Contents

Introduction ... 3
What’s new ... 3
Specification considerations ... 3
Part number migration guide .. 5
Micro options - new to Digi XBee 3 Zigbee 3.0 .. 5
Pin signals... 5
Configuration ... 6
Digi XBee 3 Zigbee 3.0 functional migration considerations................................. 6
Detailed considerations ... 7
 OTA firmware update.. 7
 Security .. 9
 New AT commands ... 9
 Changed AT commands ... 10
 Expanded channel selection .. 10
 Display output power ... 10
 Voltage reference ... 10
 Overvoltage detection .. 10
 Bootloader update support ... 10

Future updates .. 10
Introduction

Digi has updated and ported its XBee Zigbee firmware from the XBee/XBee-PRO ZB (S2C) hardware based on the SiLabs EM357 SoC, to the Digi XBee 3 (Micro) hardware based on the SiLabs EFR32 SoC. This guide will assist you with migration to the new platform. While basic functionality and communication are similar and compatible, there are some differences to consider. This newer platform provides several major advantages over the existing platform, which we describe in this guide, along with other migration considerations.

What’s new

The Digi XBee 3 Zigbee 3.0 introduces some new features such as:

- Addition of the “Micro” form factor
- Introduction of Zigbee 3.0 support
- New, more reliable and secure, over-the-air (OTA) firmware update process with image signature and verification support
- Capable of firmware migration to DigiMesh™ and Digi 802.15.4 protocols
- Lower operating receive current
- Power on channel 26 is increased on the PRO and power cap on channel 26 is removed for non-PRO
- Cyclic sleep with Pin Wake behavior

Specification considerations

<table>
<thead>
<tr>
<th>XBee/XBee-PRO ZB (S2C) to Digi XBee 3 Zigbee 3.0.</th>
</tr>
</thead>
<tbody>
<tr>
<td>XBee ZB (S2C)</td>
</tr>
<tr>
<td>Indoor/urban range</td>
</tr>
<tr>
<td>Outdoor RF line-of-sight</td>
</tr>
<tr>
<td>Transmit power output</td>
</tr>
<tr>
<td>Receive sensitivity</td>
</tr>
<tr>
<td>Operating current (transmit)</td>
</tr>
</tbody>
</table>
Specification considerations

<table>
<thead>
<tr>
<th>XBee ZB (S2C)</th>
<th>Legacy XBee ZB (S2C)</th>
<th>New Digi XBee 3 Zigbee 3.0</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating current (receive)</td>
<td>31 mA (boost mode) 28 mA (normal mode)</td>
<td>15 mA</td>
<td>Improved</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>2.7 – 3.6 V</td>
<td>2.1 - 3.6 V</td>
<td>Larger voltage range</td>
</tr>
<tr>
<td>FCC ID</td>
<td>MCQ-S2C</td>
<td>MCQ-XBEE3</td>
<td></td>
</tr>
<tr>
<td>Industry Canada (IC) ID</td>
<td>1846A-XBS2C</td>
<td>1846A-XBEE3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>XBee-PRO ZB (S2C)</th>
<th>Legacy XBee-PRO ZB (S2C)</th>
<th>New Digi XBee 3 Zigbee 3.0</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indoor/urban range</td>
<td>Up to 90 m (300 ft)</td>
<td>Up to 90 m (300 ft)</td>
<td>Same</td>
</tr>
<tr>
<td>Outdoor RF line-of sight</td>
<td>Up to 3200 m (2 mi)</td>
<td>Up to 3200 m (2 mi)</td>
<td>Same</td>
</tr>
<tr>
<td>Transmit power output</td>
<td>63 mW (+18 dBm) Channel 26 max power is +1 dBm</td>
<td>79 mW (+19 dBm) Channel 26 max power is +8 dBm</td>
<td>Power on channel 26 is increased</td>
</tr>
<tr>
<td>Receive sensitivity</td>
<td>-101 dBm</td>
<td>-103 dBm</td>
<td>Better sensitivity</td>
</tr>
<tr>
<td>Operating current (transmit)</td>
<td>120 mA @ 3.3 V, +18 dBm</td>
<td>135 mA @ +3.3 V, +19 dBm</td>
<td>Comparable</td>
</tr>
<tr>
<td>Operating current (receive)</td>
<td>31 mA (Boost mode) 28 mA (Normal mode)</td>
<td>15 mA</td>
<td>Improved</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>2.7 – 3.6 V</td>
<td>2.1 - 3.6 V</td>
<td>Larger voltage range</td>
</tr>
<tr>
<td>FCC ID</td>
<td>MCQ-PS2C</td>
<td>MCQ-XBEE3</td>
<td></td>
</tr>
<tr>
<td>Industry Canada (IC) ID</td>
<td>1846A-PS2CSM</td>
<td>1846A-XBEE3</td>
<td></td>
</tr>
</tbody>
</table>
Part number migration guide

