0IGlI

Digi XBee® 3 ZigBee®

User Guide

Revision history—90001539
Foibon [Date lpemaplor

J September | Added a note to D8. Updated OTA firmware/file system upgrades.
2020 Updated Considerations for older firmware versions.

K April 2021 Updated ZDO clusters to indicate XBee support.

L July 2021 Added safety instructions.

M March 2022 | Added translated safety instructions.

N December | Added bit 6 to DC.
2023 Updated ESD requirements to be split per model (RR & XBee3 vs

868 & 900)

Added General Purpose Flash Memory

Added GPM Return Codes and updated relevant codes (0x05, 0x06,
0x80, 0x81, 0x82, 0x83,0x84, 0x85, 0x86)

Added Install Application and Verify Application instructions
Updated Frame Types 0x90, 0x91, and 0x92 to match 0x95

Added D% command

Updated CB, DO, ET commands

Trademarks and copyright

Digi, Digi International, and the Digi logo are trademarks or registered trademarks in the United
States and other countries worldwide. All other trademarks mentioned in this document are the
property of their respective owners.

© 2017-2023 Digi International Inc. All rights reserved.

Disclaimers

Information in this document is subject to change without notice and does not represent a
commitment on the part of Digi International. Digi provides this document “as is,” without warranty
of any kind, expressed or implied, including, but not limited to, the implied warranties of fitness or
merchantability for a particular purpose. Digi may make improvements and/or changes in this
manual or in the product(s) and/or the program(s) described in this manual at any time.

Warranty

To view product warranty information, go to the following website:

www.digi.com/howtobuy/terms

Digi XBee® 3 Zigbee® RF Module 2

http://www.digi.com/howtobuy/terms

Customer support

Gather support information: Before contacting Digi technical support for help, gather the following
information:

Product name and model

Product serial number (s)

Firmware version

Operating system/browser (if applicable)
Logs (from time of reported issue)

Trace (if possible)

Description of issue

Steps to reproduce

Contact Digi technical support: Digi offers multiple technical support plans and service packages.
Contact us at +1 952.912.3444 or visit us at www.digi.com/support.

Feedback

To provide feedback on this document, email your comments to
techcomm@digi.com

Include the document title and part number (Digi XBee® 3 Zighee® RF Module, 90001539 M) in
the subject line of your email.

Digi XBee® 3 Zigbee® RF Module 3

http://www.digi.com/support
mailto:techcomm@digi.com

Contents

Applicable firmware and hardware
Change the firmware protocol
Regulatory information

Safety instructions
XBeemodUules
NHcTpykumu 3a 6e3onacHocT
XBee mogynu
Sigurnosne upute
XBee mMOdUIi ...
Bezpecnostni instrukce
MOAUlY XBe
Sikkerhedsinstruktioner
XBee mModUIET ...
Veiligheidsinstructies
XBee-modules
OhUtUSUNISEA ... o
XBee moodulid
Turvallisuusohjeet
XBee moduUlit
Consignes de sécurité
Modules XBee

XBee-ModUle
OONYIEG OOPONEIOG . o
Biztonsagi utasitasok

XBee MOAUIOK ...
Istruzioni di sicurezza
DroSibas instrukcijas
Saugos instrukcijos

XBee moduli@i ...
Sikkerhetsinstruksjoner

XBee-MOdUIET
Instrukcje bezpieczenstwa

Moduty XBee

Digi XBee® 3 Zigbee® RF Module

Instrugdes de SequIranGa
MOAUIOS XBEE o
Instructiuni de siguranta
ModUle XB e ...
Bezpe€nostné inStrukcie
MOAUlY XBe .
Varnostna navodila
XBee moduli ...
MOdUIOS XB e .. .

Configure the device using XCTU ..
Customdefaults

Restore factory defaults
LimitatioNs
Custom configuration: Create a new factory default
Seta custom configuration ...
Clear all custom configurationonadeviceooci
XBee bootloadero
Send afirmWare IMage ...
Software [ibraries ...

About MicroPYthoN .
MicroPython on the XBee 3 Zigbee RF Module
Use XCTU to enter the MicroPython environment ...
Use the MicroPython Terminal in XCTU ...,
MICroPYthon eXamples
Example: helloworld ...
Example: enter MicroPython paste mode
Example: usethetime module
Example: AT commands using MicroPython
MicroPython networking and communication examples ...
Zigbee networks with MicroPython ...
Example: forming and joining a Zigbee network using MicroPython
Example: network Discovery using MicroPython ..
Examples: transmitting data ...
Receiving datal
Example: communication between two XBee 3 Zigbee modules ...
Exit MicroPython mode .. .
Other terminal programs . .

Digi XBee® 3 Zigbee® RF Module

Tera Term for WiNdOWS ... o
Use PICOCOM N LINUX ..o
Micropython help () ...

SECUIE SESSIONS .
Configure the secure session password foradevice ...
Start @ SeCUre SESSION
ENnd asecure SeSSiON ...l

Secure a hode against unauthorized remote configuration ...
Remotely configure a node thathasbeensecured ...
Send datatoasecured remote NOAE
ENd @ SeSSion frOmM @ SEIVeT ...
Secure SessioN AP frames
Secure transmisSiON faillures

Overview of thefile system ...
Directory StrUCIUNe .
PatnS

Enable BLE on the XBee 3 Zigbhee RF Module ...
Enable BLE and configure the BLE passwordcooii
Get the Digi XBee Mobile phone application
Connect with BLE and configure your XBee 3 Zigbee RF Module

BLE advertising behaviorand services
Device Information ServiCe ...
XBee AP BLE SeIVICE .. o
API Request characteristic ...
API Response characteristic ...

Serial N ACE .
UAR T data floW ..o

Serial data ..o
Serial DU OIS .

Digi XBee® 3 Zigbee® RF Module

TS floW CONIIOl .
RIS floOW CONMIOl
Break CONtIOl ..
L2

SPl commuUNICatioNS
Full duplex operation
Low power Operation
SeleCt the SPI POIt .
Force UART Operation

Transparentoperating mode

Serial-to-RF packetization
APl operating mMode
Command MO

TroubleshOOtiNg
Send AT COMMaANAS
Response to AT COmMmMands
Apply command Changes
Make command changes permanent
ExitCommand mode ...
dle MO .

The Zigbee specification
Zigbee stack layers ...
Zigbee networking CONCeptS
DBV Y PO ..
P AN DD
Operating Channels
Zigbee application layers:indepth ...
Application Support Sublayer (APS)
Application profiles
Zigbee coordinator operation
Form anetwork . .
SeCUNty POIICY .
Channel SeleCtion ...
PAN ID seleCtion
Persistent data
Coordinator StartuUp ...
Permit JOINING .
Resetthe coordinator ...
Leave anetwork

Digi XBee® 3 Zigbee® RF Module

Example: starta coordinator
Example: replace a coordinator (security disabled)
ROUtEr 0P atiON ..
Discover Zigbee NetWOrKS ...
Join a network
Authentication
Persistent data
RoOUter JOINING .
Router network connectivity
End device Operation
Discover Zigbee networks
JOIN@NEIWOIK ...
Parent child relationship ...
End device capacity
Authentication
Persistent data
OrphaN SCaNS .
End device joining
Parent CoONNECHIVItY
Resetthe end device
Channel scanning
Manage multiple Zigbee networks
Filter PAN D
Configure security Keys
Prevent unwanted devices from joining
Application messaging framework

AdAresSINg ..
64-bit device addresses
16-bit deVICe addreSSeSo
Application layer addressing

Data transmission

Address table
Group table ..
Binding transmisSIONS
Multicast transmissions
Address resolution
Address resolUtioN .
Binding table
Fragmentation
Data transmission eXamples
Send a packet in Transparent mode
Send data in APl mode
API frame examples
RF packet roUting
Link status transmission
AODV mesh roUtINg
Many-to-ONe roUtING ...
High/Low RAM Concentrator mode ...
SOUICE TOULING ..o

Digi XBee® 3 Zigbee® RF Module

Encrypted transmisSiONS
Maximum RF payload size
TRrOUGN UL
ZDO transSmMISSIONS

Receiving ZDO command and reSpoNSes ...
Support ZDOs with the XBee APl . . .
Support the ZDP with the XBee APl
ZDOCIUSIEIS . .
APl eXamMplE
APl eXamMDIE 2
APl example 3 .
APl example 4 .
APl example O
APl example 6 .
AP EXaMDIe 7
Transmission tiMeOULS
Unicasttimeout ...

S UMY OVeIVIOW
NI OTK K Y .
LiNK KY .
Preconfigured link key - moderate security
Well-known default link key - low security
Install code derived link key - high security ...
JOIN WINAOW .o
Key management .
Centralized SECUNITY
Distributed SECUNITY
Device registrationl
Centralized trust center ...
Distributed trust center ...
Example: Formasecure network ...
Example: Join a secure network using a preconfigured linkkey
Example: Register a joining node without a preconfigured link key
Example: Register a joining node using aninstallcode ...
Example: Deregister a previously registered device ...
Registration scenario

Create the backup file
NEW NEIWOTKS e
EXisting NetWOrKS ...

Store the file ...

Best PractiCes
Network commissioning and diagnostics
Place deVICES
DeVICE diSCOVEIY ..

Digi XBee® 3 Zigbee® RF Module

Commissioning pushbutton and associate LED
BINAING ..
Group Table AP

End device operation ...
Parent operationl
End Device poll timeouts
End Device childtable
Packet bufferusage
Non-Parent device Operation
End Device configuration ...
PN SlEeD L
CyYClC Sl D .
Recommended sleep current measurements ...
Achieve the lowest sleep current
Compensate for switching time
Internal pin PUI-UDS ..
Transmit RE data ..
Receiving RE data ...
O SamPliNg .o .
Wake end devices with the Commissioning Pushbutton ...
Parent verification
R OINING .
Router/Coordinator configuration
RF packet buffering timeout
Child poll tImMeEOUL ...
Adaptive polling ...
Transmission timeout
Short sleep PeriOAS
Extended sleep periods
Sleep eXamples .l
Example 1: Configure a device to sleep for 20 seconds, but set SN such that the
On/sleep line will remain de-asserted forup to 1 minute. ...
Example 2: Configure an end device to sleep for 20 seconds, send 4 /O samples in 2
seconds, and return 10 SIEED.
Example 3: configure a device for extended sleep: to sleep for4 minutes.

Digital 110 SUPPOIt L.
ANalog 110 SUPPOMt L
Monitor 11O NS .
I/O sample data format
AP raME SUP DO
On-demand sampling ...
Example: Command mode
Example: Local AT commandin APImode
Example: Remote AT commandin APImode
Periodic /0 sampling
SOUICE . .

Digi XBee® 3 Zigbee® RF Module

10

I/O behavior during sleep
Digital /O lINes
Analogand PWM /O lines

Networking CommaNnds
CE (Device ROIE)
ID (Extended PAN D) . .
[(Initial 16-bit PAN ID)
ZS (Zigbee Stack Profile) ...l
CR (Conflict RePOM) ...
NJ (Node JOINTIME) ...
DJ (Disable JoiNiNg) ...
NR (Network Reset) ..
NW (Network Watchdog Timeout)
JV (Coordinator Join Verification)
JIN (Join Notification)
DO (Miscellaneous Device OptionS)
DC (Joining Device Controls)
C8 (Compatibility Options) ...
Discovery COMMANGS
NI (Node ldentifier) ...
DD (Device Type ldentifier)
NT (Node Discover Timeout) ...
NO (Network Discovery OptionSs) ...
ND (NetWOork DiSCOVEIY) ...
DN (DIiscover NOGE) ..o
AS (ACHIVE SCAN) ...
Operating Network commands
Al (Association Indication)
OP (Operating Extended PAN ID)
Ol (Operating 16-bit PAN ID)
CH (Operating Channel)
NC (Number of Remaining Children)
Zigbee Addressing COMMANGS ...
SH (Serial Number High)
SL (Serial NUMbEerLOW) ...
MY (16-bit Network Address)
MP (16-bit Parent Network Address)
DH (Destination Address High) ...
DL (Destination Address LOW)
TO (Transmit OptioNS) ...
NP (Maximum Packet Payload Bytes)
Zigbee configuration COMMAaNAS ...
NH (Maximum Unicast HOPS) ...
BH (Broadcast HOPS) ...
AR (Aggregate Routing Notification)
SE (Source Endpoint)
DE (Destination Endpoint)
Gl (CIUS N D)
Security COMMaNAS
EE (Encryption Enable) ...
EO (Encryption Options)
Y (LINK KB)

Digi XBee® 3 Zigbee® RF Module

11

NK (Trust Center Network Key)
RK (Trust Center Network Key Rotation Interval)
KT (Trust Center Link Key Registration Timeout)

I? (Install Code)

DM (Disable Features)

BK (Centralized Trus
CX (Centralized Trus
KB (Centralized Trus

Secure Session commands

SA (Secure Access)

*S (Secure Session Salt)

*V, *W, *X, *Y (Secur

RF interfacing commands

PL (TX Power Level)
PP (Output Power in
SC (Scan Channels)
SD (Scan Duration) .

MAC diagnostics commands
EA (MAC ACK Failure Count)
DB (Last Packet RSSI)

ED (Energy Detect) .

Sleep settings commands

SM (Sleep Mode) ...

SP (Cyclic Sleep Period)
ST (Cyclic Sleep Wake Time)
SN (Number of Sleep Periods)

SO (Sleep Options) .

WH (Wake Host Delay)

PO (Polling Rate)

ET (End Device Timeout)
S| (Sleep Immediately)

MicroPython commands
PS (Python Startup)

PY (MicroPython Command)

File System commands
FS (File System)
FK (File System Publ

Bluetooth Low Energy (BLE) commands
BT (Bluetooth Enable)
BL (Bluetooth Address)
Bl (Bluetooth Identifier)

BP (Bluetooth Power
$S(SRP Salt)

t Center Backupand Restore) ...
t Center Network Information Update) ..
t Center Backup Key)

e Session Verifier) ...
ABIM)
iCK@Y) oo

)

$V, $W, $X, $Y commands (SRP Salt verifier) ...

API configuration commmands
AP (APl Enable)

AO (API Options) ...

AZ (Extended API Options)
UART interface commands
BD (UART Baud Rate)

NB (Parity)
SB (Stop Bits)

RO (Packetization Timeout)
AT Command options ...
CC (Command Character)

Digi XBee® 3 Zigbee® RF Module

12

CT (Command Mode Timeout)
G (GUAND TIMIES) .
CN (ExitCommand MoOde)
UART pin configuration commands
D6 (DIO6/RTS)
D7 (IO T CT) .
P3 (DIO13/DOUT Configuration)
P4 (DIO14/DIN Configuration) ...
SMT/MMT SPlinterface commands ...
P5 (DIO15/SPI_MISO Configuration)
P6 (DIO16/SPI_MOSI Configuration)
P7 (DIO17/SPI_SSEL Configuration)
P8 (DIO18/SPI_CLK Configuration)
P9 (DIO19/SPI_ATTN Configuration)
/O settings COMMANGSo
DO (DIO0/ADO/Commissioning Button Configuration)
CB (Commissioning Pushbutton) ...
D1 (AD1/DIO1/TH_SPI_ATTN Configuration)
D2 (DIO2/AD2/TH_SPI_CLK Configuration) ...
D3 (DIO3/AD3/TH_SPI_SSEL Configuration)
D4 (DIO4/TH_SPI_MOSI Configuration)
D5 (DIO5/Associate Configuration)
D8 (DIO8/DTR/SLP_RQ)
DO (DIOO/ON_SLEEP) ...
PO (DIO10/RSSI Configuration)
P1(DIOT1 Configuration)
P2 (DIO12/TH_SPI_MISO Configuration)
PR (Pull-up/Down Resistor Enable)
PD (Pull Up/Down Direction)
MO (
M1 (

PWMO Duty Cycle)

PWM1 Duty Cycle)

RP (RSSIPWM TIMEr) ...
LT (Associate LED Blink Time)
I/0 sampling commands
IR(IIOSample Rate) ...

IC (Digital Change Detection) ...
AV (Analog Voltage Reference)

IS (FOrCe SamPIE) .. o
V+ (Supply Voltage Threshold)
Location commands ...
LX (Location X—Latitude)
LY (Location Y—Longitude)

LZ (Location Z—Elevation) ...
Diagnostic commands - firmware/hardware information
VR (Firmware Version)
VL (VErsion LONG) ..o
VH (Bootloader Version)
HV (Hardware Version)
%C (Hardware/Software Compatibility)
R2 (Power Nariant) .
%V (Voltage Supply Monitoring)
TP (TemMpPerature) .
CK (Configuration Checksum)
%P (Invoke Bootloader)
D% (Manufacturing Date)

Digi XBee® 3 Zigbee® RF Module 13

Memory access commands

FR (Software Reset)
AC (Apply Changes)
WR (Write)
RE (Restore Defaults

Custom Default commands
%F (Set Custom Default)
IC (Clear Custom Defaults)
R1 (Restore Factory Defaults)

API serial exchanges
AT commands

Remote AT commands

Source routing
Device Registration .
API frame format

API operation (AP parameter = 1)
API operation with escaped characters (AP parameter = 2)

Send ZDO commands wi
Example

Send Zigbee cluster library (ZCL) commands with the API

Example
Send Public Profile Com
Frame specific data .
Example

Local AT Command Req
Description
Format
Examples

Queue Local AT Comma
Description
Format
Examples

Transmit Request - 0x10
Description
Transmit options bit fi
Examples

Explicit Addressing Com
Description
64-bit addressing
16-bit addressing

Zigbee-specific addressing information

Reserved endpoints .
Reserved cluster IDs
Reserved profile IDs
Transmit options bit fi
Examples
Remote AT Command R

Digi XBee® 3 Zigbee® RF Module

e

ith the API

mands with the API

uest - 0x08

nd Request - 0x09

@10
mand Request- Ox11
@0

equest - 0x17

14

Description
oIt .
EXaAMIDIES
Create Source Route - OX21 .. .
DS Pt ON .
oMMt
EXaMDIES
Register Joining Device - 0x24
Description
oIt .
EXaAMIDIES
BLE Unlock Request - OX2C
DS Pt ON .
oMMt
Phase tables
EXaMIPIES .
User Data Relay Input - 0x2D
Description
Use cases
Format

EXaMDIES
Secure Session Control - 0x2E
Description
oMt
EXaAMIDIES
Local AT Command Response - OX88
DS Pt ON
oMMt
EXaMDIES
Modem Status - 0x8A
Description
Format

EXaMIPIES
Extended Transmit Status - OX8B ...
DS Pt ON .
oMMt
Delivery status codes
EXaMIPIES .
Transmit Status - 0x89
DS i Pt ON
oMMt
Delivery status codes
Receive Packet - OXO0
DS It ON .
oIt
EXaMIPIES .
Explicit Receive Indicator - 0x91
DS i Pt ON
oMMt
EXamMDIS
I/0 Sample Indicator - OXO2
DS It ON .
Format

Digi XBee® 3 Zigbee® RF Module 15

EXaMIIES .
Node Identification Indicator - 0x95
Description
oIt
EXamMDIES
Remote AT Command Response- 0X97
DS I ION .
FOrmat .
EXaMIIES .
Extended Modem Status - 0x98
Description
Format

EXaMDIES
Zigbee Verbose Join status codes ...
Route Record Indicator - OxA1
Description
oIt .
EXaAMIDIES
Many-to-One Route Request Indicator- OXA3 ...
DS P ION .
oIt
EXaMDIES
Registration Status - 0xA4
Description
oIt .
EXaAMIDIES
BLE Unlock Response - OXAC ...
DS Pt ON .
User Data Relay Output - OXAD ..
DS i ION .
Format

EXaAMIDIES .
Secure Session Response - OXAE ...
DS P I ON .
Format

OVBIVIBW
Firmware over-the-airupgrades
File system over-the-airupgrades ...

Scheduled upgrades

Create an OTA UPGrade SEIVET ... e
ZCL firmware upgrade cluster specification
Differences from the ZCL specification
O Al .
OTA upgrade process
OTA COMMANGS e
Schedule anupgrade
Scheduled upgrades on sleeping devices ...
Considerations for older firmware versions
Does the download include the OTA header?

