevice myDevice = new CellularDevice("COM1", 9600);
myDevice.open();

// Subscribe to SMS reception.
myDevice.addSMSListener(new MySMSReceiveListener());

[...]

The listener provided to the subscribedmethod,MySMSReceiveListener, must implement the
ISMSReceiveListener interface. This interface includes the method that is executed when a new SMS
is received by the XBee device.
When that occurs, the smsReceived() method of the ISMSReceiveListener is executed providing as
parameter an SMSMessage object which contains the data and the phone number that sent the
message. You can retrieve that information by using the corresponding getters.

Use the XBee Java Library Communicate with XBee devices

XBee Java Library User Guide 112

SMSReceiveListener implementation example
import com.digi.xbee.api.listeners.ISMSReceiveListener;
import com.digi.xbee.api.models.SMSMessage;

public class MySMSReceiveListener implements ISMSReceiveListener {
/*
* SMS reception callback.
*/
@Override
public void smsReceived(SMSMessage smsMessage) {

String phoneNumber = smsMessage.getPhoneNumber();
String data = smsMessage.getData();
System.out.println("Received SMS from " + phoneNumber + ": " + data);

}
}

To stop listening to new SMS messages, use the removeSMSListener(ISMSReceiveListener) method
to unsubscribe the already-registered listener.

SMS reception deregistration
[...]

CellularDevice myDevice = ...
MySMSReceiveListener mySMSReceiveListener = ...

myDevice.addSMSListener(mySMSReceiveListener);

[...]

// Remove the SMS reception listener.
myDevice.removeSMSListener(mySMSReceiveListener);

[...]

Example: Receive SMS messages
The XBee Java Library includes a sample application that demonstrates how to subscribe to the SMS
reception service in order to receive text messages. You can locate the example in the following path:
/examples/communication/cellular/ReceiveSMSSample

Send and receive Bluetooth data
XBee3 devices have the ability to send and receive data from the Bluetooth Low Energy interface of
the local XBee device through User Data Relay frames. This can be useful if your application wants to
transmit or receive data from a cellphone connected to it over BLE.

Note Only XBee3 devices support Bluetooth Low Energy. This means that you cannot transmit or
receive Bluetooth data if you do not have one of these devices.

Send Bluetooth data
The XBeeDevice class and its subclasses provide the following method to send data to the Bluetooth
Low Energy interface:

Use the XBee Java Library Communicate with XBee devices

XBee Java Library User Guide 113

Method Description

sendBluetoothData(byte[]) Specifies the data to send to the Bluetooth Low Energy interface

This method is asynchronous, which means that your application does not block during the transmit
process.

Send data to Bluetooth

import com.digi.xbee.api.XBeeDevice;

[...]

// Instantiate an XBee device object.
XBeeDevice device = new XBeeDevice("COM1", 9600);
device.open();

String data = "Bluetooth, are you there?";

// Send the data to the Bluetooth interface.
device.sendBluetoothData(data.getBytes());

The sendBluetoothDatamethodmay fail for the following reasons:

n If the operating mode of the device is not API or API_ESCAPE, the method throws an
InvalidOperatingModeException.

n If the interface is not open, the method throws an InterfaceNotOpenException.
n If there is an error writing to the XBee interface, throwing a generic XBeeException.

Example: send Bluetooth data
The XBee Java Library includes a sample application that shows you how to send data to the
Bluetooth Low Energy interface. The example is located in the following path:
/examples/communication/bluetooth/SendBluetoothDataSample

Receive Bluetooth data
You can be notified when a new data from the Bluetooth Low Energy interface has been received if
you are subscribed or registered to the data Bluetooth reception service by using the
addBluetoothDataListener(IBluetoothDataReceiveListener) method.

Bluetooth data reception registration

import com.digi.xbee.api.XBeeDevice;

[...]

// Instantiate an XBee device object.
XBeeDevice device = new XBeeDevice("COM1", 9600);
device.open();

// Subscribe to data reception from the Bluetooth interface.
device.addBluetoothDataListener(new MyBluetoothDataReceiveListener());

The listener provided to the subscribedmethod,MyBluetoothDataReceiveListener, must implement
the IBluetoothDataReceiveListener interface. This interface includes the method that is executed
when new data from the Bluetooth interface is received.

Use the XBee Java Library Communicate with XBee devices

XBee Java Library User Guide 114

When that occurs, the dataReceived() method is executed, providing as parameter the data in byte
array format.

IBluetoothDataReceiveListener implementation example

import com.digi.xbee.api.listeners.relay.IBluetoothDataReceiveListener;

public class MyBluetoothDataReceiveListener implements
IBluetoothDataReceiveListener {

@Override
public void dataReceived(byte[] data) {

System.out.println("Data received from the Bluetooth interface: " + new
String(data));

}
}

To stop listening to new data messages from the Bluetooth interface, use the
removeBluetoothDataListener(IBluetoothDataReceiveListener) method to unsubscribe the
already-registered listener.

Bluetooth data reception deregistration

[...]

XBeeDevice device = ...
MyBluetoothDataReceiveListener listener = ...

device.addBluetoothDataListener(listener);

[...]

// Remove the data reception listener for the Bluetooth interface.
device.removeBluetoothDataListener(listener);

Example: receive Bluetooth data
The XBee Java Library includes a sample application that demonstrates how to subscribe to the data
reception service in order to receive data from the Bluetooth Low Energy interface. You can locate the
example in the following path:
/examples/communication/bluetooth/ReceiveBluetoothDataSample

Send and receive MicroPython data
XBee3 devices have the ability to send and receive data from the MicroPython interface of the local
XBee device through User Data Relay frames. This can be useful if your application wants to transmit
or receive data from a MicroPython program running on the device.

Note Only XBee3 and XBee Cellular devices support MicroPython. This means that you cannot
transmit or receive MicroPython data if you do not have one of these devices.

Send MicroPython data
The XBeeDevice class and its subclasses provide the following method to send data to the
MicroPython interface:

Use the XBee Java Library Communicate with XBee devices

XBee Java Library User Guide 115

Method Description

sendMicroPythonData(byte[]) Specifies the data to send to the MicroPython interface

This method is asynchronous, which means that your application does not block during the transmit
process.

Send data to MicroPython

import com.digi.xbee.api.XBeeDevice;

[...]

// Instantiate an XBee device object.
XBeeDevice device = new XBeeDevice("COM1", 9600);
device.open();

String data = "MicroPython, are you there?";

// Send the data to the MicroPython interface.
device.sendMicroPythonData(data.getBytes());

The sendMicroPythonDatamethodmay fail for the following reasons:

n If the operating mode of the device is not API or API_ESCAPE, the method throws an
InvalidOperatingModeException.

n If the interface is not open, the method throws an InterfaceNotOpenException.
n If there is an error writing to the XBee interface, throwing a generic XBeeException.

Example: send MicroPython data
The XBee Java Library includes a sample application that shows you how to send data to the
MicroPython interface. The example is located in the following path:
/examples/communication/micropython/SendMicroPythonDataSample

Receive MicroPython data
You can be notified when a new data from the MicroPython interface has been received if you are
subscribed or registered to the data MicroPython reception service by using the
addMicroPythonDataListener(IMicroPythonDataReceiveListener) method.

MicroPython data reception registration

import com.digi.xbee.api.XBeeDevice;

[...]

// Instantiate an XBee device object.
XBeeDevice device = new XBeeDevice("COM1", 9600);
device.open();

// Subscribe to data reception from the MicroPython interface.
device.addMicroPythonDataListener(new MyMicroPythonDataReceiveListener());

The listener provided to the subscribedmethod,MyMicroPythonDataReceiveListener, must
implement the IMicroPythonDataReceiveListener interface. This interface includes the method that
is executed when new data from the MicroPython interface is received.

Use the XBee Java Library Communicate with XBee devices

XBee Java Library User Guide 116

When that occurs, the dataReceived() method is executed, providing as parameter the data in byte
array format.

IMicroPythonDataReceiveListener implementation example

import com.digi.xbee.api.listeners.relay.IMicroPythonDataReceiveListener;

public class MyMicroPythonDataReceiveListener implements
IMicroPythonDataReceiveListener {

@Override
public void dataReceived(byte[] data) {

System.out.println("Data received from the MicroPython interface: " + new
String(data));

}
}

To stop listening to new data messages from the MicroPython interface, use the
removeMicroPythonDataListener(IMicroPythonDataReceiveListener) method to unsubscribe the
already-registered listener.

MicroPython data reception deregistration

[...]

XBeeDevice device = ...
MyMicroPythonDataReceiveListener listener = ...

device.addMicroPythonDataListener(listener);

[...]

// Remove the data reception listener for the MicroPython interface.
device.removeMicroPythonDataListener(listener);

Example: receive MicroPython data
The XBee Java Library includes a sample application that demonstrates how to subscribe to the data
reception service in order to receive data from the MicroPython interface. You can locate the example
in the following path:
/examples/communication/micropython/ReceiveMicroPythonDataSample

Receive modem status events
A local XBee device is able to determine when it connects to a network, when it is disconnected, and
when any kind of error or other events occur. The local device generates these events, and they can
be handled using the XBee Java Library through the modem status frames reception.
When a modem status frame is received, you are notified through the callback of a custom listener, so
you can take the proper actions depending on the event received.
For that purpose, you must subscribe or register to the modem status reception service using a
modem status listener as parameter with the method addModemStatusListener
(IModemStatusReceiveListener).

Modem status reception registration

import com.digi.xbee.api.XBeeDevice;

Use the XBee Java Library Communicate with XBee devices

XBee Java Library User Guide 117

[...]

// Instantiate an XBee device object.
XBeeDevice myXBeeDevice = new XBeeDevice("COM1", 9600);
myXBeeDevice.open();

// Creation of Modem Status listener.
MyModemStatusListener myModemStatusListener = ...

// Subscribe to modem status events reception.
myXBeeDevice.addModemStatusListener(myModemStatusListener);

[...]

