
ConnectCore 6
U-Boot Customizations

Reference Manual

Revision history—90001422

Revision Date Description

A August, 2014 Initial release

B October, 2014 Added SBCv2 support; added carrier board version
support; disable autoscript by default; console is UART4
on SBC; added known issues.

C June, 2015 Update from RAM support; eMMC-less variants support;
corrected link on page 5.

D September, 2017 Updated branding andmade editorial enhancements.

Trademarks and copyright
Digi, Digi International, and the Digi logo are trademarks or registered trademarks in the United
States and other countries worldwide. All other trademarks mentioned in this document are the
property of their respective owners.
© 2017 Digi International Inc. All rights reserved.

Disclaimers
Information in this document is subject to change without notice and does not represent a
commitment on the part of Digi International. Digi provides this document “as is,” without warranty of
any kind, expressed or implied, including, but not limited to, the implied warranties of fitness or
merchantability for a particular purpose. Digi may make improvements and/or changes in this manual
or in the product(s) and/or the program(s) described in this manual at any time.

Warranty
To view product warranty information, go to the following website:
www.digi.com/howtobuy/terms

Send comments
Documentation feedback: To provide feedback on this document, send your comments to
techcomm@digi.com.

Customer support
Digi Technical Support: Digi offers multiple technical support plans and service packages to help our
customers get the most out of their Digi product. For information on Technical Support plans and
pricing, contact us at +1 952.912.3444 or visit us at www.digi.com/support.

ConnectCore® 6 Reference Manual 2

http://www.digi.com/howtobuy/terms
mailto:techcomm@digi.com
http://www.digi.com/support

Contents

About the ConnectCore 6 U-Boot
Version 5
Supported interfaces 5

Digi custom commands
Direct boot: ‘dboot’ 7

Syntax 7
Examples 7

Firmware update: ‘update’ 9
Examples 10
Addresses 10
Image file names 10
Source media 10
On-the-fly (OTF) update mechanism 11
Update files within partition 11

MMC extended CSD register: mmc ecsd 12

eMMC partitioning

Environment variables

One-time programmable (OTP) bits (e-fuses)
HWID and MAC address OTP words 17
Carrier board version 17

Coding the carrier board version on the OTP bits 17
Querying the carrier board for conditional code 17

Auto bootscript
Bootscript process 19
Creating a bootscript 19

ConnectCore® 6 Reference Manual 3

ConnectCore® 6 Reference Manual 4

Updating the boot loader

Recovering a bricked device
Create a bootable microSD card from a U-Boot image 22

Using Linux 22
Using Windows 22
Boot from a uSD card 24

Known issues
PHY autonegotiation delay 26

About the ConnectCore 6 U-Boot

The ConnectCore 6 platform uses U-boot (Universal Bootloader) as its primary boot loader. U- Boot is
an open-source project. Standard documentation about commands, environment variables, Flattened
Device Tree support andmore can be found at www.denx.de/wiki/U-Boot/Documentation.
This guide only describes specific changes done by Digi to the standard U-Boot.

Version
U-Boot for ConnectCore 6 is based on standard U-Boot v2013.04 plus Freescale patches at
git.freescale.com/git/cgit.cgi/imx/uboot-imx.git.

Supported interfaces
The ConnectCore 6 module supports the following interfaces:

n UART4 for console (115200/8/N/1)

n 1GB DDR3

n 4GB eMMC for storage (on USDHC4)

n uSD card (on USDHC2)

n Gigabit Ethernet on Micrel PHY KSZ9031 (RGMII)

n I2C multi-port

n OTP bits (e-fuses)

ConnectCore® 6 Reference Manual 5

http://www.denx.de/wiki/U-Boot/Documentation
http://git.freescale.com/git/cgit.cgi/imx/uboot-imx.git

Digi custom commands

In addition to the standard U-Boot commands, Digi provides custom U-Boot commands to perform
common embedded platforms operations more efficiently.

Direct boot: ‘dboot’ 7
Firmware update: ‘update’ 9
MMC extended CSD register: mmc ecsd 12

ConnectCore® 6 Reference Manual 6

Digi custom commands Direct boot: ‘dboot’

ConnectCore® 6 Reference Manual 7

Direct boot: ‘dboot’
The dboot command simplifies operating system bootup by performing the following operations:

n Downloads the required files (kernel, flattened device tree, init ramdisk) from the specified
media to RAM.

n Sets the bootargs variable with the boot command line required for the operating system.

n Boots the system.