Digi XBee® 3 Zigbee® RF Module

16

OTA file system update process .

OTAfile system updates using XCTU ...
Generate a public/private key pair
Set the public key onthe XBee device
Create the OTAfile systemimage
Perform the OTAfile systemupdate ...

OTA file system updates: OEM ...

Generate a public/private key pair
Set the public key onthe XBee 3device
Create the OTAfile systemimage
Perform the OTA file systemupdate

General Purpose Flash Memory .

Access General Purpose Flash Memory ...
General Purpose Flash Memory commands ...
PLATFORM_INFO_REQUEST (0X00)ooooiii e

PLATFORM_INFO (0x80)

ERASE (0x01)
ERASE_RESPONSE (0x81) .

WRITE (0x02) and ERASE_THEN_WRITE (0x03) ...
WRITE _RESPONSE (0x82) and ERASE_THEN_WRITE_RESPONSE (0x83)

READ (0x04) ...
READ_RESPONSE (0x84) ...

FIRMWARE_VERIFY (0x05) and FIRMWARE_VERIFY_AND_INSTALL (0x06)
FIRMWARE_VERIFY_RESPONSE (0X85) ...
FIRMWARE_VERIFY _AND_INSTALL_RESPONSE (0X86)covivviiiiiii.
Possible Errors Returned from GPM Commands ...

Update the firmware over-the-air
Over-the-air firmware updates
Distribute the new application
Install the application
Verify the new application ...

Digi XBee® 3 Zigbee® RF Module

17

Digi XBee® 3 Zigbhee® RF Module

This manual describes the operation of the XBee 3 Zigbee RF Module, which consists of Zigbee
firmware loaded onto XBee 3 hardware.

The XBee 3 Zigbee RF Modules provide wireless connectivity to end-point devices in Zighee mesh
networks. Using the Zigbee 3.0 feature set, these devices are inter-operable with other Zighee
devices, including devices from other vendors. With theXBee 3 Zigbee RF Module, users can have
their Zigbee network up-and-running in a matter of minutes without configuration or additional
development.

For information about XBee 3 hardware, see the XBee 3 RF Module Hardware Reference Manual.

Applicable firmware and hardware
Change the firmware protocol
Regulatory information

Digi XBee® 3 Zigbee® RF Module 18

https://www.digi.com/resources/documentation/digidocs/90001543/default.htm

Digi XBee® 3 Zigbee® RF Module Applicable firmware and hardware

Applicable firmware and hardware

This user guide supports the following firmware:
= v.10xx Zigbee
It supports the following hardware:

m XBee3

Change the firmware protocol

You can switch the firmware loaded onto the XBee 3 hardware to run any of the following protocols:

m Zigbee
= 802.15.4
= DigiMesh

To change protocols, use the Update firmware feature in XCTU and select the firmware. See the
XCTU User Guide.

Regulatory information

See the Regulatory information section of the XBee 3 RF Module Hardware Reference Manual for
the XBee 3 hardware's regulatory and certification information.

Digi XBee® 3 Zigbee® RF Module 19

https://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#task/t_ts_how-to_update_firmware.htm
https://www.digi.com/resources/documentation/Digidocs/90001543/#containers/cont_certs.htm%3FTocPath%3DRegulatory%2520information|_____0
https://www.digi.com/resources/documentation/digidocs/90001543/default.htm

Get started

Refer to the XBee Zigbee Mesh Kit User Guide for comprehensive instructions and examples on
how to get started with the XBee 3 Zigbee RF Module.

Digi XBee® 3 Zigbee® RF Module 20

https://www.digi.com/resources/documentation/Digidocs/90001942-13/Default.htm

Safety instructions

Safety instructions

VIHCTPYKUMMN 38 BEBOMACHOCT

Sigurnosne upute .

Bezpelnostni INStrUKCe
SikkerhedsinstruKtioner . .
Veiligheidsinstructies

Ohutusjuhised
Turvallisuusohjeet

Consignes de SECUNte . . .
Sicherheitshinweise . .
OONYIEG OO QONEIOG . .
Biztonsagi Utasitasok ...
IStruzioni di SICUIeZZa
DroSibas INStrUKCIas ...
SaUgOS INSIIUKCI OS . .
SikKerhetsinstruKS ONer
Instrukcje bezpieczenstwa .. .
InsStrugBes de SequUIranGal
Instructiuni de SigUraNta ...

Bezpecnostné instr
Varnostna navodila

Moédulos XBee ...

Digi XBee® 3 Zigbee® RF

UK

Module 21

Safety instructions Safety instructions

Safety instructions

XBee modules

The XBee radio module cannot be guaranteed operation due to the radio link and so should
not be used for interlocks in safety critical devices such as machines or automotive
applications.

The XBee radio module has not been approved for use in (this list is not exhaustive):
* medical devices
¢ nuclear applications
 explosive or flammable atmospheres

There are no user serviceable components inside the XBee radio module. Do not remove
the shield or modify the XBee in any way. Modifications may exclude the module from any
warranty and can cause the XBee radio to operate outside of regulatory compliance for a
given country, leading to the possible illegal operation of the radio.

Use industry standard ESD protection when handling the XBee module.

Take care while handling to avoid electrical damage to the PCB and components.
Do not expose XBee radio modules to water or moisture.

Use this product with the antennas specified in the XBee module user guides.

The end user must be told how to remove power from the XBee radio module or to locate the
antennas 20 cm from humans or animals.

UHCTpyKumMKn 3a 6e30nacHOCT

XBee mogynu

Paguo mogynbT XBee He MoXe fa Gbae rapaHTMpaH 3a paboTa nopaay pagnoBpbakaTa u
3aToBa He TpAGBa Aa ce U3non3sa 3a 6NOKUPOBKM B KPUTUYHM 3a Ge3onacHocTTa
YCTPOMCTBA KaTO MaLLWHW UM aBTOMOBUIHN MPUMOXEHNUS.

Pagmo mopynbT XBee He e 0406peH 3a n3non3saHe B (TO3M CMUCHK HE € u34epnaTeneHr):
e MEeOUUUHCKN n3nenus
e AApPEHU NPUNOXEHNSA
e EeKCMnJo3MBHa unu 3ananvma atmocdepa
B pagnomopyna XBee HiMa KOMMOHEHTM, KOMTO MoraT fia ce obcnyxsar oT notTpeburtens.
He npemaxsanTte wuta n He moanduumpante XBee no HUKakbB HaunH. Mogudukauunte
Morart Aa M3Kni4aT MoAyna OT BCKakBa rapaHums n fa Hakapat paguoto XBee pa

paboTh U3BHLH perynaTopHOTO CbOTBETCTBME 3a AafeHa AbpXaBa, KOeTo Boau A0
Bb3MOXHa He3aKoHHa paboTa Ha paauoTo.

M3nonsBeawTte ctaHgapTHa ESD 3awuTta npu pabota ¢ XBee moayna.

BHumaBanTe, gokato 60paBVITe, 3a a nsberHete €J1eKTpU4eCK noBpean Ha nevyaTtHaTta
nnaTtka h KOMMNOHEHTUTE.

He nanarante pagnomopynute XBee Ha Boga vnv Bnara.

Digi XBee® 3 Zigbee® RF Module 22

Safety instructions Sigurnosne upute

M3nons3BainTe TO3M NpoAyKT C aHTeHNTe, N0OCOYEeHU B pbKOBOACTBATA 3a I'IOTp66VITeJ'IF| Ha
monyna XBee.

KpanHuat notpebuten Tpsabea fa 6bae ka3aHo Kak a npemMaxHe 3axpaHBaHeTo OT
paguomoayna XBee unu ga pa3nonoxu aHteHuTe Ha 20 CM OT Xopa Unn XnBOTHMU.

Sigurnosne upute

XBee moduli

Radio modulu XBee ne moze se jamciti rad zbog radio veze i stoga se ne smije koristiti za
blokade u sigurnosnim kriticnim uredajima kao §to su strojevi ili automobilske aplikacije.

XBee radio modul nije odobren za upotrebu u (ovaj popis nije konacan):

* medicinskih uredaja

¢ nuklearne primjene

» eksplozivne ili zapaljive atmosfere
Unutar XBee radio modula nema komponenti koje moze servisirati korisnik. Nemojte
uklanijati §tit i ni na koji nacin modificirati XBee. Izmjene mogu iskljuciti modul iz bilo kakvog

jamstva i mogu uzrokovati rad XBee radija izvan uskladenosti s propisima za odredenu
zemlju, Sto moze dovesti do moguceg nezakonitog rada radija.

Koristite standardnu ESD zastitu pri rukovanju XBee modulom.

Budite oprezni tijekom rukovanja kako biste izbjegli elektricna oSte¢enja PCB-a i
komponenti.

Ne izlazite XBee radio module vodi ili vlazi.
Koristite ovaj proizvod s antenama navedenim u korisni¢kim vodi¢ima za XBee modul.

Krajnjem korisniku se mora reci kako da isklju¢i napajanje iz XBee radio modula ili da locira
antene 20 cm od ljudi ili zivotinja.

Bezpecnostni instrukce

moduly XBee

Radiovy modul XBee nemUze zarugit provoz kv(li radiovému spojeni, a proto by nemél byt
pouzivan pro blokovani v zafizenich kritickych z hlediska bezpecnosti, jako jsou stroje nebo
automobilové aplikace.

Radiovy modul XBee nebyl schvalen pro pouziti v (tento seznam neni vyCerpavajici):

e zdravotnické prostfedky

» jaderné aplikace

e vybusné nebo hoflavé atmosféry
Uvnitf radiového modulu XBee nejsou zadné uilivatelsky opravitelné soucasti.
Neodstrafiujte Stit ani nijak neupravujte XBee. Upravy mohou vyjmout modul z jakékoli

zaruky a mohou zpUsobit, Ze radio XBee bude fungovat mimo zakonnou shodu pro danou
zemi, coz povede k moznému nezdkonnému provozu radia.

Digi XBee® 3 Zigbee® RF Module 23

Safety instructions Sikkerhedsinstruktioner

Pfi manipulaci s modulem XBee pouzivejte standardni ochranu ESD.

PFi manipulaci budte opatrni, aby nedoslo k elektrickému poskozeni desky plosnych spojl a
soucasti.

Nevystavujte radiové moduly XBee vodé nebo vihkosti.

Pouzivejte tento produkt s anténami uvedenymi v uzivatelskych pfiru¢kach modulu XBee.

Koncovy uzivatel musi byt informovan, jak odpojit napajeni radiového modulu XBee nebo
jak umistit antény 20 cm od lidi nebo zvitat.

Sikkerhedsinstruktioner

XBee moduler

XBee-radiomodulet kan ikke garanteres drift pa grund af radioforbindelsen og bar derfor
ikke bruges til aflasninger i sikkerhedskritiske enheder sasom maskiner eller
bilapplikationer.

XBee-radiomodulet er ikke godkendt til brug i (denne liste er ikke udtemmende):

¢ medicinsk udstyr

¢ nukleare applikationer

» eksplosive eller brandfarlige atmosfaerer
Der er ingen komponenter, der kan repareres af brugeren, inde i XBee-radiomodulet. Fjern
ikke skjoldet eller modificer XBee pa nogen made. Zndringer kan udelukke modulet fra

enhver garanti og kan fa XBee-radioen til at fungere uden for lovgivningsoverholdelse for et
givet land, hvilket kan fgre til den mulige ulovlige drift af radioen.

Brug industristandard ESD-beskyttelse, nar du handterer XBee-modulet.

Veer forsigtig under handteringen for at undga elektrisk beskadigelse af printet og
komponenterne.

Udseet ikke XBee-radiomoduler for vand eller fugt.

Brug dette produkt med de antenner, der er specificeret i XBee-modulets
brugervejledninger.

Slutbrugeren skal forteelles, hvordan man fjerner strammen fra XBee-radiomodulet eller
placerer antennerne 20 cm fra mennesker eller dyr.

Veiligheidsinstructies

XBee-modules

De werking van de XBee-radiomodule kan niet worden gegarandeerd vanwege de
radioverbinding en mag daarom niet worden gebruikt voor vergrendelingen in
veiligheidskritieke apparaten zoals machines of autotoepassingen.

De XBee-radiomodule is niet goedgekeurd voor gebruik in (deze lijst is niet uitputtend):

Digi XBee® 3 Zigbee® RF Module 24

Safety instructions Ohutusjuhised

e 0 medische apparaten
* 0 nucleaire toepassingen
» 0 explosieve of ontvlambare atmosferen

Er zijn geen door de gebruiker te onderhouden componenten in de XBee-radiomodule.
Verwijder het schild niet en wijzig de XBee op geen enkele manier. Modificaties kunnen de
module uitsluiten van enige garantie en kunnen ertoe leiden dat de XBee-radio werkt buiten
de regelgeving voor een bepaald land, wat kan leiden tot de mogelijke illegale werking van
de radio.

Gebruik industriestandaard ESD-bescherming bij het hanteren van de XBee-module.

Wees voorzichtig bij het hanteren om elektrische schade aan de printplaat en componenten
te voorkomen.

Stel XBee-radiomodules niet bloot aan water of vocht.

Gebruik dit product met de antennes die zijn gespecificeerd in de gebruikershandleidingen
van de XBee-module.

De eindgebruiker moet worden verteld hoe de voeding van de XBee-radiomodule moet
worden losgekoppeld of hoe de antennes op 20 cm van mensen of dieren moeten worden
geplaatst.

Ohutusjuhised

XBee moodulid

XBee raadiomooduli t66d ei saa raadiolingi tottu garanteerida ja seetbttu ei tohiks seda
kasutada ohutuse seisukohalt oluliste seadmete (nt masinad voi autorakendused)
blokeerimiseks.

XBee raadiomoodulit ei ole heaks kiidetud kasutamiseks (see loetelu ei ole ammendav):
e meditsiiniseadmed
* tuumarakendused
 plahvatusohtlik voi tuleohtlik keskkond

XBee raadiomoodulis ei ole kasutaja poolt hooldatavaid komponente. Arge eemaldage
kaitset ega muutke XBee mingil viisil. Muudatused vdivad mooduli garantiist valja jatta ja
XBee raadio t66tab valjaspool antud riigi regulatiivseid vastavusi, pohjustades raadio
vdimaliku ebaseadusliku kasutamise.

Kasutage XBee mooduli kasitsemisel tddstusharu standardset ESD-kaitset.
Olge késitsemisel ettevaatlik, et valtida PCB ja komponentide elektrikahjustusi.
Arge jatke XBee raadiomooduleid vee vdi niiskuse kétte.

Kasutage seda toodet XBee mooduli kasutusjuhendis kirjeldatud antennidega.

Ldppkasutajale tuleb 6elda, kuidas XBee raadiomoodulilt toide eemaldada véi antennid
inimestest voi loomadest 20 cm kaugusele paigutada.

Digi XBee® 3 Zigbee® RF Module 25

Safety instructions Turvallisuusohjeet

Turvallisuusohjeet

XBee moduulit

XBee-radiomoduulin toimintaa ei voida taata radiolinkin vuoksi, joten sita ei tule kayttaa
turvallisuuden kannalta kriittisten laitteiden, kuten koneiden tai autosovellusten,
lukitsemiseen.

XBee-radiomoduulia ei ole hyvaksytty kaytettavaksi (tdma luettelo ei ole tyhjentava):

» |a4ketieteelliset laitteet

¢ ydinvoimasovellukset

 radjahdysvaarallisiin tai syttyviin tiloihin
XBee-radiomoduulin sisall4 ei ole kayttajan huollettavia osia. Ala poista suojusta tai
muokkaa XBeeta milldan tavalla. Muutokset voivat sulkea moduulin takuun ulkopuolelle ja

aiheuttaa sen, ettd XBee-radio toimii tietyn maan sdadéstenmukaisuuden ulkopuolella,
mika johtaa radion mahdolliseen laittomaan kayttoon.

Kayta alan standardia ESD-suojausta kasitellessasi XBee-moduulia.

Ole varovainen kasitellessasi, jotta valtat piirilevyn ja komponenttien sahkdvauriot.
Al3 altista XBee-radiomoduuleja vedelle tai kosteudelle.

Kayta tata tuotetta XBee-moduulin kayttdoppaissa maariteltyjen antennien kanssa.

Loppukayttajalle on kerrottava, kuinka XBee-radiomoduulin virta katkaistaan tai antennit
sijoitetaan 20 cm:n etdisyydelle ihmisista tai eldimista.

Consignes de sécurité

Modules XBee

Le fonctionnement du module radio XBee ne peut pas étre garanti en raison de la liaison
radio et ne doit donc pas étre utilisé pour les verrouillages dans des dispositifs critiques pour
la sécurité tels que des machines ou des applications automobiles.

Le module radio XBee n'a pas été approuvé pour une utilisation dans (cette liste n'est pas
exhaustive) :

 dispositifs médicaux

 applications nucléaires

« atmosphéres explosives ou inflammables
Il n'y a aucun composant réparable par I'utilisateur a l'intérieur du module radio XBee. Ne
retirez pas la protection et ne modifiez en aucune fagon le XBee. Les modifications peuvent
exclure le module de toute garantie et peuvent entrainer le fonctionnement de la radio XBee

en dehors de la conformité réglementaire pour un pays donné, ce qui peut entrainer un
fonctionnement illégal de la radio.

Utilisez la protection ESD standard de l'industrie lors de la manipulation du module XBee.

Soyez prudent lors de la manipulation afin d'éviter des dommages électriques au circuit
imprimé et aux composants.

Digi XBee® 3 Zigbee® RF Module 26

Safety instructions Sicherheitshinweise

N'exposez pas les modules radio XBee a I'eau ou a I'humidité.

Utilisez ce produit avec les antennes spécifiées dans les guides d'utilisation du module
XBee.

L'utilisateur final doit savoir comment couper I'alimentation du module radio XBee ou placer
les antennes a 20 cm des humains ou des animaux.

Sicherheitshinweise

XBee-Module

Der Betrieb des XBee-Funkmoduls kann aufgrund der Funkverbindung nicht garantiert
werden und sollte daher nicht fir Verriegelungen in sicherheitskritischen Geraten wie
Maschinen oder Automobilanwendungen verwendet werden.

Das XBee-Funkmodul ist nicht zugelassen flr den Einsatz in (diese Liste ist nicht
vollstandig):

¢ Medizinprodukte
* nukleare Anwendungen
« explosive oder brennbare Atmosphéren

Das XBee-Funkmodul enthalt keine vom Benutzer zu wartenden Komponenten. Entfernen
Sie nicht die Abschirmung oder modifizieren Sie das XBee in irgendeiner Weise.
Modifikationen kénnen das Modul von jeglicher Garantie ausschliefsen und dazu flihren,
dass das XBee-Funkgerat aulerhalb der gesetzlichen Vorschriften fiir ein bestimmtes Land
betrieben wird, was zu einem mdglichen illegalen Betrieb des Funkgeréts fihren kann.

Verwenden Sie beim Umgang mit dem XBee-Modul ESD-Schutz nach Industriestandard.
Seien Sie vorsichtig bei der Handhabung, um elektrische Schaden an der Leiterplatte und
den Komponenten zu vermeiden.

XBee-Funkmodule nicht Wasser oder Feuchtigkeit aussetzen.

Verwenden Sie dieses Produkt mit den in den Benutzerhandbiichern des XBee-Moduls
angegebenen Antennen.

Dem Endbenutzer muss mitgeteilt werden, wie er das XBee-Funkmodul von der
Stromversorgung trennt oder die Antennen 20 cm von Menschen oder Tieren entfernt
aufstellt.

O0dnyiec aopaAeiag

Movadeg XBee

H povada padlopwvou XBee dev pnopei va eyyunBei tn Aettoupyia tTng Adyw tng
padloleUEnG Kal ENOPEVWG OEV MPENEL VA XPNOONOLEITAL YIa AOPAAELEG OE KPIOLHEG YA
TNV A0QAAELD OUOKEUEG, ONWG UNXAVAHATA] EQAPUOYEG AUTOKLVITOU.