The following table shows which Digi XBee 3 Zigbee 3.0 module to migrate to depending on which XBee/XBee-PRO ZB (S2C) module you are currently using.

<table>
<thead>
<tr>
<th>Legacy part number</th>
<th>Description</th>
<th>Migrate to</th>
</tr>
</thead>
<tbody>
<tr>
<td>XB24CZ7SIT-004</td>
<td>XBee 3, 2.4 GHz ZB 3.0, SMA Ant, TH MT</td>
<td>XB3-24Z8ST-J</td>
</tr>
<tr>
<td>XB24CZ7UIT-004</td>
<td>XBee 3, 2.4 GHz ZB 3.0, U.FL Ant, TH MT</td>
<td>XB3-24Z8UT-J</td>
</tr>
<tr>
<td>XB24CZ7PIT-004</td>
<td>XBee 3, 2.4 GHz ZB 3.0, PCB Ant, TH MT</td>
<td>XB3-24Z8PT-J</td>
</tr>
<tr>
<td>XBP24CZ7SIT-004</td>
<td>XBee 3 PRO, 2.4 GHz ZB 3.0, SMA Ant, TH MT</td>
<td>XB3-24Z8ST</td>
</tr>
<tr>
<td>XBP24CZ7UIT-004</td>
<td>XBee 3 PRO, 2.4 GHz ZB 3.0, U.FL Ant, TH MT</td>
<td>XB3-24Z8UT</td>
</tr>
<tr>
<td>XBP24CZ7PIT-004</td>
<td>XBee 3 PRO, 2.4 GHz ZB 3.0, PCB Ant, TH MT</td>
<td>XB3-24Z8PT</td>
</tr>
<tr>
<td>XB24CZ7RIS-004</td>
<td>XBee 3, 2.4 GHz ZB 3.0, RF Pad Ant, SMT</td>
<td>XB3-24Z8RS-J</td>
</tr>
<tr>
<td>XB24CZ7UIS-004</td>
<td>XBee 3, 2.4 GHz ZB 3.0, U.FL Ant, SMT</td>
<td>XB3-24Z8US-J</td>
</tr>
<tr>
<td>XB24CZ7PIS-004</td>
<td>XBee 3, 2.4 GHz ZB 3.0, PCB Ant, SMT</td>
<td>XB3-24Z8PS-J</td>
</tr>
<tr>
<td>XBP24CZ7RIS-004</td>
<td>XBee 3 PRO, 2.4 GHz ZB 3.0, RF Pad Ant, SMT</td>
<td>XB3-24Z8RS</td>
</tr>
<tr>
<td>XBP24CZ7UIS-004</td>
<td>XBee 3 PRO, 2.4 GHz ZB 3.0, U.FL Ant, SMT</td>
<td>XB3-24Z8US</td>
</tr>
<tr>
<td>XBP24CZ7PIS-004</td>
<td>XBee 3 PRO, 2.4 GHz ZB 3.0, PCB Ant, SMT</td>
<td>XB3-24Z8PS</td>
</tr>
</tbody>
</table>

