Contents

Introduction ... 3
What’s new ... 3
Specification considerations ... 3
Part number migration guide .. 5
Micro options - new to Digi XBee3 Zigbee 3.0 ... 5
Pin signals ... 5
Configuration ... 6
Digi XBee3 Zigbee 3.0 functional migration considerations 6
Examples .. 7
 OTA firmware update ... 7
 Security ... 9
 New AT commands ... 10
 Changed AT commands ... 10
 Expanded channel selection .. 10
 Display output power ... 10
 Voltage reference .. 10
 Overvoltage detection .. 11
 Bootloader update support .. 11
Future updates .. 11
Introduction

Digi has updated and ported its XBee Zigbee firmware from the XBee/XBee-PRO ZB (S2C) hardware based on the SiLabs EM357 SoC, to the Digi XBee3 (Micro) hardware based on the SiLabs EFR32 SoC.

This guide will assist you with migration to the new platform. While basic functionality and communication are similar and compatible, there are some differences to consider. This newer platform provides several major advantages over the existing platform, which we describe in this guide, along with other migration considerations.

What’s new

The Digi XBee3 Zigbee 3.0 introduces some new features such as:
- Addition of the “Micro” form factor
- Introduction of Zigbee 3.0 support
- New, more reliable and secure, over-the-air (OTA) firmware update process with image signature and verification support
- Capable of firmware migration to DigiMesh™ and Digi 802.15.4 protocols
- Lower operating receive current
- Power on channel 26 is increased on the PRO and power cap on channel 26 is removed for non-PRO
- Cyclic sleep with Pin Wake behavior

Specification considerations

<table>
<thead>
<tr>
<th>XBee/ZB (S2C)</th>
<th>Legacy XBee ZB (S2C)</th>
<th>New Digi XBee3 Zigbee 3.0</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indoor/urban range</td>
<td>Up to 60 m (200 ft)</td>
<td>Up to 60 m (200 ft)</td>
<td>Same</td>
</tr>
<tr>
<td>Outdoor RF line-of sight</td>
<td>Up to 1200 m (4000 ft)</td>
<td>Up to 1200 m (4000 ft)</td>
<td>Same</td>
</tr>
<tr>
<td>Transmit power output</td>
<td>6.3 mW (+8 dBm), boost mode 3.1 mW (+5 dBm), normal mode Channel 26 max power is +3 dBm</td>
<td>6.3 mW (+8 dBm)</td>
<td>No power cap on channel 26</td>
</tr>
<tr>
<td>Receive sensitivity</td>
<td>-102 dBm, boost mode -100 dBm, normal mode</td>
<td>-103 dBm</td>
<td>Comparable to boost mode</td>
</tr>
<tr>
<td>Operating current (transmit)</td>
<td>45 mA (+8 dBm, boost mode) 33 mA (+5 dBm, normal mode)</td>
<td>40 mA @ +3.3V, +8dBm</td>
<td>Lower operating current vs boost mode</td>
</tr>
</tbody>
</table>
XBee ZB (S2C)

<table>
<thead>
<tr>
<th>Considerations</th>
<th>Legacy XBee ZB (S2C)</th>
<th>New Digi XBee3 Zigbee 3.0</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating current (receive)</td>
<td>31 mA (boost mode) 28 mA (normal mode)</td>
<td>15 mA</td>
<td>Improved</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>2.7 – 3.6 V</td>
<td>2.1 - 3.6 V</td>
<td>Larger voltage range</td>
</tr>
<tr>
<td>FCC ID</td>
<td>MCQ-S2C</td>
<td>MCQ-XBEE3</td>
<td>Customer will need to change the label on the end product to show the appropriate regulatory ID for the XBee3</td>
</tr>
<tr>
<td>Industry Canada (IC) ID</td>
<td>1846A-XBS2C</td>
<td>1846A-XBEE3</td>
<td></td>
</tr>
</tbody>
</table>

XBee-PRO ZB (S2C)