The listener to be subscribed,MyModemStatusListener, must implement the
IModemStatusReceiveListener interface. This interface includes the method executed when a
modem status event is received by the XBee device.
It does not matter the type of local XBee device you have instanced, as this data reception operation
is implemented the same way for all the local XBee device protocols.
When a new modem status event is received, the modemStatusEventReceived() method of the
IModemStatusReceiveListener is executed, providing a ModemStatusEvent enumeration entry
object parameter, which contains the information about the event.

IModemStatusReceiveListener implementation example, MyModemStatusListener

import com.digi.xbee.api.models.ModemStatusEvent;
import com.digi.xbee.api.listeners.IModemStatusReceiveListener;

public class MyModemStatusListener implements IModemStatusReceiveListener {
/*
* Modem status event reception callback.
*/
@Override
public void modemStatusEventReceived(ModemStatusEvent modemStatusEvent) {

System.out.println("Received modem status: " +
modemStatusEvent.toString());

}
}

To stop listening to modem status events, use the removeModemStatusListener
(IModemStatusReceiveListener) method.

Removing the modem status listener

[...]

XBeeDevice myXBeeDevice = ...
MyModemStatusListener myModemStatusListener = ...

myXBeeDevice.addModemStatusListener(myModemStatusListener);

[...]

// Remove the modem status listener.
myXBeeDevice.removeModemStatusListener(myModemStatusListener);

[...]

Use the XBee Java Library Handling analog and digital IO lines

XBee Java Library User Guide 118

Modem status reception example
The XBee Java Library includes a sample application that shows you how to subscribe to the modem
status reception service to receive modem status events. The example is located in the following
path:
/examples/communication/ReceiveModemStatusSample

Handling analog and digital IO lines
All the XBee modules, regardless of the protocol they run, have a set of lines (pins). You can use these
pins to connect sensors or actuators and configure them with specific behavior.
You can configure the IO lines of an XBee device to be digital input/output (DIO), analog to digital
converter (ADC), or pulse-width modulation output (PWM). The configuration you provide to a line
depends on the device where you want to connect.

Note All the IO management features displayed in this topic and sub-topics are applicable for both
local and remote XBee devices.

The XBee Java Library exposes an easy way to configure, read, and write the IO lines of the local and
remote XBee devices through the following corresponding classes:

n XBeeDevice for local devices.
n RemoteXBeeDevice for remotes.

This section provides information to show you how to complete the following tasks:

n Configure the IO lines
n Read IO samples

Configure the IO lines
All XBee device objects include a configuration method, setIOConfiguration(IOLine, IOMode), where
you can specify the IO line being configured and the desired function being set.
For the IO line parameter, the API provides an enumerator called IOLine that helps you specify the
desired IO line easily by functional name. This enumerator is used along all the IO relatedmethods in
the API.
The supported functions are also contained in an enumerator called IOMode. You can choose between
the following functions:

n DISABLED
n SPECIAL_FUNCTIONALITY (Shouldn’t be used to configure IOs)
n PWM
n ADC
n DIGITAL_IN
n DIGITAL_OUT_LOW
n DIGITAL_OUT_HIGH

Configuring local or remote IO lines

import com.digi.xbee.api.RemoteXBeeDevice;
import com.digi.xbee.api.XBeeDevice;

Use the XBee Java Library Handling analog and digital IO lines

XBee Java Library User Guide 119

import com.digi.xbee.api.io.IOLine;
import com.digi.xbee.api.io.IOMode;

[...]

// Instantiate a local XBee device object.
XBeeDevice myLocalXBeeDevice = new XBeeDevice("COM1", 9600);
myLocalXBeeDevice.open();

// Instantiate a remote XBee device object.
RemoteXBeeDevice myRemoteXBeeDevice = new RemoteXBeeDevice(myLocalXBeeDevice,

new XBee64BitAddress("000000409D5EXXXX"));

// Configure the DIO1_AD1 line to be Digital output (set high by default).
myLocalXBeeDevice.setIOConfiguration(IOLine.DIO1_AD1, IOMode.DIGITAL_OUT_HIGH);

// Configure the DIO2_AD2 line to be Digital input.
myLocalXBeeDevice.setIOConfiguration(IOLine.DIO2_AD2, IOMode.DIGITAL_IN);

// Configure the DIO3_AD3 line to be Analog input (ADC).
myRemoteXBeeDevice.setIOConfiguration(IOLine.DIO3_AD3, IOMode.ADC);

// Configure the DIO10_PWM0 line to be PWM output (PWM).
myRemoteXBeeDevice.setIOConfiguration(IOLine.DIO10_PWM0, IOMode.PWM);

[...]

The setIOConfiguration() methodmay fail for the following reasons:

n ACK of the command sent is not received in the configured timeout, throwing a
TimeoutException.

n Other errors caught as XBeeException:
l The operating mode of the device is not API or API_ESCAPE, throwing an

InvalidOperatingModeException.
l The response of the command is not valid, throwing an ATCommandException.
l There is an error writing to the XBee interface, throwing a generic XBeeException.

You can read the current configuration of any IO line the same way an IO line can be configured with a
desired function using the corresponding getter, getIOConfiguration(IOLine).

Getting IOs configuration

[...]

// Get the configuration mode of the DIO1_AD1 line.
IOMode ioMode = myXBeeDevice.getIOConfiguration(IOLine.DIO1_AD1);

[...]

The getIOConfiguration() methodmay fail for the following reasons:

n ACK of the read command is not received in the configured timeout, throwing a
TimeoutException.

Use the XBee Java Library Handling analog and digital IO lines

XBee Java Library User Guide 120

n Other errors caught as XBeeException:
l If the operating mode of the device is not API or API_ESCAPE, throwing an

InvalidOperatingModeException.
l If the received response does not contain the value for the given IO line, throwing a

OperationNotSupportedException.
l If the response to the read command is not valid, throwing an ATCommandException.
l If there is an error writing to the XBee interface, throwing a generic XBeeException.

Digital input/output
If your IO line is configured as digital output, you can set its state (high/low) easily. All the XBee device
classes provide the method, setDIOValue(IOLine, IOValue), with the desired IO line as the first
parameter and an IOValue as the second. The IOValue enumerator includes HIGH and LOW as possible
values.

Setting digital output values

[...]

// Set the DIO2_AD2 line low.
myXBeeDevice.setDIOValue(IOLine.DIO2_AD2, IOValue.LOW);

// Set the DIO2_AD2 line high.
myXBeeDevice.setDIOValue(IOLine.DIO2_AD2, IOValue.HIGH);

[...]

The setDIOValue() methodmay fail for the following reasons:

n ACK of the command sent is not received in the configured timeout, throwing a
TimeoutException.

n Other errors caught as XBeeException:
l The operating mode of the device is not API or API_ESCAPE, throwing an

InvalidOperatingModeException.
l The response of the command is not valid, throwing an ATCommandException.
l There is an error writing to the XBee interface, throwing a generic XBeeException.

You can also read the current status of the pin (high/low) by issuing the method getDIOValue(IOLine).
The parameter of the methodmust be the IO line to be read.

Reading digital input values

[...]

// Get the value of the DIO2_AD2.
IOValue value = myXBeeDevice.getDIOValue(IOLine.DIO2_AD2);

[...]

n ACK of the read command is not received in the configured timeout, throwing a
TimeoutException.

Use the XBee Java Library Handling analog and digital IO lines

XBee Java Library User Guide 121

n Other errors caught as XBeeException:
l If the operating mode of the device is not API or API_ESCAPE, throwing an

InvalidOperatingModeException.
l If the received response does not contain the value for the given IO line, throwing a

OperationNotSupportedException. This can happen (for example) if you try to read the
DIO value of an IO line that is not configured as Digital Input.

l If the response to the read command is not valid, throwing an ATCommandException.
l If there is an error writing to the XBee interface, throwing a generic XBeeException.

Handling DIO IO Lines example
The XBee Java Library includes two sample applications that demonstrate how to handle DIO lines in
your local and remote XBee Devices. The examples are located in the following path:
/examples/io/LocalDIOSample
/examples/io/RemoteDIOSample

ADC
When you configure an IO line as analog to digital converter (ADC), you can only read its value (counts).
In this case, the method used to read ADCs is different than the digital I/O method, but the parameter
provided is the same. The IO line to read the value from getADCValue(IOLine).

Reading ADC values

[...]

// Get the value of the DIO 3 (analog to digital converter).
int value = myXBeeDevice.getADCValue(IOLine.DIO3_AD3);

[...]

The getADCValue() methodmay fail for the following reasons:

n ACK of the read command is not received in the configured timeout, throwing a
TimeoutException.

n Other errors caught as XBeeException:
l If the operating mode of the device is not API or API_ESCAPE, throwing an

InvalidOperatingModeException.
l If the received response does not contain the value for the given IO line, throwing a

OperationNotSupportedException. This can happen (for example) if you try to read the
ADC value of an IO line that is not configured as ADC.

l If the response to the read command is not valid, throwing an ATCommandException.
l If there is an error writing to the XBee interface, throwing a generic XBeeException.

Handling ADC IO Lines example
The XBee Java Library includes two sample applications that demonstrate how to handle ADC lines in
your local and remote XBee Devices. The examples are located in the following path:
/examples/io/LocalADCSample
/examples/io/RemoteADCSample

Use the XBee Java Library Handling analog and digital IO lines

XBee Java Library User Guide 122

PWM
Not all the XBee protocols support pulse-width modulation (PWM) output handling, but the XBee Java
Library provides functionality to manage them. When you configure an IO line as PWM output, you
must use specific methods to set and read the duty cycle of the PWM.
For the set case, use the method setPWMDutyCycle(IOLine, double) and provide the IO line
configured as PWM and the value of the duty cycle in % of the PWM. The duty cycle is the proportion of
'ON' time to the regular interval or 'period' of time. A high duty cycle corresponds to high power,
because the power is ON for most of the time. The percentage parameter of the set duty cycle
method is a double, which allows you to be more precise in the configuration.