Micro options - new to Digi XBee 3 Zigbee 3.0

<table>
<thead>
<tr>
<th>Legacy part number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XB3-24Z8RM-J</td>
<td>XBee 3, 2.4 GHz ZB 3.0, RF Pad Ant, MMT</td>
</tr>
<tr>
<td>XB3-24Z8UM-J</td>
<td>XBee 3, 2.4 GHz ZB 3.0, U.FL Ant, MMT</td>
</tr>
<tr>
<td>XB3-24Z8CM-J</td>
<td>XBee 3, 2.4 GHz ZB 3.0, Chip Ant, MMT</td>
</tr>
<tr>
<td>XB3-24Z8RM</td>
<td>XBee 3 PRO, 2.4 GHz ZB 3.0, RF Pad Ant, MMT</td>
</tr>
<tr>
<td>XB3-24Z8UM</td>
<td>XBee 3 PRO, 2.4 GHz ZB 3.0, U.FL Ant, MMT</td>
</tr>
<tr>
<td>XB3-24Z8CM</td>
<td>XBee 3 PRO, 2.4 GHz ZB 3.0, Chip Ant, MMT</td>
</tr>
</tbody>
</table>

Pin signals

The Digi XBee 3 Zigbee 3.0 is available in three different form factors, Surface Mount (SMT), Through Hole (TH), and the newly introduced XBee 3 Micro (MMT). The SMT and TH versions are pin compatible with existing XBee/XBee-PRO ZB (S2C) SMT and TH hardware. This hardware is drop-in replaceable. In order to fit all necessary pin connections on the XBee 3 Micro, three pins on the SMT were removed and the remaining pins were shifted. These pins were unused on the SMT module. See the Xbee 3 Hardware Reference Manual for more information.
Using XCTU, you can load the appropriate firmware to fit your current needs within the regulatory guidance of the region of deployment. See the [Xbee 3 Zigbee User Guide](#) for more information.

Digi XBee 3 Zigbee 3.0 functional migration considerations

The Digi XBee 3 Zigbee 3.0 module was designed to provide support for the Zigbee 3.0 specification. Some of the default configurations have changed to comply with Zigbee 3.0 requirements. See the [Xbee 3 Zigbee User Guide](#) for details. Some of these changes include:

- Over-the-air firmware updates now use ZCL frames. The firmware image will store and only boot to the new image, if it is complete. Firmware images will only boot if they are authentic, signed images from Digi. Firmware updates are no longer handled exclusively in the bootloader. There is no requirement for neighbor nodes in order to perform the update.
- A new ET command (which is only set on an End Device) sets the child table timeout for the child's parent.
- The EO command now defaults to 2 to act as a Centralized Trust Center network. For increased security, when encryption is enabled (EE=1), the module will default to Centralized Trust Center when it forms the network (CE=1).
- The NK command no longer returns ERROR if being set on a Distributed Trust Center (EO = 0).
- The NJ command now defaults to 0xFE. This will limit the module's ability to allow other devices to join to 254s. The Zigbee 3.0 standard does not allow for an open network. To always allow joining, you must set NJ=FF explicitly. Note that this change does not affect the functionality of enabling or disabling rejoining on end devices by setting NJ to FF.
- The DO command now defaults to 0x40 to enable a high RAM concentrator. This effectively does what the XBee/XBee-PRO ZB (S2C) was already doing for small networks. Use this setting for networks of 40 nodes or less. When using Many-to-One and Source routing (AR<0xFF), routes will be stored on the module instead of requiring the use of an external micro to store route records.
- In Zigbee 3.0, NULL Transport keys are no longer allowed. As such, DO bit 3 is deprecated.
- The Enable Best Response Joining option moved from DO bit 2 to DC bit 3.
- If operating with a Distributed Trust Center (EO = 0), when a joining device sends a Device Announce, the coordinator (CE = 1) will respond by broadcasting a Manager Update. This broadcast is what the joining device uses to correlate the reserved 0 address to the coordinator’s actual address.
- A new KT command lets you set the Trust Center link key registration timeout.
- Zigbee Install Codes are supported on XBee 3. In order to read the install code from a module, query the I? command. This install code can be used during out-of-band commissioning by deriving a join key based on install code. See the user guide for more information.
- Enable Joiner Global Link Key (DC bit 0) has been removed for Zigbee 3.0 security, and this bit now enables deriving a link key based on the install code.
- The default ADC voltage reference has changed from 1.2 V to 1.25 V. The AV command on XBee 3 can be used to change the analog voltage. Supported values are 1.25V, 2.5V, or VDD.
- Mark Parity UART support has been removed.
Detailed considerations