<table>
<thead>
<tr>
<th>Considerations</th>
<th>Legacy XBee-PRO ZB (S2C)</th>
<th>New Digi XBee3 Zigbee 3.0</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indoor/urban range</td>
<td>Up to 90 m (300 ft)</td>
<td>Up to 90 m (300 ft)</td>
<td>Same</td>
</tr>
<tr>
<td>Outdoor RF line-of sight</td>
<td>Up to 3200 m (2 mi)</td>
<td>Up to 3200 m (2 mi)</td>
<td>Same</td>
</tr>
<tr>
<td>Transmit power output</td>
<td>63 mW (+18 dBm) Channel 26 max power is +1 dBm</td>
<td>79 mW (+19 dBm) Channel 26 max power is +8 dBm</td>
<td>Power on channel 26 is increased</td>
</tr>
<tr>
<td>Receive sensitivity</td>
<td>-101 dBm</td>
<td>-103 dBm</td>
<td>Better sensitivity</td>
</tr>
<tr>
<td>Operating current (transmit)</td>
<td>120 mA @ 3.3 V, +18 dBm</td>
<td>135 mA @ +3.3 V, +19 dBm</td>
<td>Comparable</td>
</tr>
<tr>
<td>Operating current (receive)</td>
<td>31 mA (Boost mode) 28 mA (Normal mode)</td>
<td>15 mA</td>
<td>Improved</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>2.7 – 3.6 V</td>
<td>2.1 - 3.6 V</td>
<td>Larger voltage range</td>
</tr>
<tr>
<td>FCC ID</td>
<td>MCQ-PS2C</td>
<td>MCQ-XBEE3</td>
<td>Customer will need to change the label on the end product to show the appropriate regulatory ID for the XBee3</td>
</tr>
<tr>
<td>Industry Canada (IC) ID</td>
<td>1846A-PS2CSM</td>
<td>1846A-XBEE3</td>
<td></td>
</tr>
</tbody>
</table>
Part number migration guide

The following table shows which Digi XBee3 Zigbee 3.0 to migrate to depending on which XBee/XBee-PRO ZB (S2C) module you are currently using.

<table>
<thead>
<tr>
<th>Legacy part number</th>
<th>Description</th>
<th>Migrate to</th>
</tr>
</thead>
<tbody>
<tr>
<td>XB24CZ7SIT-004</td>
<td>XBee3, 2.4 GHz ZB 3.0, SMA Ant, TH MT</td>
<td>XB3-24Z8ST-J</td>
</tr>
<tr>
<td>XB24CZ7UIT-004</td>
<td>XBee3, 2.4 GHz ZB 3.0, U.FL Ant, TH MT</td>
<td>XB3-24Z8UT-J</td>
</tr>
<tr>
<td>XB24CZ7PIT-004</td>
<td>XBee3, 2.4 GHz ZB 3.0, PCB Ant, TH MT</td>
<td>XB3-24Z8PT-J</td>
</tr>
<tr>
<td>XBP24CZ7SIT-004</td>
<td>XBee3 PRO, 2.4 GHz ZB 3.0, SMA Ant, TH MT</td>
<td>XB3-24Z8ST</td>
</tr>
<tr>
<td>XBP24CZ7UIT-004</td>
<td>XBee3 PRO, 2.4 GHz ZB 3.0, U.FL Ant, TH MT</td>
<td>XB3-24Z8UT</td>
</tr>
<tr>
<td>XBP24CZ7PIT-004</td>
<td>XBee3 PRO, 2.4 GHz ZB 3.0, PCB Ant, TH MT</td>
<td>XB3-24Z8PT</td>
</tr>
<tr>
<td>XB24CZ7RIS-004</td>
<td>XBee3, 2.4 GHz ZB 3.0, RF Pad Ant, SMT</td>
<td>XB3-24Z8RS-J</td>
</tr>
<tr>
<td>XB24CZ7UIS-004</td>
<td>XBee3, 2.4 GHz ZB 3.0, U.FL Ant, SMT</td>
<td>XB3-24Z8US-J</td>
</tr>
<tr>
<td>XB24CZ7PIS-004</td>
<td>XBee3, 2.4 GHz ZB 3.0, PCB Ant, SMT</td>
<td>XB3-24Z8PS-J</td>
</tr>
<tr>
<td>XBP24CZ7RIS-004</td>
<td>XBee3 PRO, 2.4 GHz ZB 3.0, RF Pad Ant, SMT</td>
<td>XB3-24Z8RS</td>
</tr>
<tr>
<td>XBP24CZ7UIS-004</td>
<td>XBee3 PRO, 2.4 GHz ZB 3.0, U.FL Ant, SMT</td>
<td>XB3-24Z8US</td>
</tr>
<tr>
<td>XBP24CZ7PIS-004</td>
<td>XBee3 PRO, 2.4 GHz ZB 3.0, PCB Ant, SMT</td>
<td>XB3-24Z8PS</td>
</tr>
</tbody>
</table>