Syntax
=> help dboot
dboot - Digi modules boot command
Usage:
dboot <os> [source] [extra-args...]
Description: Boots <os> via <source>
Arguments:
- os: a partition name or one of the reserved names:

linux|android
- [source]: tftp|nfs|mmc
- [extra-args]: extra arguments depending on 'source'

source=tftp|nfs -> [filename]
- filename: file to transfer (if not provided, filename will

will be taken from variable '<partition>_file')
source=mmc -> [device:part] [filesystem] [filename]
- device:part: number of device and partition
- filesystem: fat (default)|ext4
- filename: file to transfer (if not provided, filename will

will be taken from variable '<partition>_file')

Examples
n Boot Linux from TFTP using kernel image uImage-test:

=> dboot linux tftp uImage-test

n Boot Android from FAT partition 1 on eMMC (kernel image name taken by default from variable
$uimage):

=> dboot android mmc

The behavior of the dboot command is highly customizable through its parameters and also using the
following environment variables:

Addresses
n $loadaddr: this is the RAM address where the kernel image is downloaded to.

n $fdt_addr: this is the RAM address where the flattened device tree image is downloaded to.

n $initrd_addr: this is the RAM address where the init ram disk image is downloaded to.

Digi custom commands Direct boot: ‘dboot’

ConnectCore® 6 Reference Manual 8

Image file names
n $uimage: this is the kernel image filename

n $fdt_file: this is the flattened device tree image filename

n $initrd_file: this is the init ramdisk image filename

Modifiers
n $boot_fdt: can be set to:

l yes: flattened device tree is required. If it cannot be downloaded dboot command will fail.

l try: dboot will try to load a flattened device tree file but will continue to boot the kernel
without it if not available.

l no: flattened device tree not required. dboot will not try to download it.

n $boot_initrd: can be set to:
l yes: init ramdisk is required. If it cannot be downloaded dboot command will fail.

l try: dboot will try to load an init ramdisk file but will continue to boot the kernel without it
if not available.

l no: init ramdisk not required. dboot will not try to download it.

n $ip_dyn: can be set to
l yes: will append 'ip=dhcp' to the kernel $booargs when booting for fetching dynamic

address when booting from TFTP/NFS.

l no: will append 'ip=${ipaddr}:${serverip}:${gatewayip}:${netmask}:${hostname}' to the
kernel $booargs for using the static IP address configured in U-Boot, when booting from
TFTP/NFS.

Source media
n $mmcdev: this is the default device index when reading files from the MMC (when no device

index is passed as parameter).

n $mmcpart: this is the default partition index when reading files from the MMC (when no
partition index is passed as parameter).

Boot arguments
n $bootargs_android: contains common Android boot arguments (independent of the media

where Android is booting from).

n $bootargs_mmc_android: script that sets the bootargs variable with Android boot arguments
when booting from the MMC.

n $bootargs_tftp_android/$bootargs_nfs_android: script that sets the bootargs variable with
Android boot arguments when booting from TFTP and NFS.

n $bootargs_mmc_linux: script that sets the bootargs variable with Linux boot arguments
when booting from the MMC.

Digi custom commands Firmware update: ‘update’

ConnectCore® 6 Reference Manual 9

n $bootargs_tftp_linux/$bootargs_nfs_linux: script that sets the bootargs variable with Linux
boot arguments when booting from TFTP and NFS.

n $rootpath: this is the NFS root path to use in the bootargs when booting from TFTP/NFS.

n $mmcroot: this is the root path to use in the bootargs when booting from MMC.

n $video_args: the contents of this variable are appended to the bootargs variable when
booting Android OS. The variable is a placeholder for the video arguments to pass to Android
OS (Linux OS defines the video via the Device Tree).

n $bootargs_once: this is a special variable that is appended to the bootargs. It can only be set
locally with the equals sign not with setenv command:

=> bootargs_once="<arguments>"

This means the variable is not saved across reboots and will pass boot arguments only once.
n $extra_bootargs: this variable is a placeholder for appending any customized boot arguments

at the end of the cmdline.