H povada padlogpwvou XBee dev £xel eykplBei yia xpron o€ (autr n Aiota dev givat
€CAVTANTIKA):

Digi XBee® 3 Zigbee® RF Module 27

Safety instructions Biztonsagi utasitasok

* lATPOTEXVOAOYIKA NpoidvTa
* NUPNVIKEG EPAPHOYEG
* EKPNKTIKEG I EUPAEKTEG ATHOTPALPES
= Agv undpxouv EEAPTANOTA NOU VA UNOPOoUV VA ENCKEUACTOUV anod To XpHOoTn HECA OTN
povada padopwvou XBee. Mnv agaipeite Tnv aonida kat pnv tpononoleite 1o XBee pe
kavévav Tpono. OL Tpononoioelg evOEXETAL va anokAsiouv Tn povdada and onoladnnote
€yyunon Kat pnopei va npokaA€oouv Tn Aettoupyia Tou padlopwvou XBee €kTOG TNG
OUMHOPPWONG KE TOUG KAVOVIOHOUG Yia pia dEB0UEVN XWPA, 00NywvTag O ndav)
napdavopn AElIToupyia Tou padlopwvou.
= Xpnowonotfjote Blopnxavikr npootacia ESD katd to Xelplopd tng povadag XBee.
B [1p0o0EXETE KATA TO XELPLOWO VIO va ano@uyeTe NAEKTPIKN PAGRN oto PCB katl ota
€capTAnaTa.
= Mnv eKBETETE TIG PovAdEG padlopwvou XBee o€ vepod i uypaaia.
= XpnowonotrjoTte auTto To NPoidv e TIG Kepaieg nou kaBopifovTtal oToug 0dnyoug Xprnong
NG povadag XBee.
= [Tp€nel va evnuepwOEei 0 TEAIKOG XPAOTNG NWG VA aQaALPETEL TNV TPOPOdOaia and Th
povada padlopwvou XBee A va evtonioel TIG kepaieg o andéotaon 20 cm and avBpwnoug
f {wa.

Biztonsagi utasitasok

XBee modulok

* Az XBee radidmodul miikédése nem garantalhaté a radidkapcsolat miatt, ezért nem hasznalhaté
biztonsagi szempontbdl kritikus eszkdzok, példaul gépek vagy autdipari alkalmazasok
reteszelésére.

» Az XBee radiomodul nem engedélyezett a kvetkez6 terlileteken val6 hasznalatra (ez a lista nem
teljes):

0 orvosi eszkdzok

o nuklearis alkalmazasok

o robbanasveszélyes vagy gyulékony légkor

» Az XBee radiomodulban nincsenek felhasznal6 altal javithat6 alkatrészek. Ne tavolitsa el a
pajzsot, és semmilyen médon ne moédositsa az XBee-t. A médositasok kizarhatjak a modult a
jotallasbodl, és az XBee radio miikodését az adott orszag jogszabalyi el6irasaitol eltéréen
okozhatjak, ami a radio esetleges illegalis miikodéséhez vezethet.

* Az XBee modul kezelésekor hasznaljon ipari szabvanyos ESD védelmet.

* A kezelés soran lgyeljen arra, hogy elkeriilje a PCB és az alkatrészek elektromos karosodasat.
* Ne tegye ki az XBee radidmodulokat viznek vagy nedvességnek.

» Hasznalja ezt a terméket az XBee modul hasznalati Gtmutatojaban meghatarozott antennakkal.

* A végfelhasznalot tajékoztatni kell arrdl, hogyan tavolitsa el az XBee radidmodul aramellatasat,
vagy hogyan helyezze el az antennakat az emberektél vagy allatoktol 20 cm-re.

Istruzioni di sicurezza
Moduli XBee

Digi XBee® 3 Zigbee® RF Module 28

Safety instructions Drosibas instrukcijas

Il funzionamento del modulo radio XBee non pu0 essere garantito a causa del collegamento
radio e quindi non deve essere utilizzato per gli interblocchi in dispositivi critici per la
sicurezza come macchine o applicazioni automobilistiche.

Il modulo radio XBee non € stato approvato per I'uso in (questo elenco non € esaustivo):
 dispositivi medici
e applicazioni nucleari
« atmosfere esplosive o inflammabili

Non ci sono componenti riparabili dall'utente all'interno del modulo radio XBee. Non
rimuovere lo scudo o modificare in alcun modo I'XBee. Le modifiche possono escludere il
modulo da qualsiasi garanzia e possono causare il funzionamento della radio XBee al di
fuori della conformita normativa per un determinato paese, portando al possibile
funzionamento illegale della radio.

Utilizzare la protezione ESD standard del settore durante la manipolazione del modulo
XBee.

Prestare attenzione durante la manipolazione per evitare danni elettrici al PCB e ai
componenti.

Non esporre i moduli radio XBee all'acqua o all'umidita.

Utilizzare questo prodotto con le antenne specificate nelle guide per 'utente del modulo
XBee.

L'utente finale deve sapere come togliere I'alimentazione al modulo radio XBee o come
posizionare le antenne a 20 cm da persone o animali.

DroSibas instrukcijas

XBee moduli

Radio modula XBee darbiba nevar tikt garantéta radio savienojuma dél, tapéc to
nevajadzéetu izmantot blokéSanai droSibas zina kritiskas iericés, pieméram, masinas vai
automobilos.

XBee radio modulis nav apstiprinats lietoSanai (Sis saraksts nav pilnigs):

* mediciniskas ierices

¢ kodolprogrammas

e spradzienbistama vai uzliesmojosa vide
XBee radio modula iek§pusé nav neviena komponenta, ko lietotajs varétu apkopt.
Nenonemiet vairogu un nekada veida neparveidojiet XBee. Modifikacijas rezultata modulis

var tikt izslégts no jebkadas garantijas un var izraisit XBee radio darbibu, kas neatbilst
noteiktas valsts normativajiem aktiem, izraisot iesp€jamu nelegalu radio darbibu.

Stradajot ar XBee moduli, izmantojiet nozares standarta ESD aizsardzibu.
Rikojoties, rikojieties uzmanigi, lai izvairitos no PCB un komponentu elektriskiem
bojajumiem.

Nepaklaujiet XBee radio modulus tdens vai mitruma iedarbibai.

Digi XBee® 3 Zigbee® RF Module 29

Safety instructions Saugos instrukcijos

Izmantojiet So izstradajumu ar antenam, kas noraditas XBee modula lietotaja
rokasgramatas.

Galalietotajam ir japaskaidro, ka atvienot XBee radio modula stravu vai novietot antenas 20
cm attaluma no cilvékiem vai dzivniekiem.

Saugos instrukcijos

XBee moduliai

Negalima garantuoti, kad ,XBee“ radijo modulis veiks dél radijo rySio, todél jo neturéty bti
naudojamas blokuoti saugai svarbiuose jrenginiuose, pvz., masinose ar automobiliuose.

XBee radijo modulis nebuvo patvirtintas naudoti (Sis sgraSas néra baigtinis):

¢ medicinos prietaisai

e branduolinés programos

e sprogioje ar degioje aplinkoje
XBee radijo modulio viduje néra komponenty, kuriuos vartotojas galéty prizitréti. Jokiu
badu nenuimkite skydo ir nekeiskite XBee. Dél modifikacijy moduliui gali bati netaikoma

jokia garantija, o ,XBee" radijas gali veikti ne pagal tam tikros Salies norminius reikalavimus,
o tai gali sukelti neteisétqg radijo naudojima.

Dirbdami su XBee moduliu naudokite pramonés standartine ESD apsauga.
Dirbdami bukite atsargus, kad nepazeistuméte PCB ir komponenty.

Saugokite XBee radijo modulius nuo vandens ar dréegmes.

Naudokite §j gaminj su antenomis, nurodytomis XBee modulio vartotojo vadove.

Galutiniam vartotojui turi buti paaiSkinta, kaip atjungti XBee radijo modulio maitinimg arba
nustatyti antenas 20 cm atstumu nuo Zmoniy ar gyvuny.

Sikkerhetsinstruksjoner

XBee-moduler

XBee-radiomodulen kan ikke garanteres drift pa grunn av radiolinken, og bar derfor ikke
brukes til forriglinger i sikkerhetskritiske enheter som maskiner eller bilapplikasjoner.

XBee-radiomodulen er ikke godkjent for bruk i (denne listen er ikke uttemmende):
¢ medisinsk utstyr
» kjernefysiske applikasjoner
« eksplosive eller brennbare atmosfaerer

Det er ingen komponenter som kan repareres av brukeren inne i XBee-radiomodulen. Ikke
fiern skjoldet eller modifiser XBee pa noen mate. Endringer kan ekskludere modulen fra
enhver garanti og kan fgre til at XBee-radioen fungerer utenfor regelverket for et gitt land,
noe som kan fare til ulovlig drift av radioen.

Bruk industristandard ESD-beskyttelse nar du handterer XBee-modulen.
Veer forsiktig ved handtering for & unnga elektrisk skade pa PCB og komponenter.

Digi XBee® 3 Zigbee® RF Module 30

Safety instructions Instrukcje bezpieczeristwa

= |kke utsett XBee radiomoduler for vann eller fuktighet.
= Bruk dette produktet med antennene spesifisert i XBee-modulens brukerveiledninger.

= Sluttbrukeren ma bli fortalt hvordan man fjerner streammen fra XBee-radiomodulen eller
plasserer antennene 20 cm fra mennesker eller dyr.

Instrukcje bezpieczenstwa

Moduty XBee

= Modut radiowy XBee nie moze zagwarantowac¢ dziatania ze wzgledu na tgcze radiowe,
dlatego nie nalezy go uzywac do blokad w urzgdzeniach o krytycznym znaczeniu dla
bezpieczenstwa, takich jak maszyny lub aplikacje motoryzacyjne.

= Modut radiowy XBee nie zostat dopuszczony do uzytku w (lista ta nie jest wyczerpujgca):
e wyroby medyczne
» zastosowania nuklearne
« atmosferach wybuchowych lub tatwopalnych
= Wewnatrz modutu radiowego XBee nie ma zadnych elementéw, ktére mogtyby byc¢
serwisowane przez uzytkownika. Nie zdejmuj ostony ani nie modyfikuj XBee w zaden
sposob. Modyfikacje mogg wykluczy¢ modut z jakiejkolwiek gwaranciji i spowodowac, ze
radio XBee bedzie dziata¢ niezgodnie z przepisami obowigzujgcymi w danym kraju, co
moze prowadzi¢ do nielegalnego dziatania radia.

= Podczas obstugi modutu XBee nalezy stosowac¢ standardowg ochrone ESD.

= Podczas obstugi nalezy zachowac ostrozno$¢, aby unikng¢ uszkodzen elektrycznych PCB i
komponentow.

= Nie wystawiaj modutéw radiowych XBee na dziatanie wody lub wilgoci.
= Uzywaj tego produktu z antenami okreslonymi w podrecznikach uzytkownika modutu XBee.

= Uzytkownik konhcowy musi zosta¢ poinformowany, jak odtgczy¢ zasilanie modutu radiowego
XBee lub zlokalizowac¢ anteny w odlegtosci 20 cm od ludzi lub zwierzat.

Instru¢des de seguranca

Modulos XBee

=« O moddulo de radio XBee ndo pode ter operagéo garantida devido ao link de radio e,
portanto, ndo deve ser usado para intertravamentos em dispositivos criticos de seguranca,
como maquinas ou aplicagdes automotivas.

=« O moddulo de radio XBee ndo foi aprovado para uso em (esta lista ndo é exaustiva):
» o dispositivos médicos
e o0 aplicagdes nucleares
¢ 0 atmosferas explosivas ou inflamaveis

=« Ndo ha componentes que possam ser reparados pelo usuario dentro do médulo de radio
XBee. Nao remova a blindagem nem modifique o XBee de forma alguma. As modificagbes

Digi XBee® 3 Zigbee® RF Module 31

Safety instructions Instructiuni de siguranta

podem excluir o médulo de qualquer garantia e fazer com que o radio XBee opere fora da
conformidade regulatoria de um determinado pais, levando a possivel operacao ilegal do
radio.

» Use protecao ESD padrao da industria ao manusear o médulo XBee.

» Tome cuidado ao manusear para evitar danos elétricos a PCB e aos componentes.

* Nao exponha os modulos de radio XBee a agua ou umidade.

» Use este produto com as antenas especificadas nos guias do usuario do médulo XBee.

* O usuario final deve ser informado sobre como remover a energia do modulo de radio
XBee ou localizar as antenas a 20 cm de humanos ou animais.

Instructiuni de siguranta

module XBee

Nu se poate garanta functionarea modulului radio XBee din cauza conexiunii radio si, prin
urmare, nu trebuie utilizat pentru interblocari in dispozitive critice pentru siguranta, cum ar fi
masini sau aplicatii auto.
Modulul radio XBee nu a fost aprobat pentru utilizare in (aceasta lista nu este exhaustiva):
e dispozitive medicale
 aplicatii nucleare
e atmosfere explozive sau inflamabile

Nu exista componente care sa poata fi reparate de utilizator in interiorul modulului radio
XBee. Nu indepartati scutul si nu modificati XBee in niciun fel. Modificarile pot exclude
modulul din orice garantie si pot face ca radioul XBee sa functioneze in afara conformitatii
cu reglementarile pentru o anumita tara, ceea ce duce la o posibila functionare ilegala a
radioului.

Folositi protectia ESD standard in industrie cand manipulati modulul XBee.

Aveti grija in timpul manipularii pentru a evita deteriorarea electrica a PCB-ului si a
componentelor.

Nu expuneti modulele radio XBee la apa sau umezeala.
Utilizati acest produs cu antenele specificate in ghidurile utilizatorului modulului XBee.

Utilizatorului final trebuie sa i se spuna cum sa scoata alimentarea de la modulul radio XBee
sau sa gaseasca antenele la 20 cm de oameni sau animale.

Bezpednostné inStrukcie

moduly XBee

Radiovy modul XBee nemdze byt zaruceny kvoli radiovému spojeniu, a preto by sa nemal
pouzivat na blokovanie v zariadeniach kritickych z hfadiska bezpecnosti, ako su stroje alebo
automobilové aplikacie.

Radiovy modul XBee nebol schvaleny na pouzitie v (tento zoznam nie je uplny):

Digi XBee® 3 Zigbee® RF Module 32

Safety instructions Varnostna navodila

e zdravotnicke pomocky

e jadrové aplikacie

» vybusné alebo horfavé atmosféry
Vo vnutri radiového modulu XBee sa nenachadzaju Zziadne pouzivatelsky opravitelné
komponenty. Neodstrafiuijte tit ani Ziadnym spésobom neupravujte XBee. Upravy mozu

vynat modul zo zaruky a mézu spdsobit, Ze radio XBee bude fungovat mimo zhody s
predpismi pre danu krajinu, ¢o vedie k moznej nezakonnej prevadzke radia.

Pri manipulacii s modulom XBee pouzivajte Standardnu ochranu pred ESD.

Pri manipulacii budte opatrni, aby ste predisli elektrickému poSkodeniu dosky ploSnych
spojov a komponentov.

Radiové moduly XBee nevystavuijte vode ani vihkosti.

Tento produkt pouzivajte s anténami Specifikovanymi v pouzivatelskych priru¢kach modulu
XBee.

Koncovy pouzivatel musi byt informovany o tom, ako odpojit napajanie radiového modulu
XBee alebo ako umiestnit antény 20 cm od fudi alebo zvierat.

Varnostna navodila

XBee moduli

Radijskega modula XBee ni mogoce zagotoviti delovanja zaradi radijske povezave in ga
zato ne smete uporabljati za zaklepanje v varnostno kriti¢nih napravah, kot so stroji ali
avtomobilske aplikacije.

Radijski modul XBee ni bil odobren za uporabo v (ta seznam ni iz&rpen):

» medicinskih pripomockov

* jedrske aplikacije

« eksplozivne ali vnetljive atmosfere
V radijskem modulu XBee ni komponent, ki bi jih lahko popravil uporabnik. Ne odstranjujte
S¢ita in na noben nacin ne spreminjajte XBee. Spremembe lahko modul izkljucijo iz kakrSne

koli garancije in lahko povzrocijo, da radio XBee deluje zunaj zakonske skladnosti za dano
drzavo, kar vodi do moznega nezakonitega delovanja radia.

Pri ravnanju z modulom XBee uporabite standardno industrijsko zas¢ito pred ESD.

Pri rokovanju pazite, da se izognete elektricnim posSkodbam tiskanega vezja in komponent.
Radijskih modulov XBee ne izpostavljajte vodi ali vlagi.

Ta izdelek uporabljajte z antenami, navedenimi v uporabniskih priro¢nikih modula XBee.

Koncnemu uporabniku je treba povedati, kako odstraniti napajanje z radijskega modula
XBee ali naj locira antene 20 cm od ljudi ali zivali.

Mobdulos XBee

No se puede garantizar el funcionamiento del médulo de radio XBee debido al enlace de
radio y, por lo tanto, no debe usarse para enclavamientos en dispositivos criticos para la

Digi XBee® 3 Zigbee® RF Module 33

Safety instructions Sékerhets instruktioner

seguridad, como maquinas o aplicaciones automotrices.
= Elmédulo de radio XBee no ha sido aprobado para su uso en (esta lista no es exhaustiva):
 dispositivos médicos
 aplicaciones nucleares
» atmoésferas explosivas o inflamables

= No hay componentes reparables por el usuario dentro del médulo de radio XBee. No quite
el escudo ni modifique el XBee de ninguna manera. Las modificaciones pueden excluir el
modulo de cualquier garantia y pueden hacer que la radio XBee funcione fuera del
cumplimiento normativo de un pais determinado, lo que puede provocar una operacion
ilegal de la radio.

= Utilice la proteccion ESD estandar de la industria al manipular el médulo XBee.
= Tenga cuidado al manipularlo para evitar dafios eléctricos en la PCB y los componentes.
= No exponga los modulos de radio XBee al agua ni a la humedad.

= Utilice este producto con las antenas especificadas en las guias de usuario del médulo
XBee.

®m Se debe indicar al usuario final como desconectar la alimentacion del médulo de radio XBee
o ubicar las antenas a 20 cm de personas 0 animales.

Sakerhets instruktioner

XBee-moduler

m XBee-radiomodulen kan inte garanteras funktion pa grund av radiolédnken och boér darfér
inte anvandas for forreglingar i sékerhetskritiska enheter som maskiner eller
biltillampningar.

= XBee-radiomodulen har inte godkéants for anvandning i (denna lista ar inte uttdtmmande):

¢ medicinsk utrustning
» karnkraftstillampningar
» explosiv eller brandfarlig atmosfar

= Det finns inga komponenter som anvandaren kan reparera inuti XBee-radiomodulen. Ta

inte bort skdlden eller modifiera XBee pa nagot satt. Andringar kan utesluta modulen fran

alla garantier och kan goéra att XBee-radion fungerar utanfér bestammelserna for ett visst
land, vilket kan leda till att radion kan anvandas olagligt.

= Anvand industristandard ESD-skydd nar du hanterar XBee-modulen.

= Var forsiktig vid hanteringen for att undvika elektriska skador pa kretskortet och
komponenterna.

® Utsatt inte XBee radiomoduler for vatten eller fukt.

= Anvand den har produkten med antennerna som specificeras i XBee-modulens
anvandarguider.

= Slutanvandaren maste informeras om hur man kopplar bort strdmmen fran XBee-
radiomodulen eller for att placera antennerna 20 cm fran manniskor eller djur.

Digi XBee® 3 Zigbee® RF Module 34

Configure the XBee 3 Zigbee RF Module

Configure the device using XCTU ..

Custom defaults

Custom configuration: Create a new factorydefault ...

XBee bootloader

SeNnd afimmWare IMagE ...
Software libraries . . .

Digi XBee® 3 Zigbee® RF Module 35

Configure the XBee 3 Zigbee RF Module Configure the device using XCTU

Configure the device using XCTU

XBee Configuration and Test Utility (XCTU) is a multi-platform program that enables users to
interact with Digi radio frequency (RF) devices through a graphical interface. The application
includes built-in tools that make it easy to set up, configure, and test Digi RF devices.

For instructions on downloading and using XCTU, see the XCTU User Guide.

Custom defaults

Custom defaults allow you to preserve a subset of the device configuration parameters even after
returning to default settings using RE (Restore Defaults). This can be useful for settings that
identify the device—such as NI (Node Identifier)—or settings that could make remotely recovering
the device difficult if they were reset—such as |ID (Exiended PAN ID) or KY (Link Key).

