Home/ Machine Talk Blog

From Digi XBee Project to Life-Changing Robotic Limb Products

Posted on:

We first met Easton LaChappelle four years ago when he was only 17-years-old. Easton took us by surprise as a self-taught maker who set his mission on creating brain-powered prostheses powered by Digi’s XBee RF modules. Using 3-D printing and Digi XBees, Easton created what the market so desperately needed, a prosthetic that sold for less than $400, robotic nonetheless.

Easton not only taught himself but found the most useful tools to progress his mission. He used tools and “how to” resources he found in online communities to set himself free from limitations that often hold others back.

We weren’t the only ones to take notice. Today, at 21-years-old, Easton has worked with NASA on The Robonaut, and he’s now working with Tony Robbins, Microsoft, and others to make his dream come true. His company, Unlimited Tomorrow, focuses on making life-changing robotic limbs available and affordable for those who need it most.

It all started when he met a little girl with a prosthetic arm. He found out that her parents had to pay $80,000 for it—and not the ‘smart’ kind that Easton could then see was possible. Take a look at how far he’s come today:

“Easton is an absolute genius! He’s dreamed of transforming people’s lives through robotics since he was just 17 years old (I started funding him when he turned 18) and has turned his dreams into reality! Check out these life-changing results he’s creating with 3D-printed prosthetics!” Tony Robbins says.

To see more amazing Digi XBee projects and meet up-and-coming makers, visit the Digi XBee project gallery here.

You can also learn more about how to get started with Digi’s XBee product line here. >> 

Tags: , , ,
Posted in Maker, XBee | Comments Off on From Digi XBee Project to Life-Changing Robotic Limb Products

Tweeting Pet Bowl

Posted on:

Attention pet owners! Do you ever walk past your pet’s bowl and wonder how long it has been empty? On this #FlashBackFriday we go back to 2011 when Chris Monaco made a tweeting pet bowl using Digi XBee to solve this problem.


Using a force-sensitive resistor and two Digi XBee cellular modules, the pet bowl senses when the water level or amount of food in the bowl is low. It will then send a tweet to alert the owner that the bowl needs to be refilled – a complete wireless solution.

Have an awesome project to share or want to create one with a Digi XBee Cellular Development Kit? Follow and to get in touch with us.

Four Critical Requirements for Intelligent Water Management

Posted on:

When managing complex drainage districts, distributed lift stations or a municipal water treatment facility, networking and SCADA engineers are tasked with creating and operating safe, efficient water and wastewater management systems for their local and regional communities. In the challenging world of water management, application operating environments are commonly remote and harsh, which makes using 4G LTE wireless networks ideal for connecting remote assets. Below are four critical requirements to consider when upgrading to new technology and network management tools.

  • Equipment Reliability – How long is the warranty of your communication gear? Pumps, PLCs and RTUs are expected to last for years.
  • Flexible Networking Options – It is typical for municipalities to designate a primary and secondary, backup cellular carrier for SCADA telemetry equipment installed across a wide geographic area. The ideal 4G LTE device will support software-selectable carrier switching.
  • System Security – 4G LTE devices and management tools must support guidelines and requirements for water management systems as defined by the Critical Infrastructure Protection (CIP) Act in the U.S. and similar legislation in other countries. It should also enable enterprise security features like access-controlled ports, encrypted data storage, authentic boot and firewalls, as well as connections to security equipment such as IP cameras.
  • Remote Management – Once devices are installed and systems are operational, the challenge of operating a network of distributed telemetry equipment begins. Remote configuration, monitoring and troubleshooting tools are essential.

>>Check out our 4G LTE solution for Water/Wastewater Telemetry and SCADA applications.

University of Minnesota – Solar Vehicle

Posted on:

In 1990, a group of undergraduate students at the University of Minnesota established the Solar Vehicle Project so students could experience engineering and management in a complete product development environment. Over twenty five years and twelve solar cars later, the University of Minnesota’s Solar Vehicle Project became the first team from the United States to compete in the Cruiser Class of the 2013 Bridgestone World Solar Challenge in Australia. Since then, they returned to this biennial event with their new EOS I solar vehicle in 2015 and were the only cruiser competitor to qualify for both the 2016 Formula Sun Grand Prix and the 2016 American Solar Challenge. The team will be returning to the Bridgestone World Solar Challenge with their new Eos II solar vehicle on October 8, 2017.

Looking to improve the practicality and efficiency of their cruiser vehicle, the University of Minnesota team of approximately seventy-five undergraduate students, has spent the last two years planning, designing, fundraising, and building the Eos II solar vehicle using Digi XBee modules to communicate and log data from the solar car and lead vehicle. In support of these innovative efforts, Digi has sponsored the solar team with four Digi XLR Pro radios to help the team members communicate and log data using a point-to-multipoint Ethernet bridge to create a transparent network connecting computers and networked sensors in all vehicles and the caravan. The team will also have the ability to access locally hosted resources on a dedicated server in the lead vehicle, something they have not been able to do in the past.

Yesterday, we had the honor of meeting the 2017 crew to hand deliver the Digi XLR Pro radios. The energetic and excited team gave us an inside look into their shop, showed us under the hood of the EOS II, and tested out Digi XBee modules while test driving the solar vehicle. Stay tuned for more updates coming soon and be sure to follow this brilliant, hardworking, and fun team on Twitter to cheer them on!

Fill out this simple Digi XBee Project form to feature your project on the Machine Talk blog for a chance to win a free Digi XBee Development Kit.