Firmware update: ‘update’
The update command simplifies the task of updating a partition of the storage media by performing
the following operations:

n Download the required firmware image files from the specified media to RAM.

n Retrieve and check information (offset, size) of the partition to update.

n Write the firmware image to the partition.

n Read back and verify the written firmware image.

n The syntax of the update command is:

=> help update
update - Digi modules update command

Usage:
update <partition> [source] [extra-args...]
Description: updates (raw writes) <partition> in $mmcdev via <source>
Arguments:
- partition: a partition index, a GUID partition name, or one

of the reserved names: uboot
- [source]: tftp|nfs|mmc|ram
- [extra-args]: extra arguments depending on 'source'

source=tftp|nfs -> [filename]
- filename: file to transfer (if not provided, filename will

will be taken from variable '<partition>_file')

source=mmc -> [device:part] [filesystem] [filename]
- device:part: number of device and partition
- filesystem: fat (default)|ext4
- filename: file to transfer (if not provided, filename will

will be taken from variable '<partition>_file')

Digi custom commands Firmware update: ‘update’

ConnectCore® 6 Reference Manual 10

source=ram -> [image_address] [image_size]
- image_address: address of image in RAM

($loadaddr if not provided)
- image_size: size of image in RAM

($filesize if not provided)

Examples
n Update partition named system with file test.img downloaded from TFTP:

=> update system tftp test.img

n Update the boot loader on the eMMC of the module using default filename (in variable uboot_

file) that is stored on a FAT partition on the uSD card:

=> update uboot mmc 1:1 fat

The behavior of update command is customizable through its parameters and also using the
following environment variables:

Addresses
n $loadaddr: this is the RAM address where the firmware image file to use for the update is

downloaded to.

n $verifyaddr: this is the RAM address where the firmware image is read back for verification.
Normally, you should not set this variable, and U-Boot automatically sets it to a RAM address
halfway through the available RAM, starting at $loadaddr, to maximize the size of firmware
that can be transferred to RAM and verified during the update process.

Image file names
n $uboot_file: this is the default image filename to use for updating the boot loader (if no

filename is passed as parameter).

n • $<partition-name>_file: a variable of this form will contain the default filename to use for
updating the partition of that specific name. E.g. for a partition named system the variable
containing the default filename should be called system_file.

Source media
n $mmcdev: this is the default device index when reading files from the MMC (when no device

index is passed as parameter). This variable is also used as target MMC device index to write
the firmware to.

n $mmcpart: this is the default partition index when reading files from the MMC (when no
partition index is passed as parameter).

Digi custom commands Firmware update: ‘update’

ConnectCore® 6 Reference Manual 11

On-the-fly (OTF) update mechanism
The standard update command first transfers the file completely from a media into the RAM memory.
Then it writes the file from RAM into the MMC partition. Occasionally, the firmware files used to
update a certain partition are very large, maybe larger than the available RAM of the platform. In that
scenario, we must use a mechanism that transfers the file from the media to RAM in chunks. After
transferring one chunk, the chunk is written to the storage media verified, and the RAM memory is
reused to transfer the next chunk. We call this mechanism on-the-fly update.
The on-the-fly update mechanism can be activated by defining the variable otf-update to yes, and then
using the update command normally. For example:

=> setenv otf-update yes

The on-the-fly update mechanism can only work when updating from TFTP source and is only
recommended to update very large images. Notice that if there is any problem during the
transmission of the file, the partition will be left partially written (as opposed to the standard update
where if the transmission fails, the partition remains untouched).
For security reasons, the on-the-fly update mechanism is automatically disabled when updating the
boot loader.
If the variable otf-update is undefined, U-Boot may automatically activate the on-the-fly update
mechanism if the size of the partition to be updated is larger than the available RAM to hold the
firmware.

WARNING! The on-the-fly update mechanism will pause the TFTP transfer while it
writes each chunk to the storage media, and will resume it after reading back and
verifying the written data, for this reason it may not work with all TFTP servers.

Check that your TFTP server has a large enough timeout so that it does not cancel the
transfer due to not receiving the client's ACKs in time while the device is writing. Also,
disable any mechanism that sends packets without waiting for the client's ACKs (such as
anticipation window) that might not work with on-the-fly update mechanism.