- If a serial break signal is sent during boot or reset, modem status API frames are no longer emitted.
- TP command (module temperature) is available on both Pro and Non-Pro variants
- The RSSI PWM period on the S2C was 200 µS, this has been changed to match other XBee firmwares and now outputs a signal with a 64 µS period. The M0 and M1 commands can be used to output a fixed duty cycle PWM signal on P0 and P1 if configured as a PWM output.
- The behavior of Cyclic sleep with pin wake (SM = 5) has been updated for XBee 3: While nDTR is deasserted (high), the module will operate in a cyclic sleep pattern. If nDTR is asserted (low), the module will wake and remain awake until the pin is deasserted. If nDTR is deasserted momentarily, the module will minimally wake for a period defined by the ST parameter.

Detailed considerations

OTA firmware update

The firmware update process has changed on the Digi XBee 3 Zigbee 3.0. The XBee/XBee-PRO ZB (S2C) module required a source, updater, and target node. Under certain circumstances, nodes could be put in bootloader mode, and were therefore unavailable on the network. Additionally, if the firmware upload was interrupted at any point in the update process, the target module would then need to be “recovered”. This can be very taxing on a network, especially across multiple hops.

The OTA firmware update process has been improved on the Digi XBee 3 Zigbee 3.0 module. First, the firmware update requires only the use of a server (node sending the firmware file), and a client node (node receiving the firmware file).

The firmware image is sent in blocks using standard Zigbee Cluster Library (ZCL) frames. These frames are supported using the 0x11 Explicit Transmit Frame. The client device never goes offline. The image is simply stored in an internal flash slot of the module’s memory. Once the entire firmware file has been uploaded, the client can switch to the new firmware image. If at any point in the process the transfer was interrupted, the image will simply not pass a security check and the module will not boot into the new image.

The radio serving up the firmware image can be either a Digi XBee 3 Zigbee 3.0 or XBee/XBee-PRO ZB (S2C). However, since the XBee/XBee-PRO ZB (S2C) requires that another XBee/XBee-PRO ZB (S2C) be a nearest neighbor to act as the updater node, there is some limitation as to how nodes can be updated in a mixed network.

The image below describes how it is determined whether nodes in a mixed network arrangement can be updated from a single firmware image server. The image server can be either Digi XBee 3 Zigbee 3.0 or XBee/XBee-PRO ZB (S2C). S2C modules must be within range of another S2C module to be updated.
Detailed considerations
Security

Digi makes it easy to find the right level of security for your specific application, ranging from a completely open and unencrypted network, to a high security model with out-of-band commissioning. The Zigbee 3.0 standard default requires a higher security model than what is currently default on the XBee/XBee-PRO ZB (S2C). In order to better support Zigbee 3.0, the default configurations have changed.

An open network is one in which other Zigbee devices are allowed to join. Joining is enabled using the \texttt{NJ} command. The XBee/XBee-PRO ZB (S2C) for the \texttt{NJ} command is \texttt{NJ}=0xFF. This setting indefinitely enables joining to other nodes which pass the security model settings used. However, Zigbee 3.0 does not support an open joining model. To meet this requirement, the \texttt{NJ} command has a new default setting of \texttt{NJ}=0xFE. This generous joining window still allows other devices to join to the network through that node, while closing the window after 254s. The join window can be reopened again at any time with an \texttt{ATCB2}. If the joining window must be opened indefinitely, \texttt{ATNJ} can be configured to the old default, but this is not recommended.

The \texttt{NJ} command will continue to allow the enabling or disabling of rejoining end devices, as described in the XBee/XBee-PRO ZB (S2C) user guide. For an end device to enable rejoining, set \texttt{NJ} less than 0xFF on the device that joins. If \texttt{NJ} < 0xFF, the device assumes the network is not allowing joining and first tries to join a network using rejoining. If multiple rejoining attempts fail, or if \texttt{NJ} = 0xFF, the device attempts to join using association.