Simple Garage Door Sensor

Posted on:

Table of Contents

 

  1. Introduction
  2. Assembly of Parts
  3. Configure the Radio
  4. View It
  5. Use It
  6. Intern Spotlight

1)Introduction

Whether you’re pulling into work after a busy morning, driving to the family cabin, or just laying in bed after a long day, the last thing you want to worry about is your car garage door. This example will show you how to install a simple garage door monitor so you never have to worry if your garage door is left open. Using the Digi XBee LTE Cat1 Development Kit and a magnetic reed switch, an SMS can be sent to your phone notifying you if your garage door is opened or closed.

Digi XBee Ecosystem: Let Your Imagination Run Wireless

Posted on:

Whether you are just learning about wireless communications and Digi XBee or you are an experienced developer, the Digi XBee Ecosystem has everything necessary to explore and create wireless connectivity. This Digi XBee knowledge base provides a limitless world of software and hardware resources, stories of customers solving real wireless challenges, communities eager to connect, and opportunities to feature your own projects in the largest collection on the web. Watch the new Digi XBee Ecosystem video and explore its three main software, hardware, and resource categories.

Digi XBee Software

Using the free user-friendly GUI platform, Digi XCTU, you can easily set up, configure and test everything from simple projects to sophisticated industrial solutions with Digi XBee modules. Check out this section to learn more about the intuitive graphical user interface, Digi XBee API mode, and check out published code libraries.

Digi XBee Hardware

Digi XBee is a complete system of wireless modules, gateways, adapters, and software that are engineered to accelerate wireless deployments on a global scale. Its compact design footprint leverages multiple protocols and RF frequencies suitable for all types of networks including, but not limited to, Thread, 802.15.4, and Wi-Fi open standards. This flexibility reduces manufacturing and engineering costs and accelerates product roadmaps for OEMs. Visit this section for more information about mesh networking, point-to-multipoint communication, and cellular networking.

Digi XBee Resources

In addition to hardware and software tools, the Digi XBee ecosystem provides unmatched resources and support. Here you can ask questions on the Digi Forum, receive answers from community members, and submit projects to be featured on the Machine Talk blog.

>>Fill out this simple Digi XBee Project form to feature your project on the Machine Talk blog for a chance to win a free Digi XBee Development Kit.

Tags:
Posted in XBee | Comments Off on Digi XBee Ecosystem: Let Your Imagination Run Wireless

How to Balance IoT Security for Embedded Solutions

Posted on:

When considering embedded IoT solutions, security is a balance between three parts that are often in tension: economic cost, benefit, and risk.

  • Cost – Pertains to the price for designing security into industrial applications versus “bolting” it on, the urgency of time to market, and the value of your brand’s reputation.
  • Benefit – The benefits of integrated security allow you gain immediate access to critical features such as secure connections, authenticated boot, encrypted data storage, access-controlled ports, secure software updates, and seamless integration of the dedicated on-module Secure Element (SE).
  • Risk – With remote and distributed wireless networks, hackers do not need physical access to devices such as USB outlets or network ports, putting remote industrial applications even more at risk to communication attacks, software attacks, invasive hardware attacks, and non-invasive hardware attacks can be classified in terms of investment, the type of attacker, and equipment involved.

Designing and building connected products can be accelerated by using a secure and cost-effective System-on-Module (SOM) platform, a surface mount form factor that provides simple design freedom with unlimited access to interfaces, and out-of-the-box integrated security that is reliable, allowing you to focus on accelerated product development and delivering products that take advantage of the benefits of connectivity.

To help designers and builders effectively respond to the IoT security mandate, Digi experts developed Digi TrustFence™, a fully integrated, tested, and complete Linux device security framework. The built-in security of Digi TrustFence provides immediate access to critical features and easy integration to handle security for your embedded IoT device.

>>Check out this IoT Device Security Technology Brief to protect your embedded devices with a balanced security framework.

WiseConn’s DropControl Sensing Solution Embeds Wireless Connectivity with Digi XBee

Posted on:

The ability to control water consumption is critical to the success of both small scale farmers and large scale agriculture. Irrigation control experts, WiseConn, designed the DropControl solution to help farmers remotely monitor fields, collect data, and transmit information back to the farmer’s control station, where it can be either programed to make decisions autonomously or managed locally using low-power wireless sensors featuring Digi XBee radio modules. There are currently 1,500 sites and 300 business operations in Peru, Chile, and California that are achieving better yields, improving the quality of crops, saving up to 30 percent on their water consumption, and reducing greenhouse gases after installing DropControl irrigation system.

Having initially relied on open source software stacks connectivity, WiseConn’s eagerness for innovation lead them to integrate Digi XBee Pro 900HP embedded modules combined with DigiMesh networking protocol. “The keys to us were Digi’s low power consumption, ISM compatibility, and the long range,” Ulloa said. “Just as important, we are able to use Digi’s peer-to-peer mesh network. Irrigation and long-range flow control need robust P2P communications that don’t rely on a constantly-connected central coordinator. We had a lot of confidence in Digi. Thanks to the Digi mesh protocol, we were able to focus our resources on irrigation functionality – and not worry about networking intricacies. We also liked Digi’s long product lifecycles. We’ve had, essentially, the same pin layout and firmware for the past five years.”

>>Visit Digi Customer Success stories to see how customers are inventing new business models and changing their respective industries.

Tags:
Posted in XBee | Comments Off on WiseConn’s DropControl Sensing Solution Embeds Wireless Connectivity with Digi XBee
Contact a Digi expert and get started today! Contact Us
Have a Question?