Update files within partition
The updatefile command simplifies the update of files in a partition filesystem. While the standard
update command writes raw data to the storage media, the updatefile command uses U-Boot file
system support to write files to a formatted partition. Specifically it does the following:

n Download the required files from the specified media to RAM.

n Write the file to the storage media partition filesystem.

The syntax of the updatefile command is:

=> help updatefile
updatefile - Digi modules updatefile command

Usage:
updatefile <partition> [source] [extra-args...]
Description: updates/writes a file in <partition> in $mmcdev via

<source>
Arguments:
- partition: a partition index or a GUID partition name where

to upload the file
- [source]: tftp|nfs|mmc|ram

Digi custom commands MMC extended CSD register: mmc ecsd

ConnectCore® 6 Reference Manual 12

- [extra-args]: extra arguments depending on 'source'

source=tftp|nfs -> [source_file] [targetfile] [target_fs]
- source_file: file to transfer
- target_file: target filename
- target_fs: fat (default)

source=mmc -> [device:part] [filesystem] [source_file] [target_file]
[target_fs]

- device:part: number of device and partition
- filesystem: fat (default)|ext4
- source_file: file to transfer
- target_file: target filename
- target_fs: fat (default)

source=ram -> [image_address] [image_size] [targetfile] [target_fs]
- image_address: address of image in RAM

($loadaddr if not provided)
- image_size: size of image in RAM

($filesize if not provided)
- target_file: target filename
- target_fs: fat (default)

Examples:
Update file newkernel.bin from TFTP to linux FAT partition:

=> updatefile linux tftp newkernel.bin

Update file newkernel.bin from uSD card FAT partition 3 to linux FAT partition and save it with
filename my-uImage:

=> updatefile linux mmc 1:3 fat newkernel.bin my-uImage fat

Limitations:
n Only FAT filesystem is supported

n Files can be overwritten but cannot be deleted

n Filesystem support does not check for available space

n Writing a file on a filesystem that does not have space for it may corrupt the entire filesystem.

MMC extended CSD register: mmc ecsd
eMMC v4.4 specification defines a 512-byte Extended CSD register that contains parameters of the
eMMC. The mmc command has been extended with subcommand ecsd to access the fields of this
register. Available operations are:

=> help mmc
mmc - MMC sub system

Usage:
mmc read addr blk# cnt mmc write addr blk# cnt mmc erase blk# cnt
mmc rescan
mmc part - lists available partition on current mmc device
mmc dev [dev] [part] - show or set current mmc device [partition] mmc list -

Digi custom commands MMC extended CSD register: mmc ecsd

ConnectCore® 6 Reference Manual 13

lists available devices
mmc ecsd dump - dump ECSD values
mmc ecsd read offset - read ECSD value at offset
mmc ecsd write offset value - write ECSD value at offset

eMMC partitioning

eMMC v4.4 specification defines four physical (hardware) partitions:
n Boot 1

n Boot 2

n RPMB

n User Data

The size of the Boot and RPMB partitions is fixed in the chip and can be determined by reading
information at the Extended CSD register. They are small partitions to hold a boot loader or secure
parameters. The main storage is located at the User Data area.
ConnectCore 6 eMMC partitions are used for the following:

n Boot 1: holds the U-Boot boot loader.

n Boot 2: holds the U-Boot environment and its redundant copy.

n RPMB: not used.

n User Data: holds the operating system (divided in logical partitions).

The User Data area can be partitioned as any standard block device. In U-Boot, the command gpt
allows you to write a GUID partition table (GPT) by passing a string with the partition attributes. GPT
standard supersedes old MBR partition table allowing to define multiple partitions with names and
universal unique identifiers (UUID).
There are two scripts (as environment variables) that use the gpt command to partition the internal
eMMC with a default partition table for Linux or Android operating systems:

n $partition_mmc_linux

n $partition_mmc_android

You can view the partition table details by printing the contents of each variable with printenv.
If you want to modify the number, start offset, or size of the partitions you can edit the values of
variables $parts_linux or $parts_android.

WARNING! These scripts partition the MMC device pointed to by variable $mmcdev.
Never run these commands to partition a bootable microSD card. A Bootable microSD
stores U-Boot on sector 2 and the GUID partition table uses the first 34 sectors,
overwriting U-Boot andmaking the microSD card non-bootable. U-Boot in bootable
microSD cards can only coexist with a DOS partition table.