Setting the duty cycle of an IO line configure as PWM

[...]

// Set a duty cycle of 75% to the DIO10_PWM0 line (PWM output).
myXBeeDevice.setPWMDutyCycle(IOLine.DIO10_PWM0, 75);

[...]

The setPWMDutyCycle() methodmay fail for the following reasons:

n ACK of the command sent is not received in the configured timeout, throwing a
TimeoutException.

n Other errors caught as XBeeException:
l The operating mode of the device is not API or API_ESCAPE, throwing an

InvalidOperatingModeException.
l The response of the command is not valid, throwing an ATCommandException.
l There is an error writing to the XBee interface, throwing a generic XBeeException.

The getPWMDutyCycle(IOLine) method of a PWM line returns a double value with the current duty
cycle percentage of the PWM.

Getting the duty cycle of an IO line configured as PWM

[...]

// Get the duty cycle of the DIO10_PWM0 line (PWM output).
double dutyCycle = myXBeeDevice.getPWMDutyCycle(IOLine.DIO10_PWM0);

[...]

The getPWMDutyCycle() methodmay fail for the following reasons:

n ACK of the read command is not received in the configured timeout, throwing a
TimeoutException.

n Other errors caught as XBeeException:
l If the operating mode of the device is not API or API_ESCAPE, throwing an

InvalidOperatingModeException.
l If the received response does not contain the value for the given IO line, throwing a

OperationNotSupportedException.
l If the response to the read command is not valid, throwing an ATCommandException.
l If there is an error writing to the XBee interface, throwing a generic XBeeException.

Use the XBee Java Library Handling analog and digital IO lines

XBee Java Library User Guide 123

Note In both cases (get and set), the IO line providedmust be PWM capable andmust be configured
as PWM output.

Read IO samples
XBee modules have the ability to monitor and sample the analog and digital IO lines. You can read IO
samples locally or transmitted to a remote device to provide an indication of the current IO line
states.
There are three ways to obtain IO samples on a local or remote device:

n Queried sampling
n Periodic sampling
n Change detection sampling

The XBee Java Library represents an IO sample by the IOSample class, which contains:

n Digital and analog channel masks that indicate which lines have sampling enabled.
n Values of those enabled lines.

You must configure the IO lines you want to receive in the IO samples before enabling sampling.

Queried sampling
The XBee Java Library provides a method to read an IO sample that contains all enabled digital IO and
analog input channels, readIOSample(). The method returns an IOSample object.

Reading an IO sample and getting the DIO value

[...]

// Read an IO sample from the device.
IOSample ioSample = myXBeeDevice.readIOSample();

// Select the desired IO line.
IOLine ioLine = IOLine.DIO3_AD3;

// Check if the IO sample contains the expected IO line and value.
if (ioSample.hasDigitalValue(ioLine)) {

System.out.println(ioSample.getDigitalValue(ioLine));
}

[...]

The readIOSample() methodmay fail for the following reasons:

n ACK of the command sent is not received in the configured timeout, throwing a
TimeoutException.

n Other errors caught as XBeeException:
l The operating mode of the device is not API or API_ESCAPE, throwing an

InvalidOperatingModeException.
l The response of the command is not valid, throwing an ATCommandException.
l There is an error writing to the XBee interface, throwing a generic XBeeException.

Use the XBee Java Library Handling analog and digital IO lines

XBee Java Library User Guide 124

Periodic sampling
Periodic sampling allows an XBee module to take an IO sample and transmit it to a remote device at a
periodic rate. That remote device is defined in the destination address through the
setDestinationAddress(XBee64BitAddress) method. The XBee Java Library provides the
setIOSamplingRate(int) method to configure the periodic sampling.
The XBee module samples and transmits all enabled digital IO and analog inputs to the remote device
every X milliseconds. A sample rate of 0 ms disables this feature.

Setting the IO sampling rate

[...]

// Set the destination address.
myXBeeDevice.setDestinationAddress(new XBee64BitAddress("0013A20040XXXXXX"));

// Set the IO sampling rate.
myXBeeDevice.setIOSamplingRate(5000); // 5 seconds.

[...]

The setIOSamplingRate() methodmay fail for the following reasons:

n The sampling rate is lower than 0, throwing an IllegalArgumentException.

n ACK of the command sent is not received in the configured timeout, throwing a
TimeoutException.

n Other errors caught as XBeeException:
l The operating mode of the device is not API or API_ESCAPE, throwing an

InvalidOperatingModeException.
l The response of the command is not valid, throwing an ATCommandException.
l There is an error writing to the XBee interface, throwing a generic XBeeException.

You can also read this value using the getIOSamplingRate() method. This method returns the IO
sampling rate in milliseconds and '0' when the feature is disabled.

Getting the IO sampling rate

[...]

// Get the IO sampling rate.
int value = myXBeeDevice.getIOSamplingRate();

[...]

The getIOSamplingRate() methodmay fail for the following reasons:

n ACK of the command sent is not received in the configured timeout, throwing a
TimeoutException.

n Other errors caught as XBeeException:
l The operating mode of the device is not API or API_ESCAPE, throwing an

InvalidOperatingModeException.
l The response of the command is not valid, throwing an ATCommandException.
l There is an error writing to the XBee interface, throwing a generic XBeeException.

Use the XBee Java Library Handling analog and digital IO lines

XBee Java Library User Guide 125

Change detection sampling
You can configure modules to transmit a data sample immediately whenever a monitored digital IO
pin changes state. The setDIOChangeDetection(Set<IOLine>) method establishes the set of digital
IO lines that are monitored for change detection. A null set disables the change detection sampling.
As in the periodic sampling, change detection samples are transmitted to the configured destination
address.

Note This feature only monitors and samples digital IOs, so it is not valid for analog lines.

Setting the DIO change detection

[...]

// Set the destination address.
myXBeeDevice.setDestinationAddress(new XBee64BitAddress("0013A20040XXXXXX"));

// Create a set of IO lines to be monitored.
Set<IOLine> lines = EnumSet.of(IOLine.DIO3_AD3, IOLine.DIO4_AD4);

// Enable the DIO change detection sampling.
myXBeeDevice.setDIOChangeDetection(lines);

[...]

The setIOSamplingRate() methodmay fail for the following reasons:

n ACK of the command sent is not received in the configured timeout, throwing a
TimeoutException.

n Other errors caught as XBeeException:
l The operating mode of the device is not API or API_ESCAPE, throwing an

InvalidOperatingModeException.
l The response of the command is not valid, throwing an ATCommandException.
l There is an error writing to the XBee interface, throwing a generic XBeeException.

You can also get the lines that are monitored using the getDIOChangeDetection() method. A null
indicates that this feature is disabled.

Getting the DIO change detection

[...]

// Get the set of lines that are monitored.
Set<IOLine> lines = myXBeeDevice.getDIOChangeDetection();

[...]

The getDIOChangeDetection() methodmay fail for the following reasons:

n ACK of the command sent is not received in the configured timeout, throwing a
TimeoutException.

n Other errors caught as XBeeException:
l The operating mode of the device is not API or API_ESCAPE, throwing an

InvalidOperatingModeException.

Use the XBee Java Library Handling analog and digital IO lines

XBee Java Library User Guide 126

l The response of the command is not valid, throwing an ATCommandException.
l There is an error writing to the XBee interface, throwing a generic XBeeException.

Register an IO sample listener
In addition to configuring an XBee device to monitor and sample the analog and digital IO lines, you
must register a listener in the local device where you want to receive the IO samples. You are then
notified when the device receives a new IO sample.
You must subscribe to the IO samples reception service by using the method addIOSampleListener
(IIOSampleReceiveListener) with an IO sample reception listener as parameter.

Registering an IO sample receive listener

[...]

// Create the IO sample listener.
MyIOSampleReceiveListener myIOSampleReceiveListener = ...

// Subscribe to IO samples reception.
myXBeeDevice.addIOSampleListener(myIOSampleReceiveListener);

[...]

The listener provided to the subscribe method,MyIOSampleReceiveListener, must implement the
IIOSampleReceiveListener interface. This interface includes the method that executes when the
XBee device receives a new IO sample.

Note This listener can only be registered on local devices, but is implemented the same way for all the
XBeeDevice subclasses.

When the XBee device receives a new IO sample, the ioSampleReceived() method of the
IIOSampleReceiveListener executes, providing as parameters a RemoteXBeeDevice object, which
indicates the device that sent the sample, and an IOSample object with the IO data sample.

IIOSampleReceiveListener implementation example, MyIOSampleReceiveListener

import com.digi.xbee.api.listeners.IIOSampleReceiveListener;

public class MyIOSampleReceiveListener implements IIOSampleReceiveListener {
@Override
public void ioSampleReceived(RemoteXBeeDevice remoteDevice, IOSample ioSample) {

System.out.println("IO sample from " + remoteDevice.get64BitAddress() +
" - " + ioSample.toString());

}
}

To stop receiving notifications of new IO samples, use the removeIOSampleListener
(IIOSampleReceiveListener) method.

Removing the modem status listener.

[...]

XBeeDevice myXBeeDevice= ...
MyIOSampleReceiveListener myIOSampleReceiveListener = ...

Use the XBee Java Library Logging events

XBee Java Library User Guide 127

myXBeeDevice.addIOSampleListener(myIOSampleReceiveListener);

[...]

// Remove the IO sample listener.
myXBeeDevice.removeIOSampleListener(myIOSampleReceiveListener);

[...]