Micro options - new to Digi XBee3 Zigbee 3.0

<table>
<thead>
<tr>
<th>Legacy part number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XB3-24Z8RM-J</td>
<td>XBee3, 2.4 GHz ZB 3.0, RF Pad Ant, MMT</td>
</tr>
<tr>
<td>XB3-24Z8UM-J</td>
<td>XBee3, 2.4 GHz ZB 3.0, U.FL Ant, MMT</td>
</tr>
<tr>
<td>XB3-24Z8CM-J</td>
<td>XBee3, 2.4 GHz ZB 3.0, Chip Ant, MMT</td>
</tr>
<tr>
<td>XB3-24Z8RM</td>
<td>XBee3 PRO, 2.4 GHz ZB 3.0, RF Pad Ant, MMT</td>
</tr>
<tr>
<td>XB3-24Z8UM</td>
<td>XBee3 PRO, 2.4 GHz ZB 3.0, U.FL Ant, MMT</td>
</tr>
<tr>
<td>XB3-24Z8CM</td>
<td>XBee3 PRO, 2.4 GHz ZB 3.0, Chip Ant, MMT</td>
</tr>
</tbody>
</table>

Pin signals

The Digi XBee3 Zigbee 3.0 is available in three different form factors, Surface Mount (SMT), Through Hole (TH), and the newly introduced XBee3 Micro (MMT). The SMT and TH versions are pin compatible with existing XBee/XBee-PRO ZB (S2C) SMT and TH hardware. This hardware is drop-in replaceable. In order to fit all necessary pin connections on the XBee3 Micro, three pins on the SMT were removed and the remaining pins were shifted. These pins were unused on the SMT module. See the XBee3 Hardware Reference Manual for more information.
Configuration

Using XCTU, you can load the appropriate firmware to fit your current needs within the regulatory guidance of the region of deployment. See the XBee3 Zigbee User Guide for more information.

Digi XBee3 Zigbee 3.0 functional migration considerations

The Digi XBee3 Zigbee 3.0 module was designed to provide support for the Zigbee 3.0 specification. Some of the default configurations have changed to comply with Zigbee 3.0 requirements. See the XBee3 Zigbee User Guide for details. Some of these changes include:

- Over-the-air firmware updates now use ZCL frames. The firmware image will store and only boot to the new image, if it is complete. Firmware images will only boot if they are authentic, signed images from Digi. Firmware updates are no longer handled exclusively in the bootloader. There is no requirement for neighbor nodes in order to perform the update.
- A new ATET command (which is only set on an End Device) sets the child table timeout for the child’s parent.
- The ATEO command now defaults to 2 to act as a Centralized Trust Center network. For increased security, when encryption is enabled (ATEE=1), the module will default to Centralized Trust Center.
- The ATNJ command now defaults to 0xFE. This will limit the module’s ability to allow other devices to join to 254s. The Zigbee 3.0 standard does not allow for an open network. To always allow joining, you must set ATNJ=FF explicitly. Note that this change does not affect the functionality of enabling or disabling rejoining on end devices by setting ATNJ to FF.
- The ATDO command now defaults to 0x40 to enable a high RAM concentrator. This effectively does what the XBee/XBee-PRO ZB (S2C) was already doing for small networks. Use this setting for networks of 40 nodes or less. When using Source routing, routes will be stored on the module instead of requiring the use of an external micro to store route records.
- In Zigbee 3.0, NULL Transport keys are no longer allowed. As such, ATDO bit 3 is deprecated.
- The Enable Best Response Joining option moved from ATDO bit 2 to ATDC bit 3.
- Coordinator operation is no longer supported in a Distributed Trust Center (ATEE=1, ATEO=0) security model. This means that the 64-bit default address of 0x0000000000000000 should not be used to communicate to the “Coordinator”. Use the full EUI64 bit address instead.
- A new ATKT command lets you set the Trust Center link key registration timeout.
- A new ATI? command provides a random install code for the device to use during Trust Center registration to generate a link key.
- Enable Joiner Global Link Key (ATDC bit 0) has been removed for Zigbee 3.0 security, and this bit now enables using the install code as link key.
- The ADC voltage reference changed from 1.2 V to 1.25 V.
- Mark Parity UART support has been removed.
- If a serial break signal is sent during boot or reset, modem status API frames are no longer emitted.
- Some parameters have changed position in XCTU for usability.
- Please see the firmware release notes for additional details.
- TP command (module temperature) is available on both Pro and Non-Pro variants.
- The RSSI PWM period on the S2C was 200 µS, this has been changed to match other XBee firmwares and now outputs a signal with a 64 µS period. The M0 and M1 commands can be used to output a fixed duty cycle PWM signal on P0 and P1 if configured as a PWM output.