ConnectCore® 6 Reference Manual 14

https://en.wikipedia.org/wiki/GUID_Partition_Table

Environment variables

There are several environment variables worth mentioning:

Variable Description Flags

ethaddr MAC address of the first wired Ethernet interface change-default

wlanaddr MAC address of the WLAN interface change-default

btaddr MAC address of the Bluetooth interface change-default

These variables are protected and will not be overwritten by setenv or env default command (unless
manually forced with -f option).
On variants with eMMC, the MAC addresses are programmed by Digi during manufacturing and saved
in the U-Boot environment on the eMMC.
On variants without eMMC, the MAC addresses are not programmed. You should program the MAC
addresses of the available interfaces and save the environment on your boot storage media. The
printed CC6 label contains the MAC addresses we assign to the unit.

=> setenv ethaddr 00:40:9D:AA:AA:AA
=> setenv wlanaddr 00:40:9D:BB:BB:BB
=> setenv btaddr 00:40:9D:CC:CC:CC
=> saveenv

After saving the environment, you cannot overwrite the MAC addresses using setenv or env default
(unless forced with the -f option).
The following image shows the CC6 module label with the MAC addresses.

ConnectCore® 6 Reference Manual 15

One-time programmable (OTP) bits (e-fuses)

The ConnectCore 6 has one-time programmable (OTP) bits. Most of the OTP bits have dedicated
functionality and some are free to use. U-Boot supports access to the OTP bits through the fuse
command.
See the CPU Reference Manual for information about the OTP bits.

WARNING! Programming the OTP bits is an irreversible operation that could potentially
brick your module. Use the fuse command with extreme care.

HWID and MAC address OTP words 17
Carrier board version 17

ConnectCore® 6 Reference Manual 16

One-time programmable (OTP) bits (e-fuses) HWID and MAC address OTP words

ConnectCore® 6 Reference Manual 17

HWID and MAC address OTP words
Digi saves MAC addresses in U-Boot environment variables (ethaddr, wlanaddr, btaddr). The two OTP
words originally meant for the MAC address are reserved for Digi HWID, a unique identifier of the
module.

Carrier board version
Since the ConnectCore 6 is an SMDmodule, customers can design their own carrier boards. Carrier
boards often suffer redesigns and it is useful for the software to be able to determine the version of
the carrier board it is running on. This allows the user to have conditional code depending on the
board's version (like enabling different GPIOs or using different IOMUX).
Digi U-Boot has built-in support to program and query the carrier board version number on the OTP
bits.

Coding the carrier board version on the OTP bits
First, your board's include file should define:

#define CONFIG_HAS_CARRIERBOARD_VERSION

Second, you must define which OTP bits you will use to code the carrier board version. This is done by
defining the following constants on your board's include file:

#define CONFIG_CARRIERBOARD_VERSION_BANK
#define CONFIG_CARRIERBOARD_VERSION_WORD
#define CONFIG_CARRIERBOARD_VERSION_MASK
#define CONFIG_CARRIERBOARD_VERSION_OFFSET

For the SBC carrier board, Digi uses the lower 4 bits of the OTP General Purpose 1 register (GP1)
which corresponds to Bank 4, Word 6 with a mask 0xf (four bits) and an offset of 0 (lower four bits).
Not counting the value of 0x0, these four bits allow you to code up to 15 board versions.
You can use this layout for your own carrier board or a different one.

Querying the carrier board for conditional code
ConnectCore 6 module common source code defines function get_carrierboard_version() which can
be used to create conditional code basing on the carrier board version, for example:

switch (get_carrierboard_version()) {
case 1:

/* Code for carrier board version 1 */
break;

case 2:
/* Code for carrier board version 2 */
break;

default:
/* Code for other (or undefined) carrier board version */
break;

}

Auto bootscript

The bootscript is a script that is automatically executed when the boot loader starts, before U-Boot’s
default boot command bootcmd.

The bootscript allows the user to execute a set of predefined U-Boot commands automatically, before
proceeding with normal boot. This is especially useful for production environments and targets which
don’t have an available serial port for showing the U-Boot monitor.