IO Sampling example
The XBee Java Library includes a sample application that demonstrates how to configure a remote
device to monitor IO lines and receive the IO samples in the local device. The example is located in the
following path:
/examples/io/IOSamplingSample

Logging events
Logging is a fundamental part of applications, and every application includes this feature. A well-
designed logging system is a useful utility for system administrators, developers and the support
team and can save valuable time in sorting through the cause of issues. As users execute programs at
the front end, the system invisibly builds a vault of event information (log entries) for system
administrators and the support team.
There are many available logging libraries and logging frameworks for Java, but this API does not
force users to use any specific one. The XBee Java Library is built on top of the Simple Logging
Facade for Java (SLF4J). For more information about SLF4J, see http://www.slf4j.org/.
SLF4J serves as a simple facade or abstraction for various logging frameworks (for example,
java.util.logging, logback, log4j) allowing the end user to plug in the desired logging framework at
deployment time in the final application.
Most of the important open source projects at the moment use this abstraction layer to let users
decide on their final logging implementation strategy. It is also very common to use it in APIs and
libraries that are later integrated in a user application.
SLF4J does not use a specific logging framework. To use a logging framework you must include a
binding library in your application classpath as well as the final logger library (if applicable).

http://www.slf4j.org/

Use the XBee Java Library Logging events

XBee Java Library User Guide 128

The only library that is required for use of the logging features in the XBee Java Library is the slf4j-
api.jar, which has a simple syntax for logging messages. The SLF4J API exposes all the required
methods and functions to log messages from the XBee Java Library and from the final user
application. It then relies on a binding library that is specific for each underlying logging framework to
be included by users in the final application.
This section provides information to show you how to complete the following tasks:

n Download the SLF4J bindings
n Bind the library with SLF4J

Download the SLF4J bindings
You can download the latest SLF4J version 1.7.12 including full source code, binding libraries, class files
and documentation in ZIP or TAR.GZ format from this location:
http://www.slf4j.org/download.html

Bind the library with SLF4J
As mentioned previously, SLF4J supports various logging frameworks. The SLF4J distribution ships
with several jar files referred to as SLF4J bindings, with each binding corresponding to a supported
logging framework:

Binding Jar Logging framework

slf4j-log4j12-1.7.12.jar log4j version 1.2

slf4j-jdk14-1.7.12.jar java.util.logging (built in Java logging framework)

http://www.slf4j.org/download.html
http://logging.apache.org/log4j/1.2/index.html

Use the XBee Java Library Building the library

XBee Java Library User Guide 129

Binding Jar Logging framework

slf4j-nop-1.7.12.jar NOP, silently discards all logging

slf4j-simple-1.7.12.jar Simple implementation, which outputs all events to System.err

slf4j-jcl-1.7.12.jar Jakarta Commons Logging

slf4j-android-1.7.12.jar Android logging

external implementations Support for other logging frameworks, for example logback

If no SLF4J binding is found in your application classpath, SLF4J defaults to a no-operation
implementation displaying the following output in the console:
SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further
details.

If you want to use a specific logging framework in your application, you must include the specific
logging library as well as the corresponding binding library in your classpath. SLF4J automatically
detects the binding library and calls the corresponding underlying logging framework, so you only have
to care for the upper layer.

Building the library
To build the XBee Java Library and execute the unit tests included, you can use Ant scripts, an IDE, or
any other tool you prefer. The following software components are required for that purpose:

n RxTx 2.2 serial communication library (download link)
n Simple Logging Facade for Java (SLF4J) 1.7.12 library and your preferred logging library
n JUnit 4.x
n Mockito 1.10.19
n PowerMock 1.6.2

Note The API already includes support to use Apache Maven 3.x, allowing you to easily create the JAR
file, execute the unit tests, build the samples, and launch them without the necessity of downloading
all the requirements.

This section provides information to show you how to complete the following tasks:

n Install Apache Maven
n Install the library in Maven local repository

Install Apache Maven
Apache Maven is a software project management and comprehension tool. Based on the concept of a
project object model (POM), Maven can manage a project's build, reporting and documentation from a
central piece of information.
To build the XBee API using Maven, complete the following steps:

http://www.slf4j.org/api/org/slf4j/helpers/NOPLogger.html
http://www.slf4j.org/apidocs/org/slf4j/impl/SimpleLogger.html
http://commons.apache.org/proper/commons-logging/
http://ant.apache.org/
http://rxtx.qbang.org/pub/rxtx/rxtx-2.2pre2-bins.zip
http://www.slf4j.org/
http://junit.org/junit4/
https://github.com/mockito/mockito
https://github.com/jayway/powermock
http://maven.apache.org/

Use the XBee Java Library Building the library

XBee Java Library User Guide 130

1. Download the XBee Java Library sources from GitHub.
a. Check out the project from GitHub or download a zip file by clicking the Download ZIP button

available in the GitHub repository main page: https://github.com/digidotcom/XBeeJavaLibrary.
b. If you download the zip file, you must uncompress the file. The resulting directory is

XBeeJavaLibrary-master and contains all the project files and directories.
2. Install Apache Maven.

a. Download Apache Maven from http://maven.apache.org/download.cgi.

Note Maven 3.2 requires JDK 1.6 or above.

b. Follow the instructions at http://maven.apache.org/install.html to install Apache Maven.

Install the library in Maven local repository
Maven allows you to complete the following tasks:

n Build the library and samples
n Execute the unit tests
n Create a JAR package
n Launch a sample

You can complete the tasks one by one or all at once by executing one command inside the root
directory of the repository (where the main pom.xml (Project Object Model) is located):

1. Open a console session and change into the XBee Java Library directory, where the pom.xml is
located.

#> cd XBeeJavaLibrary-master

2. Execute the following command:

#> mvn clean install

Note The “clean” portion is optional. It cleans up artifacts created by prior builds.

Build the library and samples
The main Project Object Model (POM) file (pom.xml) is located in the root directory of the repository.
To build the library and its samples you only need to:

1. Open a console session and change into the XBee Java Library directory, where the pom.xml is
located.

#> cd XBeeJavaLibrary-master

2. Execute the following command to build the sources and tests of the project.

#> mvn clean compile

Note The first time you execute this (or any other) command, Maven downloads all the plugins and
related dependencies required to fulfill the command. From a clean installation of Maven, this can

https://github.com/digidotcom/XBeeJavaLibrary
http://maven.apache.org/download.cgi
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://maven.apache.org/download.cgi#Installation

Use the XBee Java Library Building the library

XBee Java Library User Guide 131

take while. If you execute the command again, Maven now has all the required downloads and can
execute the commandmore quickly.

Maven cleans any previous build results to start a fresh new build of the API sources. After you
execute this command, the following output appears:
#> mvn clean compile
[INFO] Scanning for projects...
[INFO] --
[INFO] Reactor Build Order:
[INFO]
[INFO] XBee Java Library Project
[INFO] XBee Java Library

[INFO] XBee Java Library Distribution

[...]

[INFO]
[INFO] Using the builder
org.apache.maven.lifecycle.internal.builder.singlethreaded.SingleThreadedBuilder
with a thread count of 1
[INFO]
[INFO] --
[INFO] Building XBee Java Library Project 1.0.1
[INFO] --
[INFO]
[INFO] --- maven-clean-plugin:2.5:clean (default-clean) @ xbeeapi-parent ---
[INFO] Deleting C:\Store\GIT\xbee\XBeeJavaLibrary\target

[...]

[INFO] --
[INFO] Reactor Summary:
[INFO]
[INFO] XBee Java Library Project SUCCESS [0.284 s]
[INFO] XBee Java Library SUCCESS [1.995 s]
[INFO] XBee Java Library Distribution SUCCESS [0.002 s]

[...]

[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 3.500 s
[INFO] Finished at: 2014-12-10T12:51:54+01:00
[INFO] Final Memory: 22M/53M
[INFO] --
#>

The resulting class files are located inside the directory called target in the root of the repository.

Execute the unit tests
After you have successfully built the library sources, there are some unit tests to compile and execute.
In a console session and in the XBee Java API directory execute the following command:
#> mvn clean test

Maven downloads more dependencies this time. These are the dependencies and plugins necessary
for executing the tests. Before compiling and executing the tests, Maven compiles the main code. That

Use the XBee Java Library Building the library

XBee Java Library User Guide 132

is, you only need to execute this command to compile the sources, compile the unit tests, and execute
the tests.
The resulting class files are located inside the directory called target in the root of the repository.
#> mvn clean test
[INFO] Scanning for projects...
[INFO] --

[...]

[INFO] --
[INFO] Building XBee Java Library Project 1.0
[INFO] --
[INFO]

[...]

T E S T S

Running com.digi.xbee.api.ApplyChangesTest

Tests run: 5, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.248 sec

Running com.digi.xbee.api.ExecuteParameterTest

Tests run: 11, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0 sec

Running com.digi.xbee.api.ForceDisassociateTest

Tests run: 5, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0 sec

[...]

Results :

Tests run: 946, Failures: 0, Errors: 0, Skipped: 0

[INFO]
[INFO] --
[INFO] Building Receive Modem Status Sample 1.0
[INFO] --
[INFO]

[...]

[INFO] --
[INFO] Reactor Summary:
[INFO]
[INFO] XBee Java Library Project SUCCESS [0.296 s]
[INFO] XBee Java Library SUCCESS [29.995 s]
[INFO] Receive Modem Status Sample SUCCESS [0.078 s]

[...]

[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 31.353 s
[INFO] Finished at: 2014-11-03T11:27:25+01:00

Use the XBee Java Library Building the library

XBee Java Library User Guide 133

[INFO] Final Memory: 22M/60M
[INFO] --
#>

Create a JAR package
Making a JAR file is fairly simple and can be accomplished by executing the following command inside
the XBee Java Library directory:
#> mvn clean package

The command compiles all the sources, executes the unit tests, and creates a JAR file for the library
and every sample inside the target directory in the root of the the XBee Java Library folder.