- ATSM5 (Cyclic sleep with pin wake) now behaves differently. Now the XBee3 ZigBee Cyclic sleep with pin wake will work as follows:
 The module will cyclically sleep while DTR is HIGH and will continue in its cyclic sleep patterns while DTR is held HIGH. Beginning with version 1006 the module SM = 5 will behave as expected. Unlike past designs turning DTR LOW will not only keep the module for only ST but rather for the whole duration while DTR is kept LOW.

Examples

OTA firmware update

The firmware update process has changed on the Digi XBee3 Zigbee 3.0. The XBee/XBee-PRO ZB (S2C) module required a source, updater, and target node. Under certain circumstances, nodes could be put in bootloader mode, and were therefore unavailable on the network. Additionally, if the firmware upload was interrupted at any point in the update process, the target module would then need to be “recovered”. This can be very taxing on a network, especially across multiple hops.

The OTA firmware update process has been improved on the Digi XBee3 Zigbee 3.0 module. First, the firmware update requires only the use of a server (node sending the firmware file), and a client node (node receiving the firmware file). The firmware image is sent in blocks using standard Zigbee Cluster Library (ZCL) frames. These frames are supported using the 0x11 Explicit Transmit Frame. The client device never goes offline. The image is simply stored in an internal flash slot of the module’s memory. Once the entire firmware file has been uploaded, the client can switch to the new firmware image. If at any point in the process the transfer was interrupted, the image will simply not pass a security check and the module will not boot into the new image.

The radio serving up the firmware image can be either a Digi XBee3 Zigbee 3.0 or XBee/XBee-PRO ZB (S2C). However, since the XBee/XBee-PRO ZB (S2C) requires that another XBee/XBee-PRO ZB (S2C) be a nearest neighbor to act as the updater node, there is some limitation as to how nodes can be updated in a mixed network.

The image below describes how it is determined whether nodes in a mixed network arrangement can be updated from a single firmware image server. The image server can be either Digi XBee3 Zigbee 3.0 or XBee/XBee-PRO ZB (S2C). S2C modules must be within range of another S2C module to be updated.
Security

Digi makes it easy to find the right level of security for your specific application, ranging from a completely open and unencrypted network, to a high security model with out-of-band commissioning. The Zigbee 3.0 standard default requires a higher security model than what is currently default on the XBee/XBee-PRO ZB (S2C). In order to better support Zigbee 3.0, the default configurations have changed.

An open network is one in which other Zigbee devices are allowed to join. Joining is enabled using the **ATNJ** command. The XBee/XBee-PRO ZB (S2C) for the **ATNJ** command is NJ=0xFF. This setting indefinitely enables joining to other nodes which pass the security model settings used. However, Zigbee 3.0 does not support an open joining model. To meet this requirement, the **ATNJ** command has a new default setting of NJ=0xFE. This generous joining window still allows other devices to join to the network through that node, while closing the window after 254s. The join window can be reopened again at any time with an **ATCB2**. If the joining window must be opened indefinitely, **ATNJ** can be configured to the old default, but this is not recommended.