The \texttt{EE} command controls enabling encryption on a network. In a completely open network, ATEE is not enabled, and no security is employed. The \texttt{NJ} command restricts the join time to this type of network, but no other changes will affect a Digi XBee 3 Zigbee 3.0 joining and communicating in this type of network.

Once encryption is enabled via the \texttt{EE=1} command, the level of security employed will primarily depend on the ATEO setting. The Digi XBee 3 Zigbee 3.0 default for ATEO has changed to 2, which enables a Centralized Trust Center for key management.

The default for XBee/XBee-PRO ZB (S2C) is \texttt{EO=0}, which is a Distributed Trust Center model. If no ATEO option was used in XBee/XBee-PRO ZB (S2C), then \texttt{EO} must be explicitly set to match the XBee/XBee-PRO ZB (S2C) default.

New AT commands

- \texttt{AZ} - API Extended Options - Optionally allow client-side OTA update API frames to come out of the serial port. This command will later be expanded to cover all ZDO/ZCL output options
- \texttt{AV} - Analog VREF Configuration - Set the analog reference voltage for ADC pins
- \texttt{M0} – P0 PWM Output – Set the output level of P0 when configured as PWM
- \texttt{M1} – P1 PWM Output – Set the output level of P1 when configured as PWM
- \texttt{VH} - Bootloader Version - Display the hardware version number of the device.
- \texttt{!C} - Clear custom defaults - Resets factory configuration values
- \texttt{%F} - Set custom defaults – Set new custom default values
- \texttt{R1} - Restore factory defaults – Restore factory configured default values
- \texttt{KT} – Trust Center Link Key Registration Timeout
- \texttt{I?} – Install Code - The install code of the device, used during trust center registration to generate a link key.
Future updates

Changed AT commands
- **NB** – Mark Parity is no longer available
- **DD** - Default changed from 0xA000 to 0x12000
- **EO** – Default Changed from 0 to 2
- **P5, P6, P7, P8, P9** – now have Digital out Low and High
- **PD, PR** – Chang max range from 0x7FFF – 0xFFFF

Expanded channel selection
The IEEE 802.15.4 standard allows for 16 channels to be used for communication: from 2.405 GHz (Channel 11) through 2.480 GHz (Channel 26).
On the previous XBee-PRO S2 and XBee-PRO S2C modules, the range of available channels (via the CH command) was restricted on the PRO variant. This restriction is alleviated on the XBee 3 and all 16 channels are available for use regardless of the variant.
If you are designing an application that will be interoperating with legacy S2 and/or S2C PRO modules, the CH parameter on the XBee 3 needs to be within 0x0C and 0x17 to communicate.

Display output power
The **PP** AT Command will return the operating power level of the device in dBm based on the current operating configuration. Boost Mode (**PM**) is no longer available, as both the Pro and Non-PRO variants of the XBee 3 hardware have enhanced receive sensitivity.

Voltage reference
The default ADC voltage reference changed from 1.2 V to 1.25 V.
The VREF pin from the XBee Series 1 is not supported by the XBee 3 hardware and has been removed from the Micro (MMT) form factor.
The ADC internal voltage reference can be set to 1.25 V, 2.5 V or VDD using the AT command **AV**.

Overvoltage detection
An overvoltage 0x8A modem status has been added to warn the user of VCC input voltages exceeding the maximum rated 3.6 Volts. API mode (**AP** is set to 1 or 2) must be enabled to see this status message.

Bootloader update support
The bootloader of the XBee 3 can be updated in addition to the XBee application. The bootloader update can be performed serially or over the air. When the bootloader is updated serially, the XBee application is erased and must be reinstalled.
The bootloader can also be updated over the air. This is done by updating the XBee application and bootloader as a single image.

Future updates
For the most up-to-date information on what features and enhancements have been added in the XBee software, refer to the release notes that are included with each software update.