Launch a sample
You can test the compiled examples. The classpath must include all the libraries needed by any of the
samples, that are all located in your local Maven repository:
#> java -Djava.library.path=target\rxtx-native-libs -cp
target\examples\communication\
SendBroadcastDataSample\send-broadcast-data-sample-0.1-SNAPSHOT.jar;target\
library\xbeejapi-0.1-SNAPSHOT.jar;<local_maven_repo_path>\org\rxtx\rxtx\2.2\
rxtx-2.2.jar;<local_maven_repo_path>\org\slf4j\slf4j-api\1.7.7\slf4j-api-
1.7.7.jar;
<local_maven_repo_path>\org\slf4j\slf4j-jdk14\1.7.7\
slf4j-jdk14-1.7.7.jar com.digi.xbee.api.sendbroadcastdata.MainApp

Where <local_maven_repo_path> is the path to your local repository, by default ~/.m2/repository.
Or use Maven to test the compiled examples:

1. In a console session and in the XBee Java Library directory, execute the following command to install
the artifact you've generated (the JAR file) in your local repository:

#> mvn install

Maven compiles all the sources, executes the unit tests, and creates a JAR file for the library
and every sample inside the target directory in the root of the the XBee Java Library folder.

2. Go to the desired example directory, where the pom.xml of the sample is located, and locate the
Send Broadcast Data sample.

#> cd examples/communication/SendBroadcastDataSample

3. Execute the following command to execute the application.

#> mvn exec:exec
[INFO] Scanning for projects...
[INFO]
[INFO] Using the builder
org.apache.maven.lifecycle.internal.builder.singlethreaded.SingleThreadedBuilder
with a thread
count of 1
[INFO]
[INFO] --
[INFO] Building Send Broadcast Data Sample 1.0.1
[INFO] --
[INFO]
[INFO] --- exec-maven-plugin:1.3.2:exec (default-cli) @ receive-broadcast-data-
sample ---

Use the XBee Java Library Building the library

XBee Java Library User Guide 134

+--+
| XBee Java Library Send Broadcast Data Sample |
+--+

nov 03, 2014 11:34:46 AM com.digi.xbee.api.XBeeDevice open
INFO: [COM1 - 9600/8/N/1/N] Opening the connection interface...
WARNING: RXTX Version mismatch

Jar version = RXTX-2.2pre1
native lib Version = RXTX-2.2pre2

nov 03, 2014 7:34:47 AM com.digi.xbee.api.XBeeDevice open
INFO: [COM1 - 9600/8/N/1/N] Connection interface open.
Sending broadcast data: 'Hello XBee World!'...
Success
nov 03, 2014 11:34:47 AM com.digi.xbee.api.XBeeDevice close
INFO: [COM1 - 9600/8/N/1/N] 0013A2004055BB5E (XBPRO900 232 Adapter) - Connection
interface closed.
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 1.857 s
[INFO] Finished at: 2014-11-03T11:34:47+01:00
[INFO] Final Memory: 6M/15M
[INFO] --

XBee Java samples

The XBee Java Library includes several samples to demonstrate how to do the following:

n Communicate with your modules
n Configure your modules
n Read the IO lines
n Perform other common operations

All of the sample applications are contained in the examples folder of the XBJL-X.Y.Z, organized in
categories. Every sample includes the source code and a ReadMe file to clarify the purpose and the
required setup to launch the application.

Configuration samples 136
Network samples - discover devices 137
Communication samples 137
IO samples 143

XBee Java Library User Guide 135

XBee Java samples Configuration samples

XBee Java Library User Guide 136

Configuration samples
n Manage common parameters
n Set and get parameters
n Reset
n Connect to access point (Wi-Fi devices)

Manage common parameters
This sample Java application shows how to get and set common parameters of the XBee device.
Common parameters are split in cached and non-cached parameters. For that reason, the application
refreshes the cached parameters before reading and displaying them. The application then
configures, reads, and displays the value of non-cached parameters.
The application uses the specific setters and getters provided by the XBee device object to configure
and read the different parameters.
You can locate the example in the following path:
examples/configuration/ManageCommonParametersSample

Note For more information about how to manage common parameters, see Read and set common
parameters.

Set and get parameters
This sample Java application shows how to set and get parameters of a local or remote XBee device.
Use this method when you need to set or get the value of a parameter that does not have its own
getter and setter within the XBee device object.
The application sets the value of four parameters with different value types:

n String
n Byte
n Array
n Integer

The application then reads the parameters from the device to verify that the read values are the
same as the values that were set.
You can locate the example in the following path:
examples/configuration/SetAndGetParametersSample

Note For more information about how to get and set other parameters, see Read, set and execute
other parameters.

Reset
This sample Java application shows how to perform a software reset on the local XBee module.
You can locate the example in the following path:
examples/configuration/ResetModuleSample

Note For more information about how to reset a module, see Reset the device.

XBee Java samples Network samples - discover devices

XBee Java Library User Guide 137

Connect to access point (Wi-Fi devices)
This sample Java application shows how to configure a Wi-Fi module to connect to a specific access
point and read its addressing settings.
You can locate the example at the following path:
examples/configuration/ConnectToAccessPoint
For more information about connecting to an access point, see Configure Wi-Fi settings.

Network samples - discover devices
This sample Java application demonstrates how to obtain the XBee network object from a local XBee
device and discover the remote XBee devices that compose the network. The example adds a
discovery listener, so the callbacks provided by the listener object receive the events.
The remote XBee devices are printed out as soon as they are found during the discovery.
You can locate the example in the following path:
examples/network/DiscoverDevicesSample

Note For more information about how to perform a network discovery, see Discover the network.

Communication samples

Send Bluetooth data
This sample Java application shows how to send data to the Bluetooth interface of the local XBee
device.
You can find the example at the following path:
examples/communication/bluetooth/SendBluetoothData

Note For more information about sending Bluetooth data, see Send Bluetooth data.

Send data
This sample Java application shows how to send data from the XBee device to another remote device
on the same network using the XBee Java Library. In this example, the application sends data using a
reliable transmission method. The application blocks during the transmission request, but you are
notified if there is any error during the process.
The application sends data to a remote XBee device on the network with a specific node identifier
(name).
You can locate the example in the following path:
examples/communication/SendDataSample

Note For more information about how to send data, see Send data.

Send data asynchronously
This sample Java application shows how to send data asynchronously from the XBee device to
another remote device on the same network using the XBee Java Library. Transmitting data

XBee Java samples Communication samples

XBee Java Library User Guide 138

asynchronously means the execution is not blocked during the transmit request, but you cannot
determine if the data was sent successfully.
The application sends data asynchronously to a remote XBee device on the network with a specific
node identifier (name).
You can locate the example in the following path:
examples/communication/SendDataAsyncSample

Note For more information about how to get and set other parameters, see Send data.

Send broadcast data
This sample Java application shows how to send data from the local XBee device to all remote devices
on the same network (broadcast) using the XBee Java Library. The application blocks during the
transmission request, but you are notified if there is any error during the process.
You can locate the example in the following path:
examples/communication/SendBroadcastDataSample

Note For more information about how to get and set other parameters, see Sending broadcast data.

Send CoAP data (Thread devices)
This sample Java application shows how to send CoAP data to another Thread device specified by its
IPv6 address.
You can find the example at the following path:
examples/communication/coap/SendCoAPDataSample

Note For more information about sending CoAP data, see Send CoAP data.

Send explicit data
This sample Java application shows how to send data in application layer (explicit) format to a remote
Zigbee device on the same network as the local one using the XBee Java Library. In this example, the
XBee module sends explicit data using a reliable transmission method. The application blocks during
the transmission request, but you are notified if there is any error during the process.
You can locate the example in the following path:
examples/communication/explicit/SendExplicitDataSample

Note For more information about how to get and set other parameters, see Send explicit data.

Send explicit data asynchronously
This sample Java application shows how to send data in application layer (explicit) format
asynchronously to a remote Zigbee device on the same network as the local one using the XBee Java
Library. Transmitting data asynchronously means the execution is not blocked during the transmit
request, but you cannot determine if the data was sent successfully.
You can locate the example in the following path:
examples/communication/explicit/SendExplicitDataAsyncSample

Note For more information about how to get and set other parameters, see Send explicit data.

XBee Java samples Communication samples

XBee Java Library User Guide 139

Send broadcast explicit data
This sample Java application shows how to send data in application layer (explicit) format to all
remote devices on the same network (broadcast) as the local one using the XBee Java Library. The
application blocks during the transmission request, but you are notified if there is any error during the
process.
You can locate the example in the following path:
examples/communication/explicit/SendBroadcastExplicitDataSample

Note For more information about how to get and set other parameters, see Send explicit data to all
devices in the network.

Send IP data (IP devices)
This sample Java application shows how to send IP data to another device specified by its IP address
and port number.
You can find the example at the following path:
examples/communication/ip/SendIPDataSample

Note For more information about sending IP data, see Send IP data.

Send IPv6 data (Thread devices)
This sample Java application shows how to send UDP data to another device specified by its IPv6
address and port number.
You can find the example at the following path:
examples/communication/ip/SendIPv6DataSample

Note For more information about sending IP data, see Send IPv6 data.

Send MicroPython data
This sample Java application shows how to send data to the MicroPython interface of the local XBee
device.
You can find the example at the following path:
examples/communication/micropython/SendMicroPythonData

Note For more information about sending MicroPython data, see Send MicroPython data.

Send SMS (Cellular devices)
This sample Java application shows how to send an SMS to a phone or Cellular device.
You can find the example at the following path:
examples/communication/cellular/SendSMSSample

Note For more information about how to send SMS messages, see Send SMS messages.

XBee Java samples Communication samples

XBee Java Library User Guide 140

Send UDP data (IP devices)
This sample Java application shows how to send UDP data to another device specified by its IP
address and port number.
You can find the example at the following path:
examples/communication/ip/SendUDPDataSample

Note For more information about sending IP data, see Send IP data.

Send User Data Relay
This sample Java application shows how to send data to other XBee interface.
You can find the example at the following path:
examples/communication/relay/SendUserDataRelay

Note For more information about sending User Data Relay messages, see Send Bluetooth data or
Send MicroPython data.