The **ATNJ** command will continue to allow the enabling or disabling of rejoining end devices, as described in the XBee/XBee-PRO ZB (S2C) user guide. For an end device to enable rejoining, set NJ less than 0xFF on the device that joins. If NJ < 0xFF, the device assumes the network is not allowing joining and first tries to join a network using rejoining. If multiple rejoining attempts fail, or if NJ = 0xFF, the device attempts to join using association.

The **ATEE** command controls enabling encryption on a network. In a completely open network, ATEE is not enabled, and no security is employed. The **ATNJ** command restricts the join time to this type of network, but no other changes will affect a Digi XBee3 Zigbee 3.0 joining and communicating in this type of network.

Once encryption is enabled via the **ATEE=1** command, the level of security employed will primarily depend on the ATEO setting. The Digi XBee3 Zigbee 3.0 default for ATEO has changed to 2, which enables a Centralized Trust Center for key management.

The default for XBee/XBee-PRO ZB (S2C) is **ATEO=0**, which is a Distributed Trust Center model. If no ATEO option was used in XBee/XBee-PRO ZB (S2C), then ATEO must be explicitly set to match the XBee/XBee-PRO ZB (S2C) default.

With the XBee 3, in a “Distributed Trust Center” model, the network forms on the device that has ATCE=1, and there is no coordinator on the network. (The device forms the network as a router.) This means any traffic should be directed to the actual EUI64 address.
New AT commands

- **AZ** - API Extended Options - Optionally allow client-side OTA update API frames to come out of the serial port. This command will later be expanded to cover all ZDO/ZCL output options
- **AV** - Analog VREF Configuration - Set the analog reference voltage for ADC pins
- **M0** – P0 PWM Output – Set the output level of P0 when configured as PWM
- **M1** – P1 PWM Output – Set the output level of P1 when configured as PWM
- **VH** - Bootloader Version - Display the hardware version number of the device.
- **IC** - Clear custom defaults - Resets factory configuration values
- **%F** - Set custom defaults – Set new custom default values
- **R1** - Restore factory defaults – Restore factory configured default values
- **KT** – Trust Center Link Key Registration Timeout - Trust Center Link Key Registration Timeout?

Changed AT commands

- **NB** – Mark Parity is no longer available
- **DD** - Default changed from 0xA0000 to 0x12000
- **EO** – Default Changed from 0 to 2
- **P5, P6, P7, P8, P9** – now have Digital out Low and High
- **PD, PR** – Chang max range from 0x7FFF – 0xFFFF

Expanded channel selection

The IEEE 802.15.4 standard allows for 16 channels to be used for communication: from 2.405 GHz (Channel 11) through 2.480 GHz (Channel 26).

On the previous XBee-PRO S2 and XBee-PRO S2C modules, the range of available channels (via the CH command) was restricted on the PRO variant. This restriction is alleviated on the XBee3 and all 16 channels are available for use regardless of the variant.

If you are designing an application that will be interoperating with legacy S2 and/or S2C PRO modules, the CH parameter on the XBee3 needs to be within 0x0C and 0x17 to communicate.

Display output power

The PP AT Command will return the operating power level of the device in dBm based on the current operating configuration. Boost Mode (PM) is no longer available, as both the Pro and Non-PRO variants of the XBee3 hardware have enhanced receive sensitivity.

Voltage reference

The default ADC voltage reference changed from 1.2 V to 1.25 V.

The VREF pin from the XBee Series 1 is not supported by the XBee3 hardware and has been removed from the Micro (MMT) form factor.
The ADC internal voltage reference can be set to 1.25 V, 2.5 V or VDD using the AT command AV.

Overvoltage detection

An overvoltage 0x8A modem status has been added to warn the user of VCC input voltages exceeding the maximum rated 3.6 Volts. API mode (AP is set to 1 or 2) must be enabled to see this status message.

Bootloader update support

The bootloader of the XBee3 can be updated in addition to the XBee application. The bootloader update can be performed serially or over the air. When the bootloader is updated serially, the XBee application is erased and must be reinstalled.

The bootloader can also be updated over the air. This is done by updating the XBee application and bootloader as a single image.

Future updates

For the most up-to-date information on what features and enhancements have been added in the XBee software, refer to the release notes that are included with each software update.