Bootscript process 19
Creating a bootscript 19

ConnectCore® 6 Reference Manual 18

Auto bootscript Bootscript process

ConnectCore® 6 Reference Manual 19

Bootscript process
The bootscript works in the following way:

1. U-Boot checks the variable bootscript. If it exists U-Boot tries to download the filename
referred by the variable from the TFTP server IP address defined at variable $serverip (by
default 192.168.42.1). If the bootscript file is successfully downloaded, it is executed.

2. If any of the commands in the bootscript fails, the rest of the script is cancelled.

3. When the bootscript has been fully executed (or cancelled) U-Boot continues normal execution.

To cancel the automatic bootscript download, erase the $bootscript variable by setting it to
nothing:

=> setenv bootscript

=> saveenv

WARNING! On the ConnectCore 6, the variable bootscript is undefined by default. For
more information, please refer to the PHY autonegotiation delay section.

Creating a bootscript
To create a bootscript file create a plain text file with the sequence of U-Boot commands. It is
recommended that the last command erases the variable bootscript to avoid the bootscript from
executing a second time.

For example, create a file calledmyscript.txt with the following contents:

setenv company digi
setenv bootdelay 1
printenv company
setenv bootscript
saveenv

This script creates a new variable called company with value digi and sets the bootdelay to one
second. Finally it erases the variable bootscript so that U-Boot doesn’t try to execute the bootscript
in the future, and saves the changes.

1. Execute the mkimage tool (provided with U-Boot in the tools subdirectory) with the file above
as input file. Syntax is:mkimage -A arm -T script -n "Bootscript" -C none -d <input_file>

<output_file>

The name of the output file must be in the form <platformname>-boot.scr, where
<platformname> must be replaced with your target’s platform name.

For example, to create the bootscript from the text file above and for a ConnectCore 6 SBC platform,
go to the U-Boot directory and execute:

tools/mkimage -A arm -T script -n "Bootscript" -C none -d myscript.txt
ccimx6sbc-boot.scr

Updating the boot loader

It is possible to update the boot loader in the storage media using the update command. For
example, to update from TFTP using the default filename (in variable uboot_file):

=> update uboot tftp

WARNING! Writing an invalid boot loader file may lead to the target not booting.

Digi will release U-Boot updates from time to time to fix problems or add new functionality.
Much of the custom functionality added to U-Boot depends on environment variables and scripts that
may have new values in newly released versions.
Generally, after upgrading U-Boot, it is recommended to reset the environment to its defaults using
the following command.

=> env default -a

This will reset the whole environment, with the exception of protected variables (like the MAC
addresses).
After resetting the environment, you may need to adjust your manufacturing or boot scripts to
accommodate to changes in the default environment, like new or modified scripts, variables and
default filenames

ConnectCore® 6 Reference Manual 20

Recovering a bricked device

If for any reason the bootloader has been erased from the storage media (or written with an invalid
image) and the target does not boot, we can boot the target from an alternative source, like the uSD
card.
The ConnectCore 6 Getting Started Guide documentation (available on
http://www.digi.com/products/wireless-wired-embedded-solutions/solutions-on-
module/connectcore/connectcore-imx6#docs) contains instructions to create a full bootable uSD card
with a complete Linux or Android operating system. The following chapter will only show you how to
create a bootable uSD card if you have a U- Boot boot loader binary image file (for example: u-boot-
ccimx6sbc.imx).

Note The ROM loader of the CPU expects to find U-Boot on sector 2 of the block device (offset of 1024
bytes).

Create a bootable microSD card from a U-Boot image 22

ConnectCore® 6 Reference Manual 21

http://www.digi.com/products/wireless-wired-embedded-solutions/solutions-on-module/connectcore/connectcore-imx6#docs
http://www.digi.com/products/wireless-wired-embedded-solutions/solutions-on-module/connectcore/connectcore-imx6#docs

Recovering a bricked device Create a bootable microSD card from a U-Boot image

ConnectCore® 6 Reference Manual 22

Create a bootable microSD card from a U-Boot image
You might need root/Administrator permissions.

WARNING! The following procedure will destroy existing data in the uSD card.