Receive Bluetooth data
This sample Java application shows how to receive data from the Bluetooth interface of the local
XBee device.
You can find the example at the following path:
examples/communication/bluetooth/ReceiveBluetoothData

Note For more information about receiving Bluetooth data, see Receive Bluetooth data.

Receive data
This sample Java application shows how data packets are received from another XBee device on the
same network.
The application prints the received data to the standard output in ASCII and hexadecimal formats
after the sender address.
You can locate the example in the following path:
examples/communication/ReceiveDataSample

Note For more information about how to get and set other parameters, see Data reception callback.

Receive CoAP data (Thread devices)
This sample Java application shows how a Thread device receives CoAP data using a callback
executed every time it receives new CoAP data.
You can find the example at the following path:
examples/communication/coap/ReceiveCoAPDataSample

Note For more information about how to receive IPv6 data, see Receive CoAP data.

XBee Java samples Communication samples

XBee Java Library User Guide 141

Receive data polling
This sample Java application shows how data packets are received from another XBee device on the
same network using a polling mechanism.
The application prints the data that was received to the standard output in ASCII and hexadecimal
formats after the sender address.
You can locate the example in the following path:
examples/communication/ReceiveDataPollingSample

Note For more information about how to get and set other parameters, see Polling for data.

Receive explicit data
This sample Java application shows how a Zigbee device receives data in application layer (explicit)
format using a callback executed every time new data is received. Before receiving data in explicit
format, the API output mode of the Zigbee device is configured in explicit mode.
You can locate the example in the following path:
examples/communication/explicit/ReceiveExplicitDataSample

Note For more information about how to get and set other parameters, see Notes:.

Receive explicit data polling
This sample Java application shows how a Zigbee device receives data in application layer (explicit)
format using a polling mechanism. Before receiving data in explicit format, the API output mode of the
Zigbee device is configured in explicit mode.
You can locate the example in the following path:
examples/communication/explicit/ReceiveExplicitDataPollingSample

Note For more information about how to get and set other parameters, see Polling for data.

Receive IP data (IP devices)
This sample Java application shows how an IP device receives IP data using a callback executed every
time it receives new IP data.
You can find the example at the following path:
examples/communication/ip/ReceiveIPDataSample

Note For more information about how to receive IP data using the polling mechanism, see Receive IP
data.

Receive IPv6 data (Thread devices)
This sample Java application shows how a Thread device receives IPv6 data using a callback executed
every time it receives new IPv6 data.
You can find the example at the following path:
examples/communication/ip/ReceiveIPv6DataSample

Note For more information about how to receive IPv6 data, see Receive IPv6 data.

XBee Java samples Communication samples

XBee Java Library User Guide 142

Receive MicroPython data
This sample Java application shows how to receive data from the MicroPython interface of the local
XBee device.
You can find the example at the following path:
examples/communication/micropython/ReceiveMicroPythonData

Note For more information about receiving MicroPython data, see Receive MicroPython data.

Receive modem status
This sample Java application shows how modem status packets (events related to the device and the
network) are handled using the API.
The application prints the modem status events to the standard output when received.
You can locate the example in the following path:
examples/communication/ReceiveModemStatusSample

Note For more information about how to get and set other parameters, see Receive modem status
events.

Receive SMS (Cellular devices)
This sample Java application shows how to receive SMS messages configuring a callback executed
when new SMS is received.
You can find the example at the following path:
examples/communication/cellular/ReceiveSMSSample

Note For more information about how to receive SMS messages see Receive SMS messages.

Receive User Data Relay messages
This sample Java application shows how to receive data from other XBee interface.
You can find the example at the following path:
examples/communication/relay/ReceiveUserDataRelay

Note For more information about receiving User Data Relay messages, see Receive Bluetooth data or
Receive MicroPython data.

Connect to echo server (IP devices)
This sample Java application shows how IP devices can connect to an echo server, send data to it and
reads the echoed data.
You can find the example at the following path:
examples/communication/ip/ConnectToEchoServerSample

Note For more information about how to send and receive IP data, see Send IP data and Receive IP
data.

XBee Java samples IO samples

XBee Java Library User Guide 143

Knock Knock (IP devices)
This sample Java application demonstrates the communication with IP devices. It starts a simple web
server and connects to it by sending a message to start a Knock Knock joke.
You can find the example at the following path:
examples/communication/ip/KnockKnockSample

Note For more information about how to send and receive IP data, see Send IP data and Receive IP
data.

IO samples
n Local DIO
n Local ADC
n Remote DIO
n Remote ADC
n IO sampling

Local DIO
This sample Java application shows how to set and read XBee digital lines of the device attached to
the serial/USB port of your PC.
The application configures two IO lines of the XBee device: one as a digital input (button) and the
other as a digital output (LED). The application reads the status of the input line periodically and
updates the output to follow the input.
While you press the push button, the LED should be lit.
You can locate the example in the following path:
examples/io/LocalDIOSample

Note For more information about how to get and set other parameters, see Digital input/output.

Local ADC
This sample Java application shows how to read XBee analog inputs of the device attached to the
serial/USB port of your PC.
The application configures an IO line of the XBee device as ADC. It periodically reads its value and
prints it in the output console.
You can locate the example in the following path:
examples/io/LocalADCSample

Note For more information about how to get and set other parameters, see ADC.

Remote DIO
This sample Java application shows how to set and read XBee digital lines of remote devices.
The application configures two IO lines of the XBee devices: one in the remote device as a digital input
(button) and the other in the local device as a digital output (LED). The application reads the status of
the input line periodically and updates the output to follow the input.

XBee Java samples IO samples

XBee Java Library User Guide 144

While you press the push button, the LED should be lit.
You can locate the example in the following path:
examples/io/RemoteDIOSample

Note For more information about how to get and set other parameters, see Digital input/output.

Remote ADC
This sample Java application shows how to read XBee analog inputs of remote XBee devices.
The application configures an IO line of the remote XBee device as ADC. It periodically reads its value
and prints it in the output console.
You can locate the example in the following path:
examples/io/RemoteADCSample

Note For more information about how to get and set other parameters, see ADC.

IO sampling
This sample Java application shows how to configure a remote device to send automatic IO samples
and how to read them from the local module.
The application configures two IO lines of the remote XBee device: one as digital input (button) and
the other as ADC, and enables periodic sampling and change detection. The device sends a sample
every five seconds containing the values of the two monitored lines. The device sends another sample
every time the button is pressed or released, which only contains the value of this digital line.
The application registers a listener in the local device to receive and handle all IO samples sent by the
remote XBee module.
You can locate the example in the following path:
examples/io/IOSamplingSample

Note For more information about how to get and set other parameters, see Register an IO sample
listener.

XBee Java Library API reference

Welcome to the XBee Java Library API reference.
This guide provides detailed information about the features and capabilities of this product. You can
find additional detailed reference information in the XBee Java Library Javadoc. The Javadoc
documentation is helpful for developers who are interested in using and extending the library
functionality.
The Javadoc is available in two ways:

n Off-line use. The library is included in the XBee Java Library release package available at
GitHub, inside the javadoc directory.

n Online on our site. You can browse the documentation at XBee Java Library Javadoc.

XBee Java Library User Guide 145

http://ftp1.digi.com/support/documentation/xbjlib/javadoc

XBee Library for Android

The XBee Library for Android is a set of APIs built on top of the XBee Java Library that allow you to
develop Android applications to work with XBee devices. You can import the library when developing
an Android application and use it to communicate with XBee devices connected to your Android device
over Bluetooth Low Energy, USB or serial port, as you would do with a PC. The main difference is that
you must use a different local XBee device class depending on the communication interface you want
to use.
This documentation explains how to create XBee Android applications, how to work with XBee devices
in Android and the different methods that are available depending on the communication interface.

Create an XBee Android application 147
Use the XBee Library for Android 149
Android samples 154
XBee Library for Android API reference 154

XBee Java Library User Guide 146

XBee Library for Android Create an XBee Android application

XBee Java Library User Guide 147

Create an XBee Android application
The process to develop an XBee application for Android is similar to creating an application for Android
devices. An additional step is referencing the XBee Library for Android in your project in order to use
the classes andmethods that it provides.
For this tutorial you will use Android Studio, which is the official IDE to create, build, and debug
applications for Android devices. This guide shows you how to create an empty application, link the
XBee Library for Android and instantiate an XBeeDevice object, as well as import an already
developed example that uses the library to communicate with XBee devices connected to the Android
device.

Create an XBee Android application from scratch
Follow these steps to create an XBee Android application:

1. If not installed, download and install Android Studio. You can get it at
https://developer.android.com/studio.

2. Open Android Studio.
3. In the Welcome screen, click Start a new Android Studio project and use the Empty Activity

template. For instructions, see the Android Developers Guide.
4. Open the project build.gradle and add the Digi Maven repository:

allprojects {
repositories {

google()
jcenter()
maven {

url "http://ftp1.digi.com/support/m-repo"
}

}
}

5. Open the module build.gradle and add the XBee Library for Android as dependency:

dependencies {
[...]
implementation 'com.digi.xbee:xbee-android-library:1.0.0'

}

6. Replace the application's main Activity code with the following code:

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.widget.Toast;

import com.digi.xbee.api.android.XBeeBLEDevice;
import com.digi.xbee.api.exceptions.BluetoothAuthenticationException;
import com.digi.xbee.api.exceptions.XBeeException;

public class MyActivity extends AppCompatActivity {

// Constants.
// TODO: replace with the Bluetooth MAC address of your XBee device.
private static final String BLE_MAC_ADDR = "08:6B:D7:52:B3:7B";
// TODO: replace with the Bluetooth password of your XBee device.

https://developer.android.com/studio
https://developer.android.com/training/basics/firstapp/creating-project.html

XBee Library for Android Create an XBee Android application

XBee Java Library User Guide 148

private static final String BLE_PASSWORD = "1234";

// Variables.
private XBeeBLEDevice myXBeeDevice = null;

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

// Instantiate the XBeeDevice object and open the connection.
// This process blocks the UI, so it must be done in a different thread.
new Thread(new Runnable() {

@Override
public void run() {

// Instantiate an XBee BLE device with the Bluetooth MAC and
password.

myXBeeDevice = new XBeeBLEDevice(MyActivity.this, BLE_MAC_ADDR,
BLE_PASSWORD);

try {
// Open the connection with the device.
myXBeeDevice.open();

showToastMessage("Device open: " + myXBeeDevice.toString());
} catch (BluetoothAuthenticationException e) {

// Error authenticating the device, check password.
showToastMessage("Invalid password: " + e.getMessage());

} catch (XBeeException e) {
// Error opening the connection with the device.
showToastMessage("Could not open device: " + e.getMessage());

}
}

}).start();
}

/**
* Displays the given message.
*
* @param message The message to show.
*/
private void showToastMessage(final String message) {

runOnUiThread(new Runnable() {
@Override
public void run() {

Toast.makeText(MyActivity.this, message, Toast.LENGTH_LONG).show
();

}
});

}
}

This code tries to open the communication with an XBee device over Bluetooth Low Energy. If it
succeeds, the application displays a toast message with the information of the XBee device.
Otherwise, it displays a Could not open device message followed by the error that occurred.