You must send these custom default commands as local AT commands, they cannot be set
using Remote AT Command Request - 0x17.

Set custom defaults

Use %F (Set Custom Default) to set custom defaults. When the XBee 3 Zigbee RF Module
receives %F it takes the next command it receives and applies it to both the current configuration
and the custom defaults.

To set custom defaults for multiple commands, send a %F before each command.

Restore factory defaults

IC (Clear Custom Defaults) clears all custom defaults, so that RE (Restore Defaults) will restore the
device to factory defaults. Alternatively, R1 (Restore Factory Defaults) restores all parameters to
factory defaults without erasing their custom default values.

Limitations

There is a limitation on the number of custom defaults that can be set on a device. The number of
defaults that can be set depends on the size of the saved parameters and the devices' firmware
version. When there is no more room for custom defaults to be saved, any command sent
immediately after a %F returns an error.

Custom configuration: Create a new factory default

You can create a custom configuration that is used as a new factory default. This feature is useful
if, for example, you need to maintain certain settings for manufacturing or want to ensure a feature
is always enabled. When you use RE (Restore Defaults) to perform a factory reset on the device,
the custom configuration is set on the device after applying the original factory default settings.

For example, by default Bluetooth is disabled on devices. You can create a custom configuration in
which Bluetooth is enabled by default. When you use RE to reset the device to the factory defaults,
the Bluetooth configuration is set to the custom configuration (enabled) rather than the original
factory default (disabled).

The custom configuration is stored in non-volatile memory using a wear-leveling technology. This
means that the custom configuration may be written multiple times to the same page of flash
memory before doing an erase on that page, which reduces the number of erasures and the time to
write the custom configuration.

Digi XBee® 3 Zigbee® RF Module 36

https://www.digi.com/products/xbee-rf-solutions/xctu-software/xctu#productsupport-utilities
http://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm
../../../../../Content/Reference/r_cmd_KY.htm

Configure the XBee 3 Zigbee RF Module XBee bootloader

You can use |C (Clear Custom Defaults) to clear all values in the custom configuration at any time.

Set a custom configuration

1. Open XCTU and load your device.

2. Enter Command mode, or do the following process in APl mode, according to your
preference.

3. Perform the following process for each configuration that you want to set as a factory
default.

a. Send the Set Custom Default command, AT%F. This command enables you to enter a
custom configuration.

b. Send the custom configuration command. For example: ATBT 1 . This command sets
the default for Bluetooth to enabled.

Clear all custom configuration on a device
After you have set configurations using %F (Set Custom Default), you can return all configurations
to the original factory defaults.

1. Open XCTU and load the device.

2. Enter Command mode.

3. Send ATIC.

XBee bootloader

You can update firmware on the XBee 3 Zigbee RF Module serially. This is done by invoking the
XBee bootloader and transferring the firmware image using XMODEM.

This process is also used for updating a local device's firmware using XCTU.

XBee devices use a modified version of Silicon Labs' Gecko bootloader. This bootloader version
supports a custom entry mechanism that uses module pins DIN, DTR/SLEEP_RQ, and RTS.

To invoke the bootloader using hardware flow control lines, do the following:
1. Set DTR/SLEEP_RQ low (CMOSO0V) and RTS high.

2. Send a serial break to the DIN pin and power cycle or reset the module.

3. When the device powers up, set DTR/SLEEP_RQ and DIN to low (CMOSO0V) and RTS
should be high.

4. Terminate the serial break and send a carriage return at 115200 baud to the device.

5. If successful, the device sends the Silicon Labs' Gecko bootloader menu out the DOUT pin
at 115200 baud.

6. You can send commands to the bootloader at 115200 baud.
Disable hardware flow control when entering and communicating with the bootloader.

All serial communications with the module use 8 data bits, no parity bit, and 1 stop bit.
You can also invoke the bootloader from the XBee application by sending %P (Invoke Bootloader).

Digi XBee® 3 Zigbee® RF Module 37

Configure the XBee 3 Zigbee RF Module Send a firmware image

Send a firmware image
After invoking the bootloader, a menu is sent out the UART at 115200 baud. To upload a firmware
image through the UART interface:
1. Look for the bootloader prompt BL > to ensure the bootloader is active.
2. Send an ASCII 1 character to initiate a firmware update.

3. After sending a 1, the device waits for an XModem CRC upload of a .gbl image over the
serial line at 115200 baud. Send the .gbl file to the device using standard XMODEM-CRC.

If the firmware image is successfully loaded, the bootloader outputs a “complete” string. Invoke the
newly loaded firmware by sending a 2 to the device.

If the firmware image is not successfully loaded, the bootloader outputs an "aborted string". It
returns to the main bootloader menu. Some causes for failure are:

= QOver 1 minute passes after the command to send the firmware image and the first block of
the image has not yet been sent.

= A power cycle or reset event occurs during the firmware load.

= Afile error or a flash error occurs during the firmware load. The following table contains
errors that could occur during the XMODEM transfer.

S [S

0x18 | This error is observed when a serial upload Press 2 on the bootloader menu.
attempt has been abruptly discontinued by The bootloader performs a reboot
invoking Ctrl+C and subsequently another and the menu gets displayed again.
attempt is made to upload a gbl by pressing 1 on | Now press 1 and begin uploading
the bootloader menu. the gbl.

Software libraries
One way to communicate with the XBee 3 Zigbee RF Module is by using a software library. The
libraries available for use with the XBee 3 Zigbee RF Module include:
m XBee Java library
= XBee Python library
The XBee Java Library is a Java API. The package includes the XBee library, its source code and a

collection of samples that help you develop Java applications to communicate with your XBee
devices.

The XBee Python Library is a Python API that dramatically reduces the time to market of XBee
projects developed in Python and facilitates the development of these types of applications,
making it an easy process.

XBee Network Assistant

The XBee Network Assistant is an application designed to inspect and manage RF networks
created by Digi XBee devices. Features include:

= Join and inspect any nearby XBee network to get detailed information about all the nodes it
contains.

Digi XBee® 3 Zigbee® RF Module 38

http://www.digi.com/resources/documentation/digidocs/90001438/Default.htm
http://xbplib.readthedocs.io/en/latest/

Configure the XBee 3 Zigbee RF Module XBee Multi Programmer

= Update the configuration of all the nodes of the network, specific groups, or single devices
based on configuration profiles.

= Geo-locate your network devices or place them in custom maps and get information about
the connections between them.

= Export the network you are inspecting and import it later to continue working or work offline.
= Use automatic application updates to keep you up to date with the latest version of the tool.

See the XBee Network Assistant User Guide for more information.
To install the XBee Network Assistant:

Navigate to digi.com/xbeenetworkassistant.
Click General Diagnostics, Utilities and MIBs.
Click the XBee Network Assistant - Windows x86 link.

When the file finishes downloading, run the executable file and follow the steps in the XBee
Network Assistant Setup Wizard.

> wnh =

XBee Multi Programmer

The XBee Multi Programmer is a combination of hardware and software that enables partners and
distributors to program multiple Digi Radio frequency (RF) devices simultaneously. It provides a
fast and easy way to prepare devices for distribution or large networks deployment.

The XBee Multi Programmer board is an enclosed hardware component that allows you to program
up to six RF modules thanks to its six external XBee sockets. The XBee Multi Programmer
application communicates with the boards and allows you to set up and execute programming
sessions. Some of the features include:

= Each XBee Multi Programmer board allows you to program up to six devices
simultaneously. Connect more boards to increase the programming concurrency.
= Different board variants cover all the XBee form factors to program almost any Digi RF
device.
Download the XBee Multi Programmer application from: digi.com/support/productdetail?pid=5641
See the XBee Multi Programmer User Guide for more information.

Digi XBee® 3 Zigbee® RF Module 39

https://www.digi.com/resources/documentation/digidocs/90002288/Default.htm
https://www.digi.com/support/productdetail?pid=5642
https://www.digi.com/support/productdetail?pid=5641
https://www.digi.com/resources/documentation/digidocs/90002263/default.htm

Update the firmware over-the-air

The XBee 3 Zigbee RF Module supports firmware over-the-air (FOTA) updates. To perform an
FOTA update, the device to be updated must be associated and communicable with a ZigBee
network. In this section, the node performing the update is considered the server and the node
being updated is the client.

This section provides instruction on how to update your firmware using wired updates and over-
the-air updates.

Digi XBee® 3 Zigbee® RF Module

40

Update the firmware over-the-air Add the device to XCTU

Add the device to XCTU

You must have a local device connected to your computer in order to perform firmware updates,
either to update local firmware through the serial connection or to use the local device to remotely
upgrade another device in the same network. With a local device properly attached to your
computer, follow these steps:

1. Add the local device attached to your computer to XCTU so it displays in the radio modules
list.

2. Add the remote module in the network to XCTU:
a. Configure the local module you added to work in APl mode.

b. Click Discover radio nodes in the same network to start a search for the remote
device.

c. When a remote device is found, it is listed in the Discovering remote devices dialog.

d. Select the device and click Add selected devices. The remote device is added to the
radio modules list as a subordinate to the local device.

Update to the latest firmware

Firmware is the program code stored in the device's persistent memory that provides the control
program for the device. Use XCTU to update the firmware.

1. Click the Configuration working modes button 'ﬁ'
2. Select alocal or remote XBee module from the Radio Modules list.

3. Click the Update firmware button & .

The Update firmware dialog displays the available and compatible firmware for the selected
XBee module.

4. Select the product family of the XBee module, the function set, and the latest firmware
version.

XBee 3 Zigbee 3.0 does not support forced upgrades to the same version of the firmware.

5. Click Update. A dialog displays update progress. Click Show details for details of the
firmware update process.

Once you add your device to the radio modules list in XCTU, the update process is exactly
the same whether it is a local or remote device.

If there are instances where the upgrade fails with a transmission/waiting for image block
request error, retry the update process.

See How to update the firmware of your modules in the XCTU User Guide for more information.
For information about performing a firmware over-the-air (FOTA) update outside of XCTU, see .

Digi XBee® 3 Zigbee® RF Module 41

http://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#task/t_ts_how-to_update_firmware.htm

Get started with MicroPython

This user guide provides an overview of how to use MicroPython with the XBee 3 Zigbee RF
Module. For in-depth information and more complex code examples, refer to the Digi MicroPython
Programming Guide. Continue with this user guide for simple examples to get started using
MicroPython on the XBee 3 Zigbee RF Module.

ADOUL MICTO P Y N ON
MicroPython on the XBee 3 Zigbee RF Module
Use XCTU to enter the MicroPython environment
Use the MicroPython Terminal in XCTU
MicroPYthon eXxamples .. .
MicroPython networking and communication examples
EXit MicroPYthOn MOde ..
Other terminal programs
Use picocom in Linux
Micropython help ()

Digi XBee® 3 Zigbee® RF Module 42

https://www.digi.com/resources/documentation/Digidocs/90002219/
https://www.digi.com/resources/documentation/Digidocs/90002219/

Get started with MicroPython About MicroPython

About MicroPython

MicroPython is an open-source programming language based on Python 3.0, with much of the
same syntax and functionality, but modified to fit on small devices with limited hardware resources,
such as an XBee 3 Zigbee RF Module.

For more information about MicroPython, see www.micropython.org.
For more information about Python, see www.python.org.

MicroPython on the XBee 3 Zigbee RF Module

The XBee 3 Zigbee RF Module has MicroPython running on the device itself. You can access a
MicroPython prompt from the XBee 3 Zigbee RF Module when you install it in an appropriate
development board (XBDB or XBIB), and connect it to a computer via a USB cable.

MicroPython is only available through the UART interface and does not work with SPI.

MicroPython programming on the device requires firmware version or newer.

The examples in this user guide assume:

= You have XCTU on your computer. See Configure the device using XCTU.

® You have a serial terminal program installed on your computer. For more information, see
Use the MicroPython Terminal in XCTU. This requires XCTU 6.3.10 or higher.

= You have an XBee 3 Zigbee RF Module installed on an appropriate development board
such as an XBIB-U-DEV or an XBDB-U-ZB.

= The XBee 3 Zigbee RF Module is connected to the computer via a USB cable and XCTU
recognizes it.

Use XCTU to enter the MicroPython environment

To use the XBee 3 Zigbee RF Module in the MicroPython environment:
1. Use XCTU to add the device(s); see Configure the device using XCTU and Add devices to
XCTU.

2. The XBee 3 Zigbee RF Module appears as a box in the Radio Modules information panel.
Each module displays identifying information about itself.

3. Click this box to select the device and load its current settings.

To ensure that MicroPython is responsive to input, Digi recommends setting the XBee
UART baud rate to 115200 baud. To set the UART baud rate, select 115200 [7] in the BD
field and click the Write button. We strongly recommend using hardware flow control to
avoid data loss, especially when pasting large amounts of code or text. For more
information, see UART flow control.

4. To put the XBee 3 Zigbee RF Module into MicroPython mode, in the AP field select

MicroPython REPL [4] and click the Write button‘z{a»;l:‘j

5. Note which COM port the XBee 3 Zigbee RF Module is using, because you will need this
information when you use the MicroPython terminal.

Digi XBee® 3 Zigbee® RF Module 43

https://micropython.org/
https://www.python.org/
https://www.digi.com/products/xbee-rf-solutions/xctu-software/xctu#productsupport-utilities
https://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#concept/c_populate_device_list.htm
https://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#concept/c_populate_device_list.htm

Get started with MicroPython Use the MicroPython Terminal in XCTU

Use the MicroPython Terminal in XCTU

You can use the MicroPython Terminal to communicate with the XBee 3 Zigbee RF Module when it
is in MicroPython mode. This requires XCTU 6.3.10 or higher. To enter MicroPython mode, follow
the steps in Use XCTU to enter the MicroPython environment. To use the MicroPython Terminal:

1.

o & wb

\ - . . .
Click the Tools drop-down menu and select MicroPython Terminal. The terminal
window opens.

Click Open to open the Serial Port Configuration window.
In the Select the Serial/USB port area, click the COM port that the device uses.
Verify that the baud rate and other settings are correct.

Click OK. The Open icon changes to Close L=, indicating that the device is properly
connected.

If the >>> prompt appears, you are connected properly. You can now type or paste MicroPython
code in the terminal.

MicroPython examples

This section provides examples of how to use some of the basic functionality of MicroPython with
the XBee 3 Zigbee RF Module.

Example: hello world

1.
2.

At the MicroPython >>> prompt, type the Python command: print("Hello, World!")

Press Enter to execute the command. The terminal echos back Hello, World!

Example: enter MicroPython paste mode

In the following examples it is helpful to know that MicroPython supports pasie mode, where you
can copy a large block of code from this user guide and paste it instead of typing it character by
character. To use paste mode:

1.

Copy the code you want to run. For example, copy the following code that is the code from
the "Hello world" example:

print("Hello World")

You can easily copy and paste code from the online version of this guide. Use caution with

the PDF version, as it may not maintain essential indentations.

2.

In the terminal, at the MicroPython >>> prompt type Ctrl-+E to enter paste mode. The
terminal displays paste mode; Ctrl-C to cancel, Ctrl-D to finish.

Right-click in the MicroPython terminal window and click Paste or press Ctrl+Shift+V to
paste.

1See Other terminal programs if you do not use the MicroPython Terminal in XCTU.

Digi XBee® 3 Zigbee® RF Module 44

http://docs.micropython.org/en/latest/pyboard/reference/repl.html#paste-mode
http://www.digi.com/resources/documentation/Digidocs/90002258/

Get started with MicroPython MicroPython examples

4. The code appears in the terminal occupying one line. Each line starts with its line number
and three "=" symbols. For example, line 1 starts with 1===.

5. Ifthe code is correct, press Ctrl+D to run the code; “Hello World” should print.

If you want to exit paste mode without running the code, or if the code did not copy
correctly, press Ctrl+C to cancel and return to the normal MicroPython >>> prompt).

Example: use the time module

The time module is used for time-sensitive operations such as introducing a delay in your routine or
a timer.

The following time functions are supported by the XBee 3 Zighee RF Module:
= ticks_ms() returns the current millisecond counter value. This counter rolls over at
0x40000000.
= ticks_diff() compares the difference between two timestamps in milliseconds.
= sleep() delays operation for a set number of seconds.
= sleep_ms() delays operation for a set number of milliseconds.
= sleep_us() delays operation for a set number of microseconds.

The standard time.time() function cannot be used, because this function produces the
number of seconds since the epoch. The XBee3 module lacks a realtime clock and cannot provide
any date or time data.

The following example exercises the various sleep functions and uses ticks_diff() to measure
duration:

import time
start = time.ticks_ms() # Get the value from the millisecond counter

time.sleep(1) # sleep for 1 second
time.sleep_ms(500) # sleep for 500 milliseconds
time.sleep_us(1000) # sleep for 1000 microseconds

delta = time.ticks_diff(time.ticks_ms(), start)

print("Operation took {} ms to execute".format(delta))

Example: AT commands using MicroPython

AT commands control the XBee 3 Zigbee RF Module. The "AT" is an abbreviation for "attention”,
and the prefix "AT" notifies the module about the start of a command line. For a list of AT
commands that can be used on the XBee 3 Zigbee RF Module, see AT commands.

MicroPython provides an atcmd() method to process AT commands, similar to how you can use
Command mode or API frames.

The atcmd() method accepts two parameters:

1. The two character AT command, entered as a string.
2. An optional second parameter used to set the AT command value. If this parameter is not

Digi XBee® 3 Zigbee® RF Module 45

Get started with MicroPython MicroPython networking and communication examples

provided, the AT command is queried instead of being set. This value is an integer, bytes
object, or string, depending on the AT command.

The xbee.atcmd() method does not support the following AT commands: IS, AS, ED, ND, or
DN.

The following is example code that queries and sets a variety of AT commands using xbee.atcmd

0:
import xbee

Set the NI string of the radio
xbee.atcmd("NI", "XBee3 module")

Configure a destination address using two different data types
xbee.atcmd("DH", 0x0013A200) # Hex
xbee.atcmd("DL", b'\x12\x25\x89\xF5') # Bytes

Read some AT commands and display the value and data type:
print("\nAT command parameter values:")
commands =["DH", "DL", "NI", "CK"]
for cmd in commands:
val = xbee.atcmd(cmd)
print("{}: {:20} of type {}".format(cmd, repr(val), type(val)))

This example code outputs the following:

AT command parameter values:

DH: b"'\x00\x13\xa2\x00' of type <class 'bytes>
DL: b'\x12%\x89\xf5' of type <class 'bytes'>
NI: 'XBee3 module’ of type <class 'str'>

CK: 65535 of type <class 'int'>

Parameters that store values larger than 16-bits in length are represented as bytes. Python
attempts to print out ASCII characters whenever possible, which can result in some unexpected
output (such as the "%" in the above output). If you want the output from MicroPython to match
XCTU, you can use the following example to convert bytes to hex:

dl_value = xbee.atcmd("DL")
hex_dI_value = hex(int.from_bytes(dI_value, 'big"))

MicroPython networking and communication examples

This section provides networking and communication examples for using MicroPython with the
XBee 3 Zigbee RF Module.

Zigbee networks with MicroPython

For small networks, it is suitable to use MicroPython on every node. However, there are some
inherit limitations that may prevent you from using MicroPython on some heavily trafficked nodes:

= When running MicroPython, any received messages will be stored in a small receive queue.
This queue only has room for 4 packets and must be regularly read to prevent data loss. For
networks that will be generating a lot of traffic, the data aggregator may need to operate in

Digi XBee® 3 Zigbee® RF Module 46

Get started with MicroPython MicroPython networking and communication examples

API mode in order to capture all incoming data.

= MicroPython does not have support for all of the XBee API frame types, particularly for
source routing. If you are planning to operate with a network of more than 40 nodes, Digi
highly recommends that you operate with the aggregator in APl mode and implement
source routing.

For the examples in this section, we use MicroPython to manage a Zigbee network and send and
receive data between modules. To follow the upcoming examples, we need to configure a second
XBee 3 Zigbee RF Module to use MicroPython.

XCTU only allows a single MicroPython terminal. We will be running example code on both
modules, which requires a second terminal window.