Using Linux
1. Insert the uSD card to your computer and check the node Linux assigns to it (/dev/[sdcard])

using dmesg:

dmesg
[1413652.901270] sd 41:0:0:0: [sdc] 7744512 512-byte logical blocks:

(3.96 GB/3.69
GiB)
[1413652.903140] sd 41:0:0:0: [sdc] No Caching mode page present
[1413652.903144] sd 41:0:0:0: [sdc] Assuming drive cache: write

through
[1413652.905638] sd 41:0:0:0: [sdc] No Caching mode page present
[1413652.905642] sd 41:0:0:0: [sdc] Assuming drive cache: write

through
[1413652.915154] sdc: sdc1

2. Do not mount any partitions the cardmight contain (or unmount any partition if automatically
mounted) as you will be writing to the entire block device.

3. Write the U-Boot image file to the uSD card with this command:

sudo dd if=[path/filename.imx] of=/dev/[sdcard] bs=512 seek=2
oflag=sync

where
n [path/filename.imx] must be substituted with the path and filename to the U-Boot image.

n /dev/[sdcard] must be substituted with the device node assigned by Linux to your uSD card.

WARNING! An incorrect device node here might destroy all data on your computer hard
drive).

The uSD card is now ready.

Using Windows
1. Download and uncompress the dd application for Windows from www.chrysocome.net/dd

2. Open a Command Prompt console in Windows.

3. Insert the uSD card to your computer.

Recovering a bricked device Create a bootable microSD card from a U-Boot image

ConnectCore® 6 Reference Manual 23

4. Change to the directory where the dd application was uncompressed and run it to list the
available drives and identify the device node assigned to your SD card (follow the dd
documentation on the web page):

dd --list

5. Copy the U-Boot image file to the same directory where the dd program is.

6. Write the U-Boot image file to the uSD card with this command:

dd if=[filename.imx] \\.\Volume{UUID}\ bs=512 seek=2

where
n [filename.imx] must be substituted with the filename of the U-Boot binary image.

n UUIDmust be substituted by the identifier given by Windows to the uSD card on the --list
command.

The uSD card is now ready.

Recovering a bricked device Create a bootable microSD card from a U-Boot image

ConnectCore® 6 Reference Manual 24

Boot from a uSD card
1. Insert the uSD card on the uSD card holder.

2. Change the boot source configuration to boot from the uSD card:

a. If using an SBC version1 (30014752-01), set the boot source jumpers: J4: open, J5:
closed.

b. If using an SBC version2 (30014752-02), set the boot source microswitches: SW3.1:
OFF, SW3.2: ON.

3. Power up the board.

When booted from uSD card, U-Boot reads/writes the environment from the uSD card as well,
at an offset of 0x1C0000 bytes.

WARNING! Such a microSD can hold a DOS partition table but not a GPT partition
table. The first partition should start at an offset of 2MiB minimum, to avoid
overwriting U-Boot or its environment.

Known issues

PHY autonegotiation delay 26

ConnectCore® 6 Reference Manual 25

Known issues PHY autonegotiation delay

ConnectCore® 6 Reference Manual 26

PHY autonegotiation delay
The Micrel PHY KSZ9031 on the SBC carrier boardmay take between 5 and 6 seconds to
autonegotiate with Gigabit switches. To avoid this long delay during boot, the variable bootscript is
undefined by default and the auto bootscript feature does not run.
To speed up the PHY's autonegotiation, you can:

n Use a 10/100 switch (not Gigabit).

n Force the Micrel PHY to work as master during master/slave negotiation by setting variable
phy_mode tomaster.

	About the ConnectCore 6 U-Boot
	Version
	Supported interfaces

	Digi custom commands
	Direct boot: ‘dboot’
	Syntax
	Examples

	Firmware update: ‘update’
	Examples
	Addresses
	Image file names
	Source media
	On-the-fly (OTF) update mechanism
	Update files within partition

	MMC extended CSD register: mmc ecsd

	eMMC partitioning
	Environment variables
	One-time programmable (OTP) bits (e-fuses)
	HWID and MAC address OTP words
	Carrier board version
	Coding the carrier board version on the OTP bits
	Querying the carrier board for conditional code

	Auto bootscript
	Bootscript process
	Creating a bootscript

	Updating the boot loader
	Recovering a bricked device
	Create a bootable microSD card from a U-Boot image
	Using Linux
	Using Windows
	Boot from a uSD card

	Known issues
	PHY autonegotiation delay