7. To build the Android application, select Build > Make Project from the main menu bar.
8. To launch the application, select Run > Run 'app'.
9. Verify the device can be found and the application displays its information in a toast message.

XBee Library for Android Use the XBee Library for Android

XBee Java Library User Guide 149

Import an XBee Android sample application
The XBee Library for Android contains several ready-to-launch sample applications that demonstrate
how to configure and communicate with an XBee device. You can import one of them in Android Studio
following these steps:

1. If not installed, download and install Android Studio. You can get it at
https://developer.android.com/studio.

2. Open Android Studio.
3. In the Welcome page, select Check out project from Version Control > Git.
4. On the Clone Repository dialog, complete these fields with the following values:

n URL: https://github.com/digidotcom/xbee-android.
n Directory: Path to the folder that will host the repository directory.

5. Click Clone to import the library and the samples.
6. When asked to open the Android Studio project, click Yes.
7. Once the project is open, select ble_configuration_sample in the Run configuration dropdown and

click Run.

In the first page of the application you have to select your XBee device from the list of Bluetooth
devices. Tap it and enter the Bluetooth password you configured when enabling this interface.
If the connection is successful, the Configuration page appears. It shows a list of some XBee settings
that can be read or written. To test the communication, follow these steps:

1. Tap the Read button. After a short time, the settings are read and displayed in the boxes.
2. Change any setting that allows modification, for example set the DIO9 (D9) to Digital Output, High.
3. Tap the Write button. When the setting is written, the On/Sleep/DIO9 LED of the XBee carrier board

turns on.
4. Set now the DIO9 (D9) setting to Digital Output, Low and tapWrite. The On/Sleep/DIO9 LED turns

off.

Use the XBee Library for Android
The XBee Library for Android is a layer of the XBee Java Library, so it shares most of the code with it.
The main difference is the way a local XBee device is instantiated; in Android you have to use different
classes and constructors depending on the interface you want to use in order to communicate with
your XBee device. The XBee Library for Android is compatible with the following communication
interfaces:

n Bluetooth Low Energy
n USB host serial port
n Digi serial port

Bluetooth Low Energy
Newer XBee3 devices have a Bluetooth® Low Energy (BLE) interface that enables you to connect your
XBee device to another device such as a cellphone. The XBee Library for Android allows you to
instantiate an XBee Bluetooth device, configure it, and send or receive data from other XBee
interfaces. The rest of features explained in the XBee Java Library documentation are not supported
by the XBee3 devices over the Bluetooth interface at this time.

https://developer.android.com/studio
https://github.com/digidotcom/xbee-android

XBee Library for Android Use the XBee Library for Android

XBee Java Library User Guide 150

Note In order to use the XBee Library for Android to communicate with your XBee device over
Bluetooth Low Energy, your application needs to define the Bluetooth permission
(android.permission.BLUETOOTH) in the Android manifest.

Instantiate an XBee Bluetooth device
To communicate with XBee devices over Bluetooth Low Energy you need to instantiate an
XBeeBLEDevice object providing the following parameters:

n Android context
n Bluetooth MAC address or Bluetooth device
n Bluetooth password

Instantiate an XBee BLE device in Android - Bluetooth MAC address

import com.digi.xbee.api.android.XBeeBLEDevice;

[...]

String bleMacAddr = "08:6B:D7:52:B3:7B";
// Do not hard-code the password in the code! A malicious person could decompile
the application and find it out.
String blePassword = "myBluetoothPassword";

// Instantiate a Bluetooth XBee device object using its Bluetooth MAC address.
XBeeBLEDevice myXBeeDevice = new XBeeBLEDevice(context, bleMacAddr, blePassword);

Instantiate an XBee BLE device in Android - native Bluetooth device

import android.bluetooth.BluetoothDevice;
import com.digi.xbee.api.android.XBeeBLEDevice;

// Scan for Bluetooth devices and get the one associated to your XBee device.
[...]

BluetoothDevice bleDevice = [...]
// Do not hard-code the password in the code! A malicious person could decompile
the application and find it out.
String blePassword = "myBluetoothPassword";

// Instantiate an XBee device object using its Bluetooth native device.
XBeeBLEDevice myXBeeDevice = new XBeeBLEDevice(context, bleDevice, blePassword);

Note The protocol specific classes derived from XBeeBLEDevice for ZigBee (ZigBeeBLEDevice),
DigiMesh (DigiMeshBLEDevice), 802.15.4 (Raw802BLEDevice) and Cellular (CellularBLEDevice) also
have these constructors for the Bluetooth Low Energy interface.

Once you have instantiated your XBee device, you just have to open the connection by using the open
() method. In addition to the exceptions listed in Open the XBee device connection, this method
throws a BluetoothAuthenticationException if the provided password in the constructor is invalid.
You can change the configured password with the setBluetoothPassword(String) method.

Configure an XBee Bluetooth device
The XBee Library for Android allows you to configure the parameters of a local XBee Bluetooth device
and execute actions or commands on it.

XBee Library for Android Use the XBee Library for Android

XBee Java Library User Guide 151

For more information on how to perform these operations, see Configuring the XBee device.

Communicate with other XBee interfaces
At present, XBee3 devices only allow communication with other interfaces (MicroPython and serial
port) when they are connected to them over Bluetooth Low Energy.

Send and receive MicroPython data
See Send and receive MicroPython data to get more information about this.

Note Make sure you use the XBeeBLEDevice class or any of its subclasses when sending and receiving
MicroPython data.

Send and receive serial data
The XBeeBLEDevice class and its subclasses provide the following method to send data to the serial
port interface:

Method Description

sendSerialData(byte[]) Specifies the data to send to the serial port interface

This method is asynchronous, which means that your application does not block during the transmit
process.

Send data to the serial port

import com.digi.xbee.api.android.XBeeBLEDevice;

[...]

// Instantiate an XBee Bluetooth device object.
XBeeBLEDevice device = new XBeeBLEDevice("08:6B:D7:52:B3:7B", "1234");
device.open();

String data = "Serial port, are you there?";

// Send the data to the serial port interface.
device.sendSerialData(data.getBytes());

The sendSerialDatamethodmay fail for the following reasons:

n If the operating mode of the device is not API or API_ESCAPE, the method throws an
InvalidOperatingModeException.

n If the interface is not open, the method throws an InterfaceNotOpenException.
n If there is an error writing to the XBee interface, throwing a generic XBeeException.

You can be notified when a new data from the serial port interface has been received if you are
subscribed or registered to the data serial reception service by using the addSerialDataListener
(ISerialDataReceiveListener) method.

Serial data reception registration

import com.digi.xbee.api.android.XBeeBLEDevice;

XBee Library for Android Use the XBee Library for Android

XBee Java Library User Guide 152

[...]

// Instantiate an XBee Bluetooth device object.
XBeeBLEDevice device = new XBeeBLEDevice("COM1", 9600);
device.open();

// Subscribe to data reception from the serial port interface.
device.addSerialDataListener(new MySerialDataReceiveListener());

The listener provided to the subscribedmethod,MySerialDataReceiveListener, must implement the
ISerialDataReceiveListener interface. This interface includes the method that is executed when new
data from the serial port interface is received.
When that occurs, the dataReceived() method is executed, providing as a parameter the data in byte
array format.

ISerialDataReceiveListener implementation example

import com.digi.xbee.api.listeners.relay.ISerialDataReceiveListener;

public class MySerialDataReceiveListener implements ISerialDataReceiveListener {
@Override
public void dataReceived(byte[] data) {

System.out.println("Data received from the serial port interface: " + new
String(data));

}
}

To stop listening to new data messages from the serial port interface, use the
removeSerialDataListener(ISerialDataReceiveListener) method to unsubscribe the already-
registered listener.

Serial data reception deregistration

[...]

XBeeBLEDevice device = ...
MySerialDataReceiveListener listener = ...

device.addSerialDataListener(listener);

[...]

// Remove the data reception listener for the serial port interface.
device.removeSerialDataListener(listener);

USB host serial port
One serial interface that is common for all the Android devices is the USB host serial port. This
interface is usually found in the Android devices as a micro USB connector. To communicate with XBee
radio modules connected through this interface you need to instantiate XBeeDevice objects providing
the following parameters:

n Android context
n Serial port baud rate

XBee Library for Android Use the XBee Library for Android

XBee Java Library User Guide 153

Note Make sure you import the XBeeDevice class from the XBee Library for Android
(com.digi.xbee.api.android package).

Instantiating an XBeeDevice in Android - USB host

import com.digi.xbee.api.android.XBeeDevice;

[...]

// Instantiate an XBee device object connected to the USB host interface of
Android.
XBeeDevice myXBeeDevice = new XBeeDevice(context, 9600);

[...]