Open a second instance of XCTU, and configure a different XBee 3 device for MicroPython
following the steps in Use XCTU to enter the MicroPython environment.

WARNING! The upcoming examples form and join an unencrypted Zigbee network. If
the modules were previously associated with a network, they will be disassociated.

Example: forming and joining a Zigbee network using MicroPython

This example forms a two-node Zigbee network using MicroPython. This is a prerequisite for
subsequent networking examples.

This example assumes that you have two XBee 3 Zigbee RF Modules configured for MicroPython
and two terminals open, one for each radio.

Execute the following code on the first radio; it will be our network coordinator:

import xbee, time
Set the identifying string of the radio
xbee.atemd("NI", "Coordinator")

Configure some basic network settings
network_settings = {"CE": 1, "ID": 0XABCD, "EE": 0, "NJ": OxFF}

for command, value in network_settings.items():

xbee.atcmd(command, value)
xbee.atcmd("AC") # Apply changes
time.sleep(1)

while xbee.atcmd("Al") I=0:
time.sleep(0.1)
print("Network Established")
operating_network = ["OI", "OP", "CH"]
print("Operating network parameters:")
for cmd in operating_network:
print("{}: {}".format(cmd, xbee.atcmd(cmd)))
Run the following code on the second radio, it will be a router that will join the established network:

import xbee, time

Set the identifying string of the radio
xbee.atcmd("NI", "Router")

Digi XBee® 3 Zigbee® RF Module 47

Get started with MicroPython MicroPython networking and communication examples

Configure some basic network settings
network_settings = {"CE": 0, "ID": 0OxABCD, "EE": 0}

for command, value in network_settings.items():

xbee.atcmd(command, value)
xbee.atcmd("AC") # Apply changes
time.sleep(1)

Query Al until it reports success

print("Connecting to network, please wait...")
while xbee.atcmd("Al") 1= 0:

time.sleep(0.1)
print("Connected to Network")

operating_network = ["OI", "OP", "CH"]
print("Operating network parameters:")
for cmd in operating_network:

print("{}: {}".format(cmd, xbee.atcmd(cmd)))

After the code has been executed on both radios, the radio reports the operating network
parameters. Make sure both radios report the same values to ensure they are on the same
network.

Example: network Discovery using MicroPython

The xbee.discover() method returns an iterator that blocks while waiting for results, similar to
executing an ND request. For more information, see ND (Network Discovery).

Each result is a dictionary with fields based on an ND response:

= sender_nwk: 16-bit network address.
= sender_eui64: 8-byte bytes object with EUI-64 address.

= parent_nwk: Set to OxFFFE on the coordinator and routers; otherwise, this is set to the
network address of the end device's parent.

= node_id: The device's Nl value (a string of up to 20 characters, also referred to as Node
Identification).

= node_type: Value of 0, 1 or 2 for coordinator, router, or end device.

= device_type: The device's 32-bit DD value, also referred to as Digi Device Type; this is used
to identify different types of devices or hardware.

= rssi: Relative signal strength indicator (in dBm) of the node discovery request packet
received by the sending node.

When printing the dictionary, fields for device_type, sender_nwk and parent_nwk appear in
decimal form. You can use the MicroPython hex() method to print an integer in hexadecimal.
Check the function code for format_eui64 from the Example: communication between two XBee 3
Zighee modules topic for code to convert the sender_eui64 field into a hexadecimal string with a
colon between each byte value.

Use the following example code to perform a network discovery:
import xbee, time

Set the network discovery options to include self

Digi XBee® 3 Zigbee® RF Module 48

Get started with MicroPython

xbee.atcmd("NO", 2)
xbee.atcmd("AC")
time.sleep(.5)

Perform Network Discovery and print out the results
print ("Network Discovery in process...")
nodes = list(xbee.discover())
if nodes:
for node in nodes:
print("\nRadio discovered:")
for key, value in node.items():
print("\t{:<12} : {}".format(key, value))

Set NO back to the default value
xbee.atcmd("NQO", 0)
xbee.atcmd("AC")

This produces the following output from two discovered nodes:

Radio discovered:
rssi :-63
node_id : Coordinator
device_type :1179648
parent_nwk :65534
sender nwk :0
sender_eui64 : b"\x00\x13\xa2\xff h\x98T"
node_type :0

Radio discovered:
rssi :-75
node_id : Router
device_type :1179648
parent_nwk :65534
sender_nwk :23125
sender_eui64 : b"'\x00\x13\xa2\xffh\x98c&'
node_type :1

Examples: transmitting data

MicroPython networking and communication examples

This section provides examples for transmitting data using MicroPython. These examples assume

you have followed the above examples and the two radios are on the same network.

Example: transmit message

Use the xbee module to transmit a message from the XBee 3 Zigbee device. The transmit()

function call consists of the following parameters:

1. The Destination Address, which can be any of the following:

= |nteger for 16-bit addressing
8-byte bytes object for 64-bit addressing

® Constant xbee.ADDR_BROADCAST to indicate a broadcast destination
= Constant xbee., ADDR_COORDINATOR to indicate the coordinator

2. The Message as a character string.

If the message is sent successfully, transmit() returns None. If the transmission fails due to an
ACK failure or lack of free buffer space on the receiver, the sent packet will be silently discarded.

Digi XBee® 3 Zigbee® RF Module

49

Get started with MicroPython MicroPython networking and communication examples

Example: transmit a message to the network coordinator

1. From the router, access the MicroPython environment.
2. Atthe MicroPython >>> prompt, type import xbee and press Enter.

3. Atthe MicroPython >>> prompt, type xbee.transmit(xbee. ADDR_COORDINATOR, "Hello
World!") and press Enter.

4. On the coordinator, you can issue an xbee.receive() call to output the received packet.

Example: transmit custom messages to all nodes in a network

This program performs a network discovery and sends the message 'Hello <Destination Node
Identifier>!" to individual nodes in the network. For more information, see Example: network
Discovery using MicroPython.

import xbee

Perform a network discovery to gather destination address:
print("Discovering remote nodes, please wait...")
node_list = list(xbee.discover())
if not node_list:
raise Exception("Network discovery did not find any remote devices")

for node in node_list:
dest_addr = node['sender_nwk'] # 'sender_eui64' can also be used
dest_node_id = node['node_id"]
payload_data = "Hello, " + dest_node_id +"!"

try:
print("Sending \"{}\" to {}".format(payload_data, hex(dest_addr)))
xbee.transmit(dest_addr, payload_data)

except Exception as err:
print(err)

print("complete")

Receiving data

Use the receive() function from the xbee module to receive messages. When MicroPython is
active on a device (AP is set to 4), all incoming messages are saved to a receive queue within
MicroPython. This receive queue is limited in size and only has room for 4 messages. To ensure
that data is not lost, it is important to continuously iterate through the receive queue and process
any of the packets within.

If the receive queue is full and another message is sent to the device, it will not acknowledge the
packet and the sender generates a failure status of 0x24 (Address not found).

The receive() function returns one of the following:

= None: No message (the receive queue is empty).
= Message dictionary consisting of:
» sender_eui64: 64-bit address (as a "bytes object") of the sending node.
* source_ep: source endpoint as an integer.
» dest_ep: destination endpoint as an integer.
* cluster: cluster id as an integer.

Digi XBee® 3 Zigbee® RF Module 50

Get started with MicroPython MicroPython networking and communication examples

 profile: profile id as an integer.
« broadcast: True or False depending on whether the frame was broadcast or unicast.

« payload: "Bytes object" of the payload. This is a bytes object instead of a string,
because the payload can contain binary data.

Example: continuously receive data

In this example, the format_packet() helper formats the contents of the dictionary and format_
euib4() formats the bytes object holding the EUI-64. The while loop shows how to poll for packets
continually to ensure that the receive buffer does not become full.

def format_eui64(addr):
return ":".join('%02x' % b for b in addr)

def format_packet(p):
type = 'Broadcast' if p['broadcast’] else 'Unicast’
print("%s message from EUI-64 %s (network 0x%04X)" % (type,
format_eui64(p['sender_eui64']), p['sender_nwk'))
print(" from EP 0x%02X to EP 0x%02X, Cluster 0x%04X, Profile 0x%04X:" %

(p['source_ep', p['dest_ep'], p['cluster’], p['profile']))
print(p['payload’])
import xbee, time
while True:
print("Receiving data...")

print("Press CTRL+C to cancel.")
p = xbee.receive()
if p:
format_packet(p)
else:
time.sleep(0.25) # wait 0.25 seconds before checking again

If this node had previously received a packet, it outputs as follows:

Unicast message from EUI-64 00:13:a2:00:41:74:ca:70 (network 0x6D81)
from EP OxE8 to EP 0xES8, Cluster 0x0011, Profile 0xC105:
b'Hello World!'

Digi recommends calling the receive() function in a loop so no data is lost. On modules where
there is a high volume of network traffic, there could be data lost if the messages are not pulled
from the queue fast enough.

Example: communication between two XBee 3 Zigbee modules

This example combines all of the previous examples and represents a full application that
configures a network, discovers remote nodes, and sends and receives messages.

First, we will upload some utility functions into the flash space of MicroPython so that the following
examples will be easier to read.
Complete the following steps to compile and execute utility functions using flash mode on both
devices:

1. Access the MicroPython environment.

2. PressCtrl +F.

3. Copy the following code:

Digi XBee® 3 Zigbee® RF Module 51

Get started with MicroPython MicroPython networking and communication examples

import xbee, time
Utility functions to perform XBee 3 Zigbee operations
def format_eui64(addr):

return ":'.join('%02x"' % b for b in addr)

def format_packet(p):
type = 'Broadcast' if p['broadcast’] else 'Unicast’
print("%s message from EUI-64 %s (network 0x%04X)" %
(type, format_eui64(p['sender_eui64']), p['sender_nwk']))
print("from EP 0x%02X to EP 0x%02X, Cluster 0x%04X, Profile 0x%04X:" %
(p['source_ep', p['dest_ep'], p['cluster’], p['profile']))
print(p['payload'],"\n")

def network_status():
If the value of Al is non zero, the module is not connected to a network
return xbee.atcmd("Al")

4. Atthe MicroPython 1*** prompt, right-click and select the Paste option.

5. Press Ctrl+D to finish. The code is uploaded to the flash memory and then compiled. At the
"Automatically run this code at startup” [Y/N]?" prompt, select Y.

6. Press Ctrl+R to run the compiled code; this provides access to these utility functions for the
next examples.

WARNING! MicroPython code stored in flash is saved in the file system as main.py. If
the file system has not been formatted, then the following error is generated:
OSEtrror: [Errno 70191 ENODEV
A The file system can be formatted in one of three ways:
In XCTU by using the File System Manager.

In Command mode using the ATFS FORMAT confirm command—see FS (File System).
In MicroPython by issuing the following code:

import os
os.format()

Example code on the coordinator module

The following example code forms a Zigbee network as a coordinator, performs a network
discovery to find the remote node, and continuously prints out any incoming data.

1. Access the MicroPython environment.
2. Copy the following sample code:

print("Forming a new Zigbee network as a coordinator...")

xbee.atcmd("NI", "Coordinator")

network_settings = {"CE": 1, "ID": 0x3332, "EE": 0, "NJ": OxFF}

for command, value in network_settings.items():
xbee.atcmd(command, value)

xbee.atcmd("AC") # Apply changes

time.sleep(1)

while network_status() != 0:

time.sleep(0.1)
print("Network Established\n")

Digi XBee® 3 Zigbee® RF Module 52

https://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#task/t_interact_with_xbee_file_system.htm

Get started with MicroPython MicroPython networking and communication examples

print("Waiting for a remote node to join...")

node_list =[]

while len(node_list) == 0:
Perform a network discovery until the router joins
node_list = list(xbee.discover())

print("Remote node found, transmitting data")

for node in node_list:
dest_addr = node['sender_nwk'] # using 16 bit addressing
dest_node_id = node['node_id"]
payload_data = "Hello, " + dest_node_id +"!"

print("Sending \"{}\" to {}".format(payload_data, hex(dest_addr)))
xbee.transmit(dest_addr, payload_data)

Start the receive loop
print("Receiving data...")
print("Hit CTRL+C to cancel")
while True:
p = xbee.receive()
if p:
format_packet(p)
else:
time.sleep(0.25)

3. Press Ctrl+E to enter paste mode.

4. Atthe MicroPython >>> prompt, right-click and select the Paste option. Once you paste the
code, it executes immediately.

Example code on the router module

The following example code joins the Zigbee network from the previous example, and continuously
prints out any incoming data. This device also sends its temperature data every 5 seconds to the
coordinator address.

1. Access the MicroPython environment.
2. Copy the following sample code:

print("Joining network as a router...")

xbee.atcmd("NI", "Router")

network_settings = {"CE": 0, "ID": 0x3332, "EE": 0}

for command, value in network_settings.items():
xbee.atcmd(command, value)

xbee.atcmd("AC") # Apply changes

time.sleep(1)

while network_status() !=0:
time.sleep(0.1)
print("Connected to Network\n")

last_sent = time.ticks_ms()
interval = 5000 # How often to send a message

Start the transmit/receive loop

print("Sending temp data every {} seconds".format(interval/1000))
while True:

Digi XBee® 3 Zigbee® RF Module 53

Get started with MicroPython Exit MicroPython mode

p = xbee.receive()
if p:
format_packet(p)
else:
Transmit temperature if ready
if time.ticks_diff(time.ticks_ms(), last_sent) > interval:
temp = "Temperature: {}C".format(xbee.atcmd("TP"))
print("\tsending " + temp)

try:
xbee.transmit(xbee. ADDR_COORDINATOR, temp)
except Exception as err:
print(err)
last_sent = time.ticks_ms()
time.sleep(0.25)
3. Press Ctrl+E to enter paste mode.

4. Atthe MicroPython >>> prompt, right-click and select the Paste option. Once you paste the
code, it executes immediately.

Exit MicroPython mode

To exit MicroPython mode:

In the XCTU MicroPython terminal, click the green Close button
2. Click Close at the bottom of the terminal to exit the terminal.

3. In XCTU's Configuration working mode 'm' change AP API Enable to another mode and

/\
click the Write button < . We recommend changing to Transparent mode [0], as most of the
examples use this mode.

Other terminal programs

If you do not use the MicroPython terminal in XCTU, you can use other terminal programs to
communicate with the XBee 3 Zigbee RF Module. If you use Microsoft Windows, follow the
instructions for Tera Term; if you use Linux, follow the instructions for picocom. To download these
programs:

= Tera Term for Windows, see ttssh2.osdn.jp/index.html.en.

= Picocom for Linux, see developer.ridgerun.com/wiki/index.php/Setting_up_Picocom_-
Ubuntu

= Source code and in-depth information, see github.com/npat-efault/picocom.

Tera Term for Windows
With the XBee 3 Zigbee RF Module in MicroPython mode (AP = 4), you can access the
MicroPython prompt using a terminal.

1. Open Tera Term. The Tera Term: New connection window appears.

2. Click the Serial radio button to select a serial connection.

3. From the Port: drop-down menu, select the COM port that the XBee 3 Zigbee RF Module is
connected to.

Digi XBee® 3 Zigbee® RF Module 54

https://ttssh2.osdn.jp/index.html.en
https://developer.ridgerun.com/wiki/index.php/Setting_up_Picocom_-_Ubuntu
https://developer.ridgerun.com/wiki/index.php/Setting_up_Picocom_-_Ubuntu
https://github.com/npat-efault/picocom

Get started with MicroPython Use picocom in Linux

4. Click OK. The COMxx - Tera Term VT terminal window appears and Tera Term attempts to
connect to the device at a baud rate of 9600 bps. The terminal will not allow communication
with the device since the baud rate setting is incorrect. You must change this rate as it was
previously set to 115200 bps.

5. Click Setup and Serial Port. The Tera Term: Serial port setup window appears.

*I' Tera Term - [disconnected] VT

File Edit [Setup] Control Window Help

Terminal...
Window...
Font...
Keyboard...

Serial port... [:}
Proxy...

6. Inthe Tera Term: Serial port setup window, set the parameters to the following values:
= Port: Shows the port that the XBee 3 Zigbee RF Module is connected on.
= Baud rate: 115200
= Data: 8 bit
= Parity: none
= Stop: 1 bit
= Flow control: hardware
= Transmit delay: N/A
7. Click OK to apply the changes to the serial port settings. The settings should go into effect
right away.
8. To verify that local echo is not enabled and that extra line-feeds are not enabled:
a. InTera Term, click Setup and select Terminal.

b. Inthe New-line area of the Tera Term: Serial port setup window, click the Receive
drop-down menu and select AUTO if it does not already show that value.

c. Make sure the Local echo box is not checked.
9. Click OK.
10. Press Ctrl+B to get the MicroPython version banner and prompt.
MicroPython v1.9.3-716-g507d0512 on 2018-02-20; XBee3 Zigbee with EFR32MG

Type "help()" for more information.
>>>

Now you can type MicroPython commands at the >>> prompt.

Use picocom in Linux

With the XBee 3 Zigbee RF Module in MicroPython mode (AP = 4), you can access the
MicroPython prompt using a terminal.

Digi XBee® 3 Zigbee® RF Module 55

Get started with MicroPython Use picocom in Linux

The user must have read and write permission for the serial port the XBee 3 Zigbee RF
Module is connected to in order to communicate with the device.

1. Open aterminal in Linux and type picocom -b 115200 /dev/ttyUSBO. This assumes you
have no other USB-to-serial devices attached to the system.

2. Press Ctrl+B to get the MicroPython version banner and prompt. You can also press Enter
to bring up the prompt.

If you do have other USB-to-serial devices attached:

1. Before attaching the XBee 3 Zigbee RF Module, check the directory /dev/ for any devices
named ttyUSBX, where x is a number. An easy way to list these is to type: Is /dev/ttyUSB*.
This produces a list of any device with a name that starts with ttyUSB.

2. Take note of the devices present with that name, and then connect the XBee 3 Zigbee RF
Module.

3. Check the directory again and you should see one additional device, which is the XBee 3
Zigbee RF Module.

4. Inthis case, replace /dev/ttyUSBO at the top with /dev/ttyUSB<number>, where <number>
is the new number that appeared.

It connects and shows "Terminal ready".

o8 @ -VirtualBox: ~

File Edit View Search Terminal Help
@ -VirtualBox:~$ sudo picocom -b 115200 fdev/ttyUSB@
||sudo]| password for E

: Jdev/ttyUSBO

: none
baudrate is : 115280
parity is : none
databits are : 8
escape is : C-a
local echo is : no
noinit is : no
noreset is : no
nolock is : no
send_cmd 1is
receive_cmd is :

: crcrlf,delbs,

Terminal ready

> I

You can now type MicroPython commands at the >>> prompt.

Digi XBee® 3 Zigbee® RF Module 56

Get started with MicroPython Micropython help ()

Micropython help ()

When you type the help() command at the prompt, it provides a link to online help, control
commands and also usage examples.

>>> help()

Welcome to MicroPython!

For online docs please visit http://docs.micropython.org/.
Control commands:

CTRL-A -- on a blank line, enter raw REPL mode

CTRL-B --on a blank line, enter normal REPL mode
CTRL-C -- interrupt a running program

CTRL-D --on a blank line, reset the REPL

CTRL-E -- on a blank line, enter paste mode
CTRL-F --on a blank line, enter flash upload mode

For further help on a specific object, type help(obj)
For a list of available modules, type help('modules’)

When you type help('modules') at the prompt, it displays all available Micropython modules.

>>> help("modules")

__main__ micropython uhashlib ustruct
ble uarray uio usys
builtins ubinascii ujson utime
digi ucryptolib umachine xbee
gc uerrno uos

Plus any modules on the filesystem

When you import a module and type help() with the module as the object, you can query all the
functions that the object supports.

>>> import sys
>>> help(sys)
object <module 'sys'> is of type module

__hame__ --sys
path -- ['.frozen', ", '/flash’, /flash/lib’]
argv - ["]

version -- 3.4.0; MicroPython v1.20.0-1829-gcf5¢c2e9fb on 2023-07-20
version_info -- (3, 4, 0)

implementation -- ('micropython’, (1, 20, 0), 'XBee BLE with EFR32MG', 262)
platform -- xbee-ble

byteorder -- little

maxsize -- 2147483647

exit -- <function>

stdin -- <io.FilelO 0>

stdout -- <io.FilelO 1>

stderr -- <io.FilelO 2>

modules -- {}

print_exception -- <function>

Digi XBee® 3 Zigbee® RF Module 57

Secure access

By default, the XBee 3 Zigbee RF Module is easy to configure and allows for rapid prototyping. For
deployment, you can encrypt networks to prevent unauthorized access. This can prevent entities
outside of the network from accessing data on that network. Some customers may also desire a
way to restrict communication between nodes from inside the same network.

There are two ways to secure your device against unauthorized access:

® Secure remote session

= Disable functionality
Secure session protects against external man-in-the middle attacks by requiring remote devices to
authenticate before they are allowed to make configuration changes.

You can also disable device functionality in order to prevent unexpected malicious use of the
product. For example disable MicroPython so that remote code cannot be uploaded and executed.

ENd @ SeSSion frOmM @ SeIVer . o
SecUre SesSION AP framMES ...
Secure transmissioN failures ...

Digi XBee® 3 Zigbee® RF Module 58

Secure access Secure Sessions

Secure Sessions

Secure Sessions provide a way to password-protect communication between two nodes on a
network above and beyond the security of the network itself. With secure sessions, a device can
'log in', or create a session with another device that is encrypted and only readable by the two
nodes involved. By restricting certain actions—such as remote AT commands or FOTA updates—to
only be allowed over one of these secure sessions, you can make it so access to the network does
not allow network configuration. A password must be set and the proper bits of SA (Secure Access)
must be set to enable this feature.

The following definitions relate to secure Sessions:

Client The device that is attempting to log in and send secured data or commands
is called the client.

Server The device that is being logged into and will receive secured data or
commands is called the server.

Secure Session A secure connection between a server and a client where the pair can send
and receive encrypted data that only they can decrypt.

Secure Remote Name of the authentication protocol used to create the secure connection
Password (SRP) | between the nodes.

Salt A random value generated as part of the authentication process.

Verifier A value derived from a given salt and password.

Configure the secure session password for a device

For a device to act as a secure session server it needs to have a password configured. The
password is configured on the server in the form of a salt and verifier used for the SRP
authentication process. The salt and verifier can be configured in XCTU by selecting the Secure
Session Authentication option.

We recommend using XCTU to set a password which will then generate the salt and verifier
parameters, although the salt and verifier values can also be set manually. See *S (Secure Session
Salt) and *V, "W, *X, *Y (Secure Session Verifier) for more information.

There is not an enforced password length. We recommend a minimum length of at least eight
characters. The password should not exceed 64 characters, as it will exceed the maximum length
of an API frame.

Start a secure session

A secure session can only be started in APl mode. Once you have been authenticated you may
send data in APl mode or Transparent mode, but APl mode is the recommended way to
communicate.

To start a secure session:

1. Send atype Secure Session Control - 0x2E to your local client device with the address of
the server device (not a broadcast address), the options bit field set to 0x00, the timeout for
the session, and the password that was previously set on the server.

Digi XBee® 3 Zigbee® RF Module 59

Secure access Secured remote AT commands

2. The client and server devices will send/exchange several packets to authenticate the
session.

3. When authentication is complete, the client device will output a Secure Session Response -
OxAE to indicate whether the login was a success or failure.

At this point if authentication was successful, the secure session is established and the client can
send secured data to the server until the session times out.

A device can have one outgoing session—a session in which the node is a client—at a time.
Attempting to start a new session while a session is already in progress automatically ends the
previous session.

A device can have up to four incoming sessions—sessions in which the device is a server—at a
time. Once that number has been reached, additional authentication requests are rejected until one
of the active sessions ends.

End a secure session

A client can end a session by either waiting for the timeout to expire or by ending it manually. To
end a session, send a Secure Session Control - 0x2E to the local client device with bit 0 of the
options field set and with no password.

The device ends the outgoing secure session with the node whose address is specified in the type
0x2E frame. This frame can be sent even if the node does not have a session with the specified
address—the device will send a message to the specified server prompting it to clear out any
incoming session data related to the client (this can be used if the server and client fall out of sync.
For example, if the client device unexpectedly loses power during a session.

Sending a type 0x2E frame with the logout option bit set, and the address field set to the broadcast
address will end whatever outgoing session is currently active on the client and broadcast a
request to all servers to clear any incoming session data related to that client.

Secured remote AT commands

Secure a node against unauthorized remote configuration

Secured Access is enabled by setting bits of SA (Secure Access). Additionally, an SRP Salt (*S)
and verifier (*V, *W, *X, *Y) must be set. You can use XCTU to generate the salt and verifier based
on a password.

Configure a node with a salt and verifier
In this example, the password is pickle.

1. The saltis randomly generated and the verifier is derived from the salt and password as
follows:

*S = 0x1938438E

*V -
0x0771F57C397AE4019347D36FD1B9D91FA05B2E5D7365A161318E46F72942A45D
*W -
0xD4E44C664B5609C6D2BE3258211A7A20374FA65FC7C82895C6FD0OB3399E7377
0

Digi XBee® 3 Zigbee® RF Module 60

Secure access Secured remote AT commands

*X =
0x63018D3FEA59439A9EFAE3CD658873F475EAC94ADF7DC6C2C005b930042A0B
74

*Y =
OXAEE84E7A00B74DD2E19E257192EDE6B1D4ED993947DF2996 CAEOD644C28E83
07

The salt and verifier will not always be the same even if the same password is used to
generate them.

2. Enforce secure access for Remote AT Commands by setting Bit 1 of the SA command:
SA =0x02
3. Write the configuration to flash using WR (Write).

and *S, *V, *W, *X, *Y and SA are not written to flash they will revert to defaults,

WARNING! Make sure that this step is completed. If your device resets for any reason
A rendering the node open to insecure access.

4. From now on, any attempt to issue a Remote AT Command Request - 0x17 to this device
will be rejected with a 0x0B status unless a secure session is established first.

Remotely configure a node that has been secured

In the example above a node is secured against unauthorized remote configuration. In this
instance, the secured node acts as a Secure Session Server (remote). The sequence below
describes how a Secure Session Client (local) can authenticate and securely configure the server
remotely.

Establish a secure session using the password that was set on the server node
1. Generate a Secure Session Control - 0x2E.

= The destination address must match the 64-bit address (SH + SL) of the remote server.
= Since you are logging in, leave the options field as 0x00.

= Set a five minute timeout, which should give sufficient time for ad hoc configuration. The
units are in tenths of a second, so 0xOBB8 gives you five minutes.

= The options are set for a fixed duration, so after the five minutes expire, both the server and
client emit a modem status indicating the session ended.

= Enter the original password used to generate the verifier from the random salt above.
2. Pass the type 0x2E Control frame into the serial interface of the local client:

= For example, to log into a Secure Session server at address 0013A200 417B2162 for a five
minute duration using the password pickle, use the following frame:
7E00122E 0013 A200417B2162000BB8 7069 636B6C 65A2

3. Wait for a Secure Session Response - OxAE to indicate the session establishment
succeeded or failed with the reason.

Digi XBee® 3 Zigbee® RF Module 61

Secure access Send data to a secured remote node

= The address of the remote that is responding and the status is included in the response.

= For example, the response to the request above is as follows:
7E 00 0B AE 0000 13 A20041 7B 216200 5D. The 0x00 status indicates success.

4. Sendremote AT Commands to the remote server using the Remote AT Command Request
- 0x17 with bit 4 of the Command Options field set. Bit 4 indicates the AT command should
be sent securely.

Send data to a secured remote node

The process to send secured data is very similar to remotely configuring a node. The following
steps show how a client node can authenticate with a server node and send data securely.
1. Send a Secure Session Control - 0x2E to the client node with:
® The server's 64-bit address.
® The desired timeout.

= The options field set to 0x00 for fixed timeout login or to 0x04 for inter-packet timeout
refresh login.

= The password of the server node.

2. Wait for the Secure Session Response - OxAE to determine if the the authentication was
successful.
3. Data can now be sent securely with Transmit Request - 0x10 and Explicit Addressing
Command Request - Ox11 provided that:
= Bit4 in the transmit options field is set to indicate that the data should be sent
encrypted.

4. The returned Receive Packet - 0x90 and Explicit Receive Indicator - 0x91 receive options
fields should also have bit 4 set.

The maximum payload per transmission size is reduced by four bytes due to the additional
encryption overhead. NP (Maximum Packet Payload Bytes) will not reflect this change when the
session is going on.

A node can be secured against emitting data out the serial port that was received insecurely via the
SA command. This means that a remote node will not emit any serial data if it was received
insecurely (TO (Transmit Options) bit 4 was not set). This includes any data in Transparent mode,
0x80, 0x90 and 0x91 frames.

End a session from a server

If bit 3 of AZ (Extended API Options) is set, the server emits an extended modem status (whenever
a client establishes a session with it) that includes the 64-bit address of the client. Using these
statuses the MCU connected to the server can keep track of sessions established with the server.
To end a session from the server do the following:
1. Send a Secure Session Control - 0x2E to the server node with:

= The client's 64-bit address.

= The options field set to 0x02 for server side session termination.

= Set the timeout to 0x0000.

Digi XBee® 3 Zigbee® RF Module 62

Secure access Secure Session API frames

2. Wait for the Secure Session Response - OxAE to determine if the termination was
successful.

= The client will emit a modem status 0x3C (Session Ended).

= The server will also emit a modem status (or an extended modem status depending
on AZ) of 0x3C (Session Ended).

The 64-bit address can be set to the broadcast address to end all incoming sessions.

This functionality can be used to end orphaned client-side sessions—in case the server
unexpectedly reset for some reason.

Secure Session APl frames

Secure Session can only be established from a node that is operating in APl mode. The server-side
can be in Transparent mode, but the client must be in APl mode. Once a session has been
established between a client and server node, the client can be transitioned to Transparent mode;
and if bit4 of TO is set, the client will encrypt data sent in Transparent mode for the duration of
session.

There are four frames that are used for controlling and observing a secure session.

®m Secure Session Control - 0x2E: This frame is passed to the client that wishes to log into or
out of a server. Any attempt to use the Control frame will generate a response frame.

®m Secure Session Response - OxAE: This frame returns the status of the previously sent O0x2E
frame indicating whether it was successful or not.

= Modem Status - 0x8A: The server will also emit a modem status whenever an attempt
succeeds, fails, or was terminated. The client will also emit modem statuses if the session
times out.

® Extended Modem Status - 0x98: If bit 3 of AZ is set then modem statuses will be replaced
with extended modem statuses. These frames will contain the status that caused them to be
emitted as well as the address of the node that initiated the session, the session options,
and the timeout value.

Frame exchanges:

o En

0x2E Control Frame

| -
Ll .

'
SRP Authentication o !
.............. ’:

i 0x8A Modem Status
:

|

Status:

0x3B = Secure Session established successfully
0x3C = Secure Session was terminated

0x3D = A Secure Session attempt failed

Status:
0x00 = Success
0x01 to OxFF = Failure

'
:
:
'
'
'
'
'
OxAE Secure Session Response & '
'
:
'
'
'
'
'
'

o I - o

Digi XBee® 3 Zigbee® RF Module 63

Secure access Secure transmission failures

Secure transmission failures

This section describes the error messages you can see when trying to send a secure packet.

Data Frames - 0x10 and 0x11 frames

= Response frame type: Extended Transmit Status - Ox8B

Possible error statuses:

Status | Description Reason
0x34 No Secure The sending node does not have an active session with the
Session destination node.
Connection
0x35 Encryption The encryption process failed. Only likely to be seen when using
Failure manual SRP and when an invalid encryption parameter was passed
in.

Remote AT Commands- 0x17 frames

= Response frame type: Remote AT Command Response- 0x97

Possible error statuses:

Status | Description Reason
0x0B No Secure Session The sending node does not have an active session with the
Connection destination node.
0x0C Encryption Error There was an internal encryption error on the radio.
0x0D TO Bit Not Set The client has a session with the server but forgot to set the
TO bit.

Digi XBee® 3 Zigbee® RF Module 64

File system

For detailed information about using MicroPython on the XBee 3 Zigbee RF Module refer to the
Digi MicroPython Programming Guide.

Overview of the file system ...
DIrECIOrY SUCIUNE .
P At .

Digi XBee® 3 Zigbee® RF Module 65

https://www.digi.com/resources/documentation/Digidocs/90002219/

File system Overview of the file system

Overview of the file system

XBee 3 Zigbee RF Module firmware versions 1006 and later include support for storing files in
internal flash memory.

with older firmware. You can use XCTU, AT commands or MicroPython for that initial

j CAUTION! You need to format the file system if upgrading a device that originally shipped
format or to erase existing content at any time.

To use XCTU with file system, you need XCTU 6.4.0 or newer.

See FS FORMAT confirm in FS (File System) and ensure that the format is complete.

Directory structure

The XBee 3 Zigbee RF Module's internal flash appears in the file system as /flash, the only entry at
the root level of the file system. Files and directories other than /flash cannot be created within the
root directory, only within /flash.

By default /flash contains a lib directory intended for MicroPython modules.

Paths

The XBee 3 Zigbee RF Module stores all of its files in the top-level directory /flash. On startup, the
ATFS commands and MicroPython each use that directory as their current working directory.
When specifying the path to a file or directory, it is interpreted as follows:

® Paths starting with a forward slash are "absolute" and must start with /flash to be valid.

= All other paths are relative to the current working directory.

= The directory .. refers to the parent directory, so an operation on ../filename.txt that takes
place in the directory /flash/test accesses the file /flash/filename.ixt.

= The directory . refers to the current directory, so ATFS Is . is the same as ATFS Is, which
lists files in the current directory.

= Names are case-insensitive, so FILE.TXT, file.txt and FiLe.TXT all refer to the same file.

= File and directory names are limited to 64 characters, and can only contain letters, numbers,
periods, dashes and underscores. A period at the end of the name is ignored.

= The full, absolute path to a file or directory is limited to 255 characters.

Limitations
The file system on the XBee 3 Zigbee RF Module has a few limitations when compared to
conventional file systems:

= When a file on the file system is deleted, the space it was using is only reclaimed if it is found
at the end of the file system. Deleted data that is contiguous with the last placed deleted file
is also reclaimed.

= The file system can only have one file open for writing at a time.
= The file system cannot create new directories while a file is open for writing.

Digi XBee® 3 Zigbee® RF Module 66

File system XCTU interface

® Files cannot be renamed.

= The contents of the file system will be lost when any firmware update is performed. See OTA
file system upgrades for information on how to put files on a device after a FOTA update.

XCTU interface

XCTU releases starting with 6.4.0 include a File System Manager in the Tools menu. You can
upload files to and download files from the device, in addition to renaming and deleting existing
files and directories. See the File System manager tool section of the XCTU User Guide for details
of its functionality.

Digi XBee® 3 Zigbee® RF Module 67

https://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#reference/r_file_system_manager_tool.htm
https://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm

Get started with BLE

Bluetooth® Low Energy (BLE) is a RF protocol that enables you to connect your XBee device to
another device. Both devices must have BLE enabled.

For example, you can use your cellphone to connect to your XBee device, and then from your
phone, configure and program the device.

Digi created the Digi XBee Mobile SDK, a set of libraries, examples and documentation that help
you develop mobile applications to interact with XBee devices through their BLE interface. For this
purpose, we provide two easy-to-use libraries that allow you to create XBee mobile native apps:

m XBee Library for Xamarin, to develop cross-platform mobile applications using C# language
(i0OS and Android).
m XBee Library for Android, to develop Android applications using Java.
The XBee is the server and allows client devices, such as a cellphone, to configure the XBee or

data transfer with the User Data Relay frame. The XBee cannot communicate with another XBee
over BLE, as the XBee is strictly a BLE server.

The possibilities are:

m XBee 3: can communicate with mobile devices over BLE.

= XBee 3: can communicate with third party devices such as the Nordic nRF and SiLabs BGM
over BLE.

m XBee 3: cannot communicate with another XBee 3 over BLE.

Enable BLE on the XBee 3 Zigbhee RF Module
Enable BLE and configure the BLE password ...
Get the Digi XBee Mobile phone application ...
Connect with BLE and configure your XBee 3 Zigbee RF Module ...

Digi XBee® 3 Zigbee® RF Module 68

https://www.digi.com/products/embedded-systems/digi-xbee/digi-xbee-tools/digi-xbee-mobile-sdk
https://github.com/digidotcom/xbee-csharp
https://github.com/digidotcom/xbee-android

Get started with BLE Enable BLE on the XBee 3 Zigbee RF Module

Enable BLE on the XBee 3 Zigbee RF Module

To enable BLE on a XBee 3 Zigbee RF Module and verify the connection:

1. Setup the XBee 3 Zigbee RF Module and make sure to connect the antenna to the device.
2. Enable BLE and configure the BLE password.

3. Getthe Digi XBee Mobile phone application.

4. Connect with BLE and configure your XBee 3 Zigbee RF Module.

The BLE protocol is disabled on the XBee 3 Zigbee RF Module by default. You can create a
custom factory default configuration that ensures BLE is always enabled. See Custom
configuration: Create a new factory default.

Enable BLE and configure the BLE password

Some of the latest XBee devices support Bluetooth Low Energy (BLE) as an extra interface for
configuration. If you want to use this feature, you have to enable BLE. You must also enable
security by setting a password on the XBee 3 Zigbee RF Module in order to connect, configure, or
send data over BLE.

Use XCTU to configure the BLE password. Make sure you have installed or updated XCTU to
version 6.4.2 or newer. Earlier versions of XCTU do not include the BLE configuration features.
See Download and install XCTU for installation instructions.

Before you begin, you should determine the password you want to use for BLE on the XBee 3
Zigbee RF Module and store it in a secure place. We recommend a secure password of at least
eight characters and a random combination of letters, numbers, and special characters. We
recommend using a security management tool such as LastPass or Keepass for generating and
storing passwords for many devices.

When you enter the BLE password in XCTU, the salt and verifier values are calculated as you
set your password. For more information on how these values are used in the authentication
process, see BLE Unlock Request - 0x2C.

22
1. Launch xcTU ¥ ",

Switch to Configuration working mode 'm'
Select a BLE compatible radio module from the device list.
Select Enabled[1] from the BT Bluetooth Enable command drop-down.

DN

BT Bluetooth Enable Enabled [1] " @ o

5. Click the Write setting button @ The Bluetooth authentication not set dialog appears.
If BLE has been previously configured, the Bluetooth authentication not set dialog does not

appear. If this happens, click Configure in the Bluetooth Options section to display the Configure
Bluetooth Authentication dialog.

Digi XBee® 3 Zigbee® RF Module 69

https://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#concept/c_downloading_installing_xctu.htm%3FTocPath%3DDownload%2520and%2520install%2520XCTU|_____0

Get started with BLE Get the Digi XBee Mobile phone application

6. Click Configure in the dialog. The Configure Bluetooth Authentication dialog appears.

7. Inthe Password field, type the password for the device. As you type, the Salt and Verifier
fields are automatically calculated and populated in the dialog as shown above. This
password is used when you connect to this XBee device via BLE using the Digi XBee Mobile

app.

(®) Basic configuration

i Password: || L O

() Advanced configuration
86831928

43D61E540A7284D1BEBO37EBBAEDSTA48F5FFBS
SEDDY2A228864894A88024025DECFEJCCOELIFB
ADY3D3B2E14A67DEDEE1Y 38C46388010A2242
AEABDAF2CDAF9CS0BECBADBEBZ17 24EDBBE165E
BAZE148AT3DAZACDEFE7DAZCEC1S262E141961
D18697ED1BF29798C33ECED321D37BESCB53E9
BSEDE22268E8451AF4BOEQ@ERDAS

] Cancel

8. Click OK to save the configuration.

Get the Digi XBee Mobile phone application

To see the nearby devices that have BLE enabled, you must get the free Digi XBee Mobile
application from the iOS App Store or Google Play and downloaded to your phone.

1. Onyour phone, go to the App store.
2. Search for: Digi XBee Mobile.
3. Download and install the app.

The Digi is compatible with the following operating systems and versions:

Digi XBee® 3 Zigbee® RF Module 70

Get started with BLE Connect with BLE and configure your XBee 3 Zigbee RF Module

= Android 5.0 or higher
= iOS 11 or higher

Connect with BLE and configure your XBee 3 Zigbee RF
Module

You can use the Digi XBee Mobile application to verify that BLE is enabled on your XBee 3 Zigbee
RF Module.

1. Get the Digi XBee Mobile phone application.

2. Open the Digi XBee Mobile application. The Find XBee devices screen appears and the
app automatically begins scanning for devices. All nearby devices with BLE enabled are
displayed in a list.

3. Scroll through the list to find your XBee device.

The first time you open the app on a phone and scan for devices, the device list contains
only the name of the device and the BLE signal strength. No identifying information for the
device displays. After you have authenticated the device, the device information is cached
on the phone. The next time the app on this phone connects to the XBee device, the IMEI for
the device displays in the app device list.

The IMEI is derived from the SH and SL values.

4. Tap the XBee device name in the list. A password dialog appears.
5. Enter the password you previously configured for the device in XCTU.

6. Tap OK. The Device Information screen displays. You can now scroll through the settings
for the device and change the device's configuration as needed.

Digi XBee® 3 Zigbee® RF Module 71

BLE reference

BLE advertising behaviorand services
Device Information Service
XBee AP BLE SerViCe
APl Request characteristiC ...
API Response characteristic ...

Digi XBee® 3 Zigbee® RF Module

72

BLE reference BLE advertising behavior and services

BLE advertising behavior and services

When the Bluetooth radio is enabled, periodic BLE advertisements are transmitted. The
advertisement data includes the product name in the Complete Local Name field. When an XBee
device connects to the Bluetooth radio, the BLE services are listed:

® Device Information Service

m XBee API BLE Service

Device Information Service

The standard Device Information Service is used. The Manufacturer, Model, and Firmware
Revision characters are provided inside the service.

XBee API BLE Service

You can configure the XBee 3 Zigbee RF Module through the BLE interface using API frame
requests and responses. The API frame format through Bluetooth is equivalent to setting AP = 1
and transmitting the frames over the UART or SPI interface. API frames can be executed over
Bluetooth regardless of the AP setting.

The BLE interface allows these frames:

® BLE Unlock Request - 0x2C

®m User Data Relay Input - 0x2D

® BLE Unlock Response - OxAC

® | ocal AT Command Request - 0x08

® Queue Local AT Command Request - 0x09
This API reference assumes that you are familiar with Bluetooth and GATT services. The
specifications for Bluetooth are an open standard and can be found at the following links:

= Bluetooth Core Specifications: bluetooth.com/specifications/bluetooth-core-specification

= Bluetooth GATT: bluetooth.com/specifications/gatt/generic-attributes-overview

The XBee API BLE Service contains two characteristics: the APl Request characteristic and the
API Response characteristic. The UUIDs for the service and its characteristics are listed in the

table below.

Characteristic UuID

API Service UUID 53da53b9-0447-425a-b9ea-
9837505eb59a

API Request Characteristic UUID 7dddca00-3e05-4651-9254-
44074792c590

API Response Characteristic UUID f9279ee9-2cd0-410c-81cc-
adflledebaea

API Request characteristic
UUID: 7dddca00-3e05-4651-9254-44074792¢c590

Digi XBee® 3 Zigbee® RF Module 73

https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/specifications/gatt/generic-attributes-overview

BLE reference API Response characteristic

Permissions: Writeable

XBee API frames are broken into chunks and transmitted sequentially to the request characteristic
using write operations. Valid frames are then processed and the result is returned through
indications on the response characteristic.

API frames do not need to be written completely in a single write operation to the request
characteristic. In fact, Bluetooth limits the size of a written value to 3 bytes smaller than the
configured Maximum Transmission Unit (MTU), which defaults to 23, meaning that by default, you
can only write 20 bytes at a time.

After connecting you must send a valid Bluetooth Unlock API Frame in order to authenticate the
connection. If the BLE Unlock API - 0x2C frame has not been executed, all other API frames are
silently ignored and are not processed.

APl Response characteristic
UUID: f9279ee9-2cd0-410c-81cc-adf11e4e5aea
Permissions: Readable, Indicate

Responses to API requests made to the request characteristic are returned through the response
characteristics. This characteristic cannot be read directly.

Response data is presented through indications on this characteristic. Indications are
acknowledged and re-transmitted at the BLE link layer and application layer and provide a robust
transport for this data.

Digi XBee® 3 Zigbee® RF Module 74

Serial communication

Serial interface
UART data flow
Serial buffers

12C

Digi XBee® 3 Zigbee® RF Module 75

Serial communication

Serial interface

Serial interface

The XBee 3 Zigbee RF Module interfaces to a host device through a serial port. The device can

communicate through its serial port:

= Through logic and voltage compatible universal asynchronous receiver/transmitter (UART).
= Through a level translator to any serial device, for example through an RS-232 or USB

interface board.

= Through SPI, as described in SP| communications.

UART data flow

Devices that have a UART interface connect directly to the pins of the XBee 3 Zigbee RF Module
as shown in the following figure. The figure shows system data flow in a UART-interfaced
environment. Low-asserted signals have a horizontal line over the signal name.

——

DIN (data in)
cTs
|
DO (data out)

RTS

—

DIN (data in)

cTs
.
DO (data out)

RTS

For more information about hardware specifications for the UART, see the XBee 3 Hardware

Reference Manual.

Serial data

A device sends data to the XBee 3 Zigbee RF Module's UART as an asynchronous serial signal.
When the device is not transmitting data, the signals should idle high.

For serial communication to occur, you must configure the UART of both devices (the
microcontroller and the XBee 3 Zigbee RF Module) with compatible settings for the baud rate,

parity, start bits, stop bits, and data bits.

Each data byte consists of a start bit (low), 8 data bits (least significant bit first) and a stop bit (high).
The following diagram illustrates the serial bit pattern of data passing through the device. The
diagram shows UART data packet Ox1F (decimal number 31) as transmitted through the device.

Digi XBee® 3 Zigbee® RF Module

76

https://www.digi.com/resources/documentation/digidocs/90001543/Default.htm
https://www.digi.com/resources/documentation/digidocs/90001543/Default.htm

Serial communication Serial buffers

Least Significant Bit (first)
, ‘H 1 1 1 1 1 0 0 0
Idle (high)

\ UART Signal

Signal ovbc
Voltage

Start Bit {low) Stop Bit (high)
Time >

You can configure the UART baud rate, parity, and stop bits settings on the device with the BD,
NB, and SB commands respectively. For more information, see UART interface commands.

Serial buffers

The XBee 3 Zigbee RF Module maintains internal buffers to collect serial and RF data that it
receives. The serial receive buffer collects incoming serial characters and holds them until the

device can process them. The serial transmit buffer collects the data it receives via the RF link until

it transmits that data out the serial port. The following figure shows the process of device buffers
collecting received serial data.

Serial RE TX
DIN Pl Receive |——Pp P| Transmitter

Buffer Buffer .
_ T RF Switch
CTS

Processor ’ /—()

DouT Serial RF RX)

Transmit ‘_ Buffer < Receiver 4—
RTS » Buffer

Serial receive buffer
When serial data enters the XBee 3 Zigbee RF Module through the serial port, the device stores

Antenna
Port

the data in the serial receive buffer until it can be processed. Under certain conditions, the device
may receive data when the serial receive buffer is already full. In that case, the device discards the

data.

The serial receive buffer becomes full when data is streaming into the serial port faster than it can

be processed and sent over the air (OTA). The size of the Serial receive buffer is 768 Bytes; the
serial buffer may be reduced in size if RAM requirements cannot be met in future firmware
releases.

While the speed of receiving the data on the serial port can be much faster than the speed of
transmitting data for a short period, sustained operation in that mode causes the device to drop
data due to running out of places to put the data. Some things that may delay over the air
transmissions are address discovery, route discovery and retransmissions. Processing received
RF data can also take away time and resources for processing incoming serial data.

Digi XBee® 3 Zigbee® RF Module 77

Serial communication UART flow control

If the UART is the serial port and you enable the CTS flow control, the device alerts the external
data source when the receive buffer is almost full. The host delays sending data to the device until
the module asserts CTS again, allowing more data to come in.

Serial transmit buffer

When the device receives RF data, it moves the data into the serial transmit buffer and sends it out
the serial port. If the serial transmit buffer becomes full and the system buffers are also full, then it
drops the entire RF data packet. The size of the Serial transmit buffer is 1056 Bytes; the serial
buffer may be reduced in size if RAM requirements cannot be met in future firmware releases.
Whenever the device receives data faster than it can process and transmit the data out the serial
port, there is a potential of dropping data.

In situations where the serial transmit buffer may become full, resulting in dropped RF packets:

1. Ifthe RF data rate is set higher than the interface data rate of the device, the device may
receive data faster than it can send the data to the host. Even occasional transmissions from
a large number of devices can quickly accumulate and overflow the transmit buffer.

2. If the host does not allow the device to transmit data out from the serial transmit buffer due to
being held off by hardware flow control.

UART flow control

You can use the RTS and CTS pins to provide RTS and/or CTS flow control. CTS flow control
provides an indication to the host to stop sending serial data to the device. RTS flow control allows
the host to signal the device to not send data in the serial transmit buffer out the UART. To enable
RTS/CTS flow control, use the D6 and D7 commands.

CTS flow control

If you enable CTS flow control (D7 command), when the serial receive buffer is 17 bytes away from
being full, the device de-asserts CTS (sets it high) to signal to the host device to stop sending serial
data.

RTS flow control

If you set D6 (DIO6/RTS) to enable RTS flow control, the device does not send data in the serial
transmit buffer out the DOUT pin as long as RTS is de-asserted (set high). Do not de-assert RTS
for long periods of time or the serial transmit buffer will fill. If the device receives an RF data packet
and the serial transmit buffer does not have enough space for all of the data bytes, it discards the
entire RF data packet.

If the device sends data out the UART when RTS is de-asserted (set high) the device could send
up to five characters out the UART port after RTS is de-asserted.

Break control

If a serial break—DIN held low—signal is sent for over five seconds, the device resets, and it boots
into Command mode with default baud settings—9600 baud. Note that after receiving the OK
prompt, serial break must be released in order to allow input from the keyboard at 9600 baud. If
either P3 or P4 are not enabled, this break function is disabled.

Digi XBee® 3 Zigbee® RF Module 78

Serial communication 12C

12C

I2C master operation is supported using MicroPython.

See the Class I12C: two-wire serial protocol section in the Digi MicroPython Programming Guide for
details.

Digi XBee® 3 Zigbee® RF Module 79

https://www.digi.com/resources/documentation/Digidocs/90002219/

SPI operation

This section specifies how SPI is implemented on the device, what the SPI signals are, and how full
duplex operations work.

SPIcommUNICAtIONS
Full duplex operation

Low power operation
Selectthe SPI POt
Force UART operation

Digi XBee® 3 Zigbee® RF Module 80

SPI operation SPI communications

SPI communications

The XBee 3 Zigbee RF Module supports SPI communications in slave mode. Slave mode receives
the clock signal and data from the master and returns data to the master. The following table shows
the signals that the SPI port uses on the device.

Refer to the XBee 3 Hardware Reference Guide for the pinout of your device.

o orocon JFuneior

SPI_MOSI Input Inputs serial data from the master
(Master Out, Slave In)

SPI_MISO (Master Output Outputs serial data to the master
In, Slave Out)
SPI_SCLK Input Clocks data transfers on MOSI and MISO

(Serial Clock)

SPI_SSEL Input Enables serial communication with the slave
(Slave Select)

SPI_ATTN (Attention) | Output Alerts the master that slave has data queued to send. The
XBee 3 Zigbee RF Module asserts this pin as soon as
data is available to send to the SPI master and it remains
asserted until the SPI master has clocked out all available
data.

In this mode:

= SPI clock rates up to 5 MHz (burst) are possible.

= Data transmission format is most significant bit (MSB) first; bit 7 is the first bit of a byte sent
over the interface.

= Frame Format mode 0 is used. This means CPOL= 0 (idle clock is low) and CPHA = 0 (data
is sampled on the clock’s leading edge).

= The SPI port only supports APl Mode (AP = 1).

The following diagram shows frame format mode 0 for SPI communications.

Frame Format

nSSEL \ /
scke /NSNS SN\ SN

MOSI;, X_RX[7] X RX[6] X_RXI5] X_RX[4] X RX[3] X RX[2] X RX[1] X RX[0] X
MISOou —— TX[7] X TXI6] X_TXI5] X TX[4] X TX[3] X TX12] X TX[1] X TX[0] X)}—

SPI mode is chip to chip communication. We do not supply a SPI communication interface on the
XBee development evaluation boards included in the development kit.

Digi XBee® 3 Zigbee® RF Module 81

https://www.digi.com/resources/documentation/Digidocs/90001543/

SPI operation Full duplex operation

Full duplex operation

When using SPI on the XBee 3 Zigbee RF Module the device uses APl operation without escaped
characters to packetize data. The device ignores AP configuration because SPI does not operate
in any other mode. SPI is a full duplex protocol, even when data is only available in one direction.
This means that whenever a device receives data, it also transmits, and that data is normally
invalid. Likewise, whenever a device transmits data, invalid data is probably received. To
determine whether or not received data is invalid, the firmware places the data in API packets.

SPI allows for valid data from the slave to begin before, at the same time, or after valid data begins
from the master. When the master sends data to the slave and the slave has valid data to send in
the middle of receiving data from the master, a full duplex operation occurs, where data is valid in
both directions for a period of time. Not only must the master and the slave both be able to keep up
with the full duplex operation, but both sides must honor the protocol.

The following figure illustrates the SPI interface while valid data is being sent in both directions.
o] vl
MOS| U <Don’t Carex. Valid X Invalid X Don’t Care »
MISO U Don’t Carex Invalid X Valid X Invalid X Don’t Care »

nSSel “ _‘

nATTN ‘ ‘

Low power operation

Sleep modes generally work the same on SPI as they do on UART. However, the addition of SPI
mode provides an option to configure another pin as a sleep pin.

By default, Digi configures DIO8 (SLEEP_REQUEST) as a peripheral and during pin sleep it wakes
the device and puts it to sleep. This applies to both the UART and SPI serial interfaces.

If SLEEP_REQUEST is not configured as a peripheral and SPI_SSEL is configured as a
peripheral, then pin sleep is controlled by SPI_SSEL rather than by SLEEP_REQUEST. Asserting
SPI_SSEL by driving it low either wakes the device or keeps it awake. Negating SPI_SSEL by
driving it high puts the device to sleep.

SPI_SSELcan be configured to both control sleep and to indicate that the SPI master has selected
a particular slave device. This configuration provides an advantage where the pin sleep
implementation on SPI mode requires one less physical pin. It does have the disadvantage that it
puts the device to sleep whenever the SPI master unintentionally negates SPI_SSEL.

To effectively use the pin sharing configuration, the user/design must have control of the SPI_
SSELpin to the extent that it can control pin sleep. This makes the SLEEP_REQUEST pin available
for a different purpose. Without control of SPI_SSEL while using it for sleep request, the device
may go to sleep at inopportune times.

If the device is one of multiple slaves on the SPI, then the device sleeps while the SPI master talks
to the other slave, but this is acceptable in most cases.

If you do not configure either pin as a peripheral, then the device stays awake, being unable to
sleep in SM1 mode.

Digi XBee® 3 Zigbee® RF Module 82

SPI operation Select the SPI port

Select the SPI port

To force SPI mode on through-hole devices, hold DOUT/DIO13 low while resetting the device until
SPI_ATTN asserts. This causes the device to disable the UART and go straight into SPI
communication mode. Once configuration is complete, the device queues a modem status frame to
the SPI port, which causes the SPI_ATTN line to assert. The host can use this to determine that the
SPI port is configured properly.

On surface-mount devices, forcing DOUT low at the time of reset has no effect. To use SPI mode
on the SMT modules, assert the SPI_SSEL low after reset and before any UART data is input.

Forcing DOUT low on TH devices forces the device to enable SPI support by setting the following
configuration values to 1 (peripheral):

Through-hole Micro and Surface-mount SPI signal
D1 (AD1/DIO1/TH_SPI_ATTN P9 (DIO19/SPI_ATTN ATTN
Configuration) Configuration)

D2 (DIO2/AD2/TH_SPI_CLK Configuration) | P8 (DIO18/SPI_CLK Configuration) | SCLK
D3 (DIO3/AD3/TH_SPI_SSEL Configuration) | P7 (DIO17/SPI_SSEL Configuration) SSEL
D4 (DIO4/TH_SPI_MOSI Configuration) P6 (DIO16/SPI_MOSI Configuration) | MOSI
P2 (P5 (

DIO12/TH_SPI_MISO Configuration) DIO15/SPI_MISO Configuration) | MISO

The ATTN signal is optional—you can still use SPI mode if you disable the SPI_ATTN pin (D1
on through-hole or P9 on surface-mount devices).

As long as the host does not issue a WR command, these configuration values revert to previous
values after a power-on reset. If the host issues a WR command while in SPI mode, these same
parameters are written to flash, and after a reset the device continues to operate in SPI mode.

If the UART is disabled and the SPI is enabled in the written configuration, then the device comes
up in SPI mode without forcing it by holding DOUT low. If both the UART and the SPI are
configured (P3 (DIO13/DOUT Configuration) through P9 (DIO19/SPI_ATTN Configuration) are set
to 1) at the time of reset, then output goes to the UART until the host sends the first input to the SPI
interface. As soon as the first input comes on the SPI port, then all subsequent output goes to the
SPI port and the UART is disabled.

After the first input arrives on the SPI port, all subsequent output goes to the SPI port and the UART
is disabled.

When the master asserts the slave select (SPI_SSEL) signal, SPI transmit data is driven to the
output pin SPI_MISO, and SPI data is received from the input pin SPI_MOSI. The SPI_SSEL pin
has to be asserted to enable the transmit serializer to drive data to the output signal SPI_MISO. A
rising edge on SPI_SSEL causes the SPI_MISO line to be tri-stated such that another slave device
can drive it, if so desired.

If the output buffer is empty, the SPI serializer transmits the last valid bit repeatedly, which may be
either high or low. Otherwise, the device formats all output in APl mode 1 format, as described in
Operate in APl mode. The attached host is expected to ignore all data that is not part of a formatted
API frame.

Digi XBee® 3 Zigbee® RF Module 83

SPI operation Force UART operation

Force UART operation
If you configure a device with only the SPI enabled and no SPI master is available to access the
SPI slave port, you can recover the device to UART operation by holding DIN / CONFIG low at
reset time. DIN/CONFIG forces a default configuration on the UART at 9600 baud and brings up
the device in Command mode on the UART port. You can then send the appropriate commands to
the device to configure it for UART operation. If you write those parameters, the device comes up
with the UART enabled on the next reset.

Digi XBee® 3 Zigbee® RF Module 84

Modes

The XBee 3 Zigbee RF Module is in Receive Mode when it is not transmitting data. It shifts into the
other modes of operation under the following conditions:

= Transmit mode (Serial data in the serial receive buffer is ready to be packetized)
= Command mode (Command mode sequence is issued)
= Sleep mode

Transparent operating mode
API operating mode
Command mode
Al MIOE
Transmit mode
Receive mode
Sleep mode

Digi XBee® 3 Zigbee® RF Module 85

Modes Transparent operating mode

Transparent operating mode

When operating in Transparent mode, the devices act as a serial line replacement. The device
queues up all UART data received through the DIN pin for RF transmission. When RF data is
received, the device sends the data out through the serial port. Use the Command mode interface
to configure the device configuration parameters.

Serial-to-RF packetization

The device buffers data in the serial receive buffer and packetizes and transmits the data when it
receives the following:

= No serial characters for the amount of time determined by the RO (Packetization Timeout)
parameter. If RO = 0, packetization begins when the device received a character.

= Command mode Sequence (GT + CC + GT). Any character buffered in the serial receive
buffer before the device transmits the sequence.

= Maximum number of characters that fit in an RF packet.

APl operating mode

API operating mode is an alternative to Transparent operating mode. The frame-based API
extends the level to which a host application can interact with the networking capabilities of the
device. When in APl mode, the device contains all data entering and leaving in frames that define
operations or events within the device.

The API provides alternative means of configuring devices and routing data at the host application
layer. A host application can send data frames to the device that contain address and payload
information instead of using Command mode to modify addresses. The device sends data frames
to the application containing status packets, as well as source and payload information from
received data packets.

The API operation option facilitates many operations such as:

= Transmitting data to multiple destinations without entering Command mode
® Receive success/failure status of each transmitted RF packet
= |dentify the source address of each received packet

Command mode

Command mode is a state in which the firmware interprets incoming characters as commands. Itis
only available over the UART. Operate in AP| mode describes an alternate means for configuring
devices that is available over the UART with Zigbee code.

You cannot use the SPI interface to enter Command mode unless using SPI for the serial interface.

Enter Command mode

When using the default configuration values for GT (Guard Times) and CT (Command Mode
Timeout), you must enter +++ preceded and followed by one second of silence—no input—to enter
Command mode. However, both GT and CC are configurable. This means that the silence before
and after the escape sequence—GT—and the escape characters themselves—CC—can be changed.
For example, if GT is 5DC and CC is 31, then Command mode can be entered by typing 111
preceded and followed by 1.5 seconds of silence. When the entrance criteria are met the device

Digi XBee® 3 Zigbee® RF Module 86

Modes Command mode

responds with OK\r on UART signifying that it has entered Command mode successfully and is
ready to start processing AT commands.

If configured to operate in Transparent operating mode, when entering Command mode the XBee
3 Zigbee RF Module knows to stop sending data and start accepting commands locally.

Do not press Return or Enter after typing +++ because it interrupts the guard time silence
and prevents you from entering Command mode.

When the device is in Command mode, it listens for user input and is able to receive AT commands
on the UART. If CT time (default is 10 seconds) passes without any user input, the device drops out
of Command mode and returns to the previous operating mode. You can force the device to leave
Command mode by sending CN (Exit Command mode).

You can customize the command character, the guard times and the timeout in the device’s
configuration settings. For more information, see CC (Command Character), CT (Command Mode
Timeout) and GT (Guard Times).

Troubleshooting

Failure to enter Command mode is often due to baud rate mismatch. Ensure that the baud rate of
the connection matches the baud rate of the device. By default, BD (UART Baud Rate) =3 (9600
b/s).

There are two alternative ways to enter Command mode:
®m A serial break for six seconds enters Command mode. You can issue the "break" command
from a serial console, it is often a button or menu item.

= Asserting DIN (serial break) upon power up or reset enters Command mode. XCTU guides
you through a reset and automatically issues the break when needed.

You must assert RTS for both of these methods, otherwise the device enters the bootloader.

Both of these methods temporarily set the device's baud rate to 9600 and return an OK on the
UART to indicate that Command mode is active. When Command mode exits, the device returns to
normal operation at the baud rate that BD is set to.

Send AT commands

Once the device enters Command mode, use the syntax in the following figure to send AT
commands. Every AT command starts with the letters AT, which stands for "attention." The AT is
followed by two characters that indicate which command is being issued, then by some optional
configuration values.

To read a parameter value stored in the device’s register, omit the parameter field.

“AT” + ASClI + Space , Parameter + Carriage
prefix command (optional) (optional, HEX) return

Example: AT NI 2 <CR>

The preceding example changes NI (Node Identifier) to 2.

Digi XBee® 3 Zigbee® RF Module 87

Modes Command mode

Multiple AT commands

You can send multiple AT commands at a time when they are separated by a comma in Command
mode; for example, ATNIMy XBee,AC<cr>.

The behavior of the comma is the same as the behavior of the <CR> in the previous example
except that the next command following the comma is not preceded by AT. The only real purpose
of the comma is to reduce keystrokes.

The preceding example changes the NI (Node Identifier) to My XBee and makes the setting active
through AC (Apply Changes).

Parameter format

Refer to the list of AT commands for the format of individual AT command parameters. Valid
formats for hexidecimal values include with or without a leading 0x for example FFFF or OXFFFF.

Response to AT commands

When using AT commands to set parameters the XBee 3 Zigbhee RF Module responds with
OK<cr> if successful and ERROR<cr> if not.

Apply command changes

Any changes you make to the configuration command registers using AT commands do not take
effect until you apply the changes. For example, if you send the BD command to change the baud
rate, the actual baud rate does not change until you apply the changes. To apply changes:

1. Send AC (Apply Changes).

2. Send WR (Write). In this case, changes are only applied following a reset. The WR
command by itself does not apply changes.
or:

3. Exit Command mode. You can exit Command mode in two ways: Either enter the CN
command or wait for Command mode to timeout as specified by the CT parameter.

Make command changes permanent

Send a WR (Write) command to save the changes. WR writes parameter values to non-volatile
memory so that parameter modifications persist through subsequent resets.

Send an RE (Restore Defaults) followed by WR to restore parameters back to their factory defaults.
The next time the device is reset the default settings are applied.

Exit Command mode

1. Send CN (Exit Command mode) followed by a carriage return.
or:

2. If the device does not receive any valid AT commands within the time specified by CT
(Command Mode Timeout), it returns to Transparent or APl mode. The default Command
mode timeout is 10 seconds.

For an example of programming the device using AT Commands and descriptions of each
configurable parameter, see AT commands.

Digi XBee® 3 Zigbee® RF Module 88

Modes Idle mode

Idle mode

When not receiving or transmitting data, the device is in Idle mode. During Idle mode, the device
listens for valid data on both the RF and serial ports.

The device shifts into the other modes of operation under the following conditions:

= Transmit mode (serial data in the serial receive buffer is ready to be packetized).
= Receive mode (valid RF data received through the antenna).
= Command mode (Command mode sequence issued).

Transmit mode

Prior to transmitting data, the module ensures that a 16-bit network address and route to the
destination node have been established.

If a 16-bit network address is not provided, a Network Address Discovery takes place. In order for
data to be sent, a route discovery takes place for the purpose of establishing a route to the
destination node. If a device with a matching network address is not discovered, it discards the
packet. The device transmits the data once a route is established. If route discovery fails to
establish a route, the device discards the packet. The following diagram shows the Transmit Mode
sequence.

Successful transmission

Yes

16-bit Netwark

Address Known? Transmit data

Route known?

Idle mode

New
transmission

16-bit Network Route Discovery
Address Discovery

Yes

Yes

16-bit Network

Address Discovered? Route discovered?

Data discarded

When Zigbee data is transmitted from one node to another, the destination node transmits a
network-level acknowledgment back across the established route to the source node. This
acknowledgment packet indicates to the source node that the destination node received the data
packet. If the source node does not receive a network acknowledgment, it retransmits the data.

Itis possible in rare circumstances for the destination to receive a data packet, but for the source to
not receive the network acknowledgment. In this case, the source retransmits the data, which can
cause the destination to receive the same data packet multiple times. The XBee modules do not
filter out duplicate packets. We recommend that the application includes provisions to address this
issue.

For more information, see Transmission, addressing, and routing.

Digi XBee® 3 Zigbee® RF Module 89

Modes Receive mode

Receive mode

When data is received over the air, the device sends the data out the serial port.

You can use the AP and AO parameters to adjust the format and types of messages that are
emitted out of the serial port. Depending on your needs, you can adjust the amount of information
that you receive.

By default, the device operates in Transparent mode where the the device will only output the
payload of received packets. In APl modes, the entire packet is emitted, and AO adjusts whether
raw ZDO messages should be emitted.

Sleep mode

Sleep modes allow the device to enter states of low power consumption when not in use. The XBee
3 Zigbee RF Module supports both pin sleep (Sleep mode entered on pin transition) and cyclic
sleep (device sleeps for a fixed time).

Sleep modes allow the device to enter states of low power consumption when not in use. The
device is almost completely off during sleep, and is incapable of sending or receiving data until it
wakes up. XBee devices support pin sleep, where the device enters sleep mode upon pin
transition, and cyclic sleep, where the device sleeps for a fixed time.

For more information, see Manage End Devices.

Digi XBee® 3 Zigbee® RF Module 90

Zigbee networks

The Zigbee specification ...

Zigbee stack layers

Zigbee networking concepts

Zigbee application layers: in depth

Zigbee coordinator operation
Router operation
End device operation
Channel scanning

Digi XBee® 3 Zigbee® RF Module

o1

Zigbee networks The Zigbee specification

The Zigbee specification

Zigbee is an open global standard for low-power, low-cost, low-data-rate, wireless mesh
networking based on the IEEE 802.15.4 standard. It represents a network layer above the 802.15.4
layers to support advanced mesh routing capabilities. The Zigbee specification is developed by a
consortium of companies that make up the Connectivity Standards Alliance. For more information,
see the Connectivity Standards Alliance.

Zigbee stack layers

Most network protocols use the concept of layers to separate different components and functions
into independent modules that can be assembled in different ways.

Zigbee is built on the Physical (PHY) layer and Medium Access Control (MAC) sub-layer defined in
the IEEE 802.15.4 standard. These layers handle low-level network operations such as addressing
and message transmission/reception.

The Zigbee specification defines the Network (NWK) layer and the framework for the application
(APL) layer. The Network layer takes care of the network structure, routing, and security. The
application layer framework consists of the Application Support sub-layer (APS), the Zigbee device
objects (ZDO) and user-defined applications that give the device its specific functionality.

Application (APL) Layer

ZigBee Device

. Application Framework
Object (ZDO) What is Home Automation?

How to turn on/off a light bulb?

Application Support Sublayer (APS)

How is the network formed?
Network (NWK) Layer) { How are the addresses assigned? J
ZigBee

802.15.4
How does transmission work?
What frequency and channel are used?

This table describes the Zigbee layers.

Zigbee layer | Descriptions

PHY Defines the physical operation of the Zigbee device including receive sensitivity,
channel rejection, output power, number of channels, chip modulation, and
transmission rate specifications. Most Zigbee applications operate on the 2.4
GHz ISM band at a 250 kb/s data rate. See the IEEE 802.15.4 specification for

Digi XBee® 3 Zigbee® RF Module 92

https://csa-iot.org/

Zigbee networks Zigbee networking concepts

details.

MAC Manages RF data transactions between neighboring devices (point to point).
The MAC includes services such as transmission retry and acknowledgment
management, and collision avoidance techniques (CSMA-CA).

Network Adds routing capabilities that allows RF data packets to traverse multiple
devices (multiple hops) to route data from source to destination (peer to peer).

APS (AF) Application layer that defines various addressing objects including profiles,
clusters, and endpoints.

ZDO Application layer that provides device and service discovery features and
advanced network management capabilities.

Zigbee networking concepts

Device types

Zigbee defines three different device types: coordinator, router, and end device.

Coordinator
Zigbee networks may only have a single coordinator device. This device:

= Starts the network, selecting the channel and PAN ID (both 64-bit and 16-bit).

= Distributes 16-bit network addresses, allowing routers and end devices to join the network.
Assists in routing data.

= Buffers wireless data packets for sleeping end device children.
= Manages the other functions that define the network, secure it, and keep it healthy.
= Cannot sleep; the coordinator must be powered on all the time.

Router
A router is a full-featured Zigbee node. This device:
= Can join existing networks and send, receive, and route information. Routing involves acting

as a messenger for communications between other devices that are too far apart to convey
information on their own.

= Can buffer wireless data packets for sleeping end device children. Can allow other routers
and end devices to join the network.

= Cannot sleep; router(s) must be powered on all the time.
= May have multiple router devices in a network.

End device
An end device is essentially a reduced version of a router. This device:

= Can join existing networks and send and receive information, but cannot act as messenger
between any other devices.

Digi XBee® 3 Zigbee® RF Module 93

Zigbee networks Zigbee networking concepts

= Cannot allow other devices to join the network.
® Uses less expensive hardware and can power itself down intermittently, saving energy by
temporarily entering a non responsive sleep mode.

= Always needs a router or the coordinator to be its parent device. The parent helps end
devices join the network, and stores messages for them when they are asleep.

Zigbee networks may have any number of end devices. In fact, a network can be composed of one
coordinator, multiple end devices, and zero routers.

The following diagram shows a generic Zigbee network.

Coordinator
O ® Router

End Device

| Rt

Each Zigbee network must be formed by one, and only one, coordinator and at least one
other device (router or end device).

In Zigbee networks, the coordinator must select a PAN ID (64-bit and 16-bit) and channel to start a
network. After that, it behaves essentially like a router. The coordinator and routers can allow other
devices to join the network and can route data.

After an end device joins a router or coordinator, it must be able to transmit or receive RF data
through that router or coordinator. The router or coordinator that allowed an end device to join
becomes the “parent” of the end device. Since the end device can sleep, the parent must be able to
buffer or retain incoming data packets destined for the end device until the end device is able to
wake and receive the data.

A device can only operate as one of the three device types. The device type is selected by
configuration rather than by firmware image as was the case on earlier hardware platforms.

By default, the device operates as a router. To select coordinator operation, set CE to 1. To select
end device operation, set SM to a non-zero value. To select router operation, both CE and SM
must be 0.

If a device is a coordinator and it needs to be changed into an end device, you must set CE to 0
first. If not, the SM configuration will conflict with the CE configuration. Likewise, to change an end
device into a coordinator, you must change it into a router first.

Another complication is that default parameters do not always work well for a coordinator.

For example:

= DH/DL is 0 by default, which allows routers and end devices to send transparent data to the
coordinator when they first come up. If DH/DL is not changed from the default value when

Digi XBee® 3 Zigbee® RF Module 94

Zigbee networks Zigbee networking concepts

the device is changed to a coordinator, then the device sends data to itself, causing
characters to be echoed back to the screen as they are typed. Since this is probably not the
desired operation, set DH/DL to the broadcast address or some specific unicast address
when the device is changed to a coordinator.

In general, it is your responsibility to ensure that parameters are set to be compatible with the new
device type when changing device types.

PAN ID

Zigbee networks are called personal area networks (PANs). Each network is defined with a unique
PAN identifier (PAN ID), which is common among all devices of the same network. Zigbee devices
are either preconfigured with a PAN ID to join, or they can discover nearby networks and select a
PAN ID to join.

Zigbee supports both a 64-bit and a 16-bit PAN ID. Both PAN IDs are used to uniquely identify a
network. Devices on the same Zigbee network must share the same 64-bit and 16-bit PAN IDs. If
multiple Zigbee networks are operating within range of each other, each should have unique PAN
IDs.

16-bit PAN ID

The 16-bit PAN ID is used as a MAC layer addressing field in all RF data transmissions between
devices in a network. However, due to the limited addressing space of the 16-bit PAN ID (65,535
possibilities), there is a possibility that multiple Zigbee networks (within range of each other) could
use the same 16-bit PAN ID. To resolve potential 16-bit PAN ID conflicts, the Zigbee Alliance
created a 64-bit PAN ID.

64-bit PAN ID

The 64-bit PAN ID (also called the extended PAN ID), is intended to be a unique, non-duplicated
value. When a coordinator starts a network, it can either start a network on a preconfigured 64-bit
PAN ID, or it can select a random 64-bit PAN ID. Devices use a 64-bit PAN ID during joining; if a
device has a preconfigured 64-bit PAN ID, it will only join a network with the same 64-bit PAN ID.
Otherwise, a device could join any detected PAN and inherit the PAN ID from the network when it
joins. All Zigbee beacons include the 64-bit PAN ID and is used in 16- bit PAN ID conflict resolution.

Routers and end devices

Routers and end devices are typically configured to join a network with any 16-bit PAN ID as long
as the 64-bit PAN ID is valid. Coordinators typically select a random 16-bit PAN ID for their
network.

Since the 16-bit PAN ID only allows up to 65,535 unique values, and the device randomly selects
the 16-bit PAN ID, provisions exist in Zigbee to detect if two networks (with different 64-bit PAN
IDs) are operating on the same 16- bit PAN ID. If the device detects a conflict, the Zigbee stack can
perform PAN ID conflict resolution to change the 16- bit PAN ID of the network in order to resolve
the conflict. See the Zigbee specification for details.

Zigbee routers and end devices should be configured with the 64-bit PAN ID of the network they
want to join, and they typically acquire the 16-bit PAN ID when they join a network.

Only enable CE on one device to avoid PAN ID conflicts and network problems.

Digi XBee® 3 Zigbee® RF Module 95

Zigbee networks Zigbee application layers: in depth

Operating channels

Zigbee uses direct-sequence spread spectrum modulation and operates on a fixed channel. The
802.15.4 PHY defines 16 operating channels (channels 11 to 26) in the 2.4 GHz frequency band.
XBee modules support all 16 channels.

FCC regulations mandate lower power levels on channel 26, so if you fix your network to channel
26, you will experience significantly less range on the devices.

Zigbee application layers: in depth

The following topics provide a more in-depth look at the Zigbee application stack layers (APS,
ZDO) including a discussion on Zigbee endpoints, clusters, and profiles. Much of the material in
these topics discuss details of the Zigbee stack that are not required in many cases.

Read these topics if:

= The XBee 3 Zigbee RF Module may talk to non-Digi Zigbee devices.

= The XBee 3 Zigbee RF Module requires network management and discovery capabilities of
the ZDO layer.

= The XBee 3 Zighee RF Module needs to operate in a public application profile (for example,
smart energy, home automation, and so on).
Skip these topics if:
= The XBee 3 Zighee RF Module does not need to interoperate or talk to non-Digi Zigbee
devices.
= The XBee 3 Zigbee RF Module simply needs to send data between devices.

Application Support Sublayer (APS)

The APS layer in Zigbee adds support for application profiles, cluster IDs, and endpoints.

Application profiles

Application profiles specify various device descriptions including required functionality for various
devices. The collection of device descriptions forms an application profile. Application profiles are
defined as Public or Private profiles. Private profiles are defined by a manufacturer whereas public
profiles are defined, developed, and maintained by the Zigbee Alliance. Each application profile
has a unique profile identifier assigned by the Zigbee Alliance.

Examples of public profiles include:

= Home automation
= Smart Energy
= Commercial building automation

For example, the Smart Energy profile defines various device types including an energy service
portal, load controller, thermostat, in-home display, and so on. The Smart Energy profile defines
required functionality for each device type. For example, a load controller must respond to a
defined command to turn a load on or off. By defining standard communication protocols and
device functionality, public profiles allow interoperable Zigbee solutions to be developed by
independent manufacturers.

Digi XBee® 3 Zigbee® RF Module 96

Zigbee networks Zigbee application layers: in depth

Digi XBee Zigbee firmware operates on a private profile called the Digi Drop-In Networking profile.
However, in many cases the XBee 3 Zigbee RF Module can use APl mode to talk to devices in
public profiles or non-Digi private profiles. For more information, see .

Clusters

A cluster is an application message type defined within a profile. You can use clusters to specify a
unique function, service, or action. The following examples are some clusters defined in the home
automation profile:

= On/Off - Used to switch devices on or off (lights, thermostats, and so forth)
m | evel Control - Used to control devices that can be set to a level between on and off
= Color Control - Controls the color of color capable devices

Each cluster has an associated 2-byte cluster identifier (cluster ID). All application transmissions
include the cluster ID. Clusters often have associated request and response messages. For
example, a smart energy gateway (service portal) might send a load control event to a load
controller in order to schedule turning on or off an appliance. Upon executing the event, the load
controller sends a load control report message back to the gateway.

Devices that operate in an application profile (private or public) must respond correctly to all
required clusters. For example, a light switch that operates in the home automation public profile
must correctly implement the On/Off and other required clusters in order to interoperate with other
home automation devices. The Zigbee Alliance has defined a Zigbee cluster library (ZCL) that
contains definitions or various general use clusters that could be implemented in any profile.

XBee modules implement various clusters in the Digi private profile. You can also use the API to
send or receive messages on any cluster ID (and profile ID or endpoint). For more information, see
Explicit Receive Indicator - 0x91.

Endpoints

The APS layer includes supports for endpoints. An endpoint can be thought of as a running
application, similar to a TCP/IP port. A single device can support one or more endpoints. A 1- byte
value identifies each application endpoint, ranging from 1 to 240. Each defined endpoint on a
device is tied to an application profile. A device could, for example, implement one endpoint that
supports a Smart Energy load controller, and another endpoint that supports other functionality on
a private profile.

No TX Status frame is generated for APl frames that have both O0XE6 