There is another constructor that allows you to specify an Android USB permission listener. This
listener is notified when the user grants USB permissions to the application where XBee Java Library
is included.

Instantiating an XBeeDevice in Android - USB host with permission listener

import com.digi.xbee.api.android.XBeeDevice;
import com.digi.xbee.api.connection.android.AndroidUSBPermissionListener;

[...]

// Instantiate an Android USB permissions listener.
AndroidUSBPermissionListener permissionListener = new
AndroidUSBPermissionListener() {

@Override
public void permissionReceived(boolean permissionGranted) {

if (permissionGranted)
System.out.println("User granted USB permission.");

else
System.out.println("User rejected USB permission.");

}
};

[...]

// Instantiate an XBee device object connected to the USB host interface of
Android with permission listener.
XBeeDevice myXBeeDevice = new XBeeDevice(context, 9600, permissionListener);

[...]

Note All the protocol specific classes derived from XBeeDevice, such as ZigbeeDevice,
DigiMeshDevice, have these constructors for the USB host serial port for Android as well.

Once you have instantiated your XBee device, you just have to open the connection by using the open
() method and work with it the same way as in the Java Library. See Use the XBee Java Library for
more information.

Digi serial port
The Digi Embedded for Android devices, such as the ConnectCore 6 SBC, have a serial port interface
that you can use to communicate with XBee radio modules connected to the XBee socket. For this

XBee Library for Android Android samples

XBee Java Library User Guide 154

interface you must instantiate the XBeeDevice objects providing the following parameters:

n Android context
n Serial port name (usually prepended by "/dev/tty*")
n Serial port baud rate

Note Make sure you import the XBeeDevice class from the XBee Library for Android
(com.digi.xbee.api.android package).

Instantiating an XBeeDevice in Android - Digi serial port

import com.digi.xbee.api.android.XBeeDevice;

[...]

// Instantiate an XBee device object connected to the XBee socket of a Digi
Embedded for Android device.
XBeeDevice myXBeeDevice = new XBeeDevice(context, "/dev/ttymxc4", 9600);

[...]

Note All the protocol specific classes derived from XBeeDevice such as ZigbeeDevice or
DigiMeshDevice, also have this constructor for the Digi serial port.

Once you have instantiated your XBee device, you can open communication and work with it the same
way as in the XBee Java Library. See Use the XBee Java Library for more information.

Android samples
The XBee Library for Android includes several ready-to-launch sample applications that help you to
understand how to use the different features.
All the sample applications are contained in the examples folder of the library project
(https://github.com/digidotcom/xbee-android/tree/master/examples) and can be opened with
Android Studio. Every sample includes the source code and a README file to clarify the purpose and
the required setup to launch the application.

Note For more information on how to import a sample, see Import an XBee Android sample
application.

XBee Library for Android API reference
The XBee Library for Android API reference provides detailed information of the different packages,
classes andmethods, and is helpful for developers who are interested in using and extending the
library functionality.
You can browse this API reference at XBee Library for Android Javadoc.

https://github.com/digidotcom/xbee-android/tree/master/examples
http://ftp1.digi.com/support/documentation/xbee-android/javadoc

Frequently Asked Questions (FAQs)

The FAQ section contains answers to general questions related to the XBee Java Library.

What is XCTU and how do I download it? 156
How do I find the serial port and baud rate of my module? 156
Can I use the XBee Java Library with modules in AT operating mode? 156

XBee Java Library User Guide 155

Frequently Asked Questions (FAQs) What is XCTU and how do I download it?

XBee Java Library User Guide 156

What is XCTU and how do I download it?
XCTU is a free multi-platform application designed to enable developers to interact with Digi RF
modules through a simple-to-use graphical interface. You can download it at www.digi.com/xctu.

How do I find the serial port and baud rate of my module?
Open the XCTU application, and click Discover radio modules connected to your machine button .
Select all ports to be scanned, click Next and then Finish. Once the discovery process has finished, a
new window notifies you how many devices have been found and their details. The serial port and the
baud rate are shown in the Port label.

Note In UNIX systems, the complete name of the serial port contains the /dev/ prefix.

Can I use the XBee Java Library with modules in AT operating
mode?

No, the XBee Java Library only supports API and API Escaped operating modes.

https://www.digi.com/products/xbee-rf-solutions/xctu-software/xctu

Additional resources

Contribute now!
All ideas and contributions are welcome. If you find a bug or want to request new features, you can
report these on GitHub.

Digi Forum
The Digi Forum is the place where you can ask questions and receive answers from other members of
the community.

XBee Java Library User Guide 157

https://github.com/digidotcom/XBeeJavaLibrary
http://www.digi.com/support/forum/

	XBee Java Library
	Getting started with XBee Java Library
	Install the software
	XBee Java Library software
	Java Virtual Machine
	Download and install XCTU
	Java IDE

	Configure your XBee devices
	Add 802.15.4 devices
	Add Zigbee devices
	Add DigiMesh devices
	Add Point-to-Multipoint devices
	Add cellular devices
	Add Wi-Fi devices

	Build your first XBee Java application
	Create the project
	Configure the project
	Add the application source code
	Build the application

	Launch the application
	Launch the application for non-Cellular protocol
	Launch the application for Cellular protocol

	Use the XBee Java Library
	XBee terminology
	RF modules
	XBee RF modules
	Radio firmware
	Radio communication protocols
	Radio module operating modes
	API operating mode
	Application Transparent (AT) operating mode
	API escaped operating mode
	API frames
	AT settings or commands

	Working with XBee classes
	Instantiate an XBee device object
	Open the XBee device connection
	Close the XBee device connection

	Configuring the XBee device
	Read and set common parameters
	Read, set and execute other parameters
	Apply configuration changes
	Write configuration changes
	Reset the device
	Configure Wi-Fi settings
	Scanning for access points
	Getting/setting the access point operations timeout
	Getting an access point with specific SSID
	Connecting to an access point
	Disconnecting from an access point
	Checking connection status
	Getting the connected access point
	Configure Bluetooth settings

	Discover the XBee network
	Configure the discovery process
	Discover the network
	Access the discovered devices
	Add and remove devices manually

	Communicate with XBee devices
	Send and receive data
	Sending broadcast data
	Broadcast Transmission Example
	Send and receive explicit data
	Notes:
	Send and receive IP data
	Send network data synchronously
	Get/set the timeout for synchronous operations
	Example: Transmit IP data synchronously
	Example: Transmit UDP data
	Example: Connect to echo server
	Example: Knock knock
	Send network data asynchronously
	Listening for incoming transmissions
	Stop listening for incoming transmissions
	Read network data (polling)
	Get the IPMessage information
	Read network data from a specific remote XBee device (polling)
	Get/set the timeout for synchronous operations
	Example: Receive IP data with polling
	Network data reception registration
	IPDataReceiveListener implementation example
	Data reception deregistration
	Example: Receive IP data with listener
	Send and receive IPv6 data
	Send IPv6 data synchronously
	Get/set the timeout for synchronous operations
	Example: Transmit IPv6 data synchronously
	Send IPv6 data asynchronously
	Listening for incoming transmissions
	Stop listening for incoming transmissions
	Read IPv6 data (polling)
	Get the IPMessage information
	Read network data from a specific remote XBee device (polling)
	Get/set the timeout for synchronous operations
	Network data reception registration
	IPDataReceiveListener implementation example
	Data reception deregistration
	Example: Receive IPv6 data with listener
	Send and receive CoAP data
	Send CoAP data synchronously
	Get/set the timeout for synchronous operations
	Example: Transmit CoAP data synchronously
	Send CoAP data asynchronously
	Send and receive SMS messages
	Send SMS message synchronously
	Get/set the timeout for synchronous operations
	Example: Send synchronous SMS
	Send SMS message asynchronously
	SMS reception registration
	SMSReceiveListener implementation example
	SMS reception deregistration
	Example: Receive SMS messages
	Send and receive Bluetooth data
	Send and receive MicroPython data
	Receive modem status events

	Handling analog and digital IO lines
	Configure the IO lines
	Read IO samples

	Logging events
	Download the SLF4J bindings
	Bind the library with SLF4J

	Building the library
	Install Apache Maven
	Install the library in Maven local repository

	XBee Java samples
	Configuration samples
	Manage common parameters
	Set and get parameters
	Reset
	Connect to access point (Wi-Fi devices)

	Network samples - discover devices
	Communication samples
	Send Bluetooth data
	Send data
	Send data asynchronously
	Send broadcast data
	Send CoAP data (Thread devices)
	Send explicit data
	Send explicit data asynchronously
	Send broadcast explicit data
	Send IP data (IP devices)
	Send IPv6 data (Thread devices)
	Send MicroPython data
	Send SMS (Cellular devices)
	Send UDP data (IP devices)
	Send User Data Relay
	Receive Bluetooth data
	Receive data
	Receive CoAP data (Thread devices)
	Receive data polling
	Receive explicit data
	Receive explicit data polling
	Receive IP data (IP devices)
	Receive IPv6 data (Thread devices)
	Receive MicroPython data
	Receive modem status
	Receive SMS (Cellular devices)
	Receive User Data Relay messages
	Connect to echo server (IP devices)
	Knock Knock (IP devices)

	IO samples
	Local DIO
	Local ADC
	Remote DIO
	Remote ADC
	IO sampling

	XBee Java Library API reference
	XBee Library for Android
	Create an XBee Android application
	Create an XBee Android application from scratch
	Import an XBee Android sample application

	Use the XBee Library for Android
	Bluetooth Low Energy
	USB host serial port
	Digi serial port

	Android samples
	XBee Library for Android API reference

	Frequently Asked Questions (FAQs)
	What is XCTU and how do I download it?
	How do I find the serial port and baud rate of my module?
	Can I use the XBee Java Library with modules in AT operating mode?

	Additional resources
	Contribute now!
	Digi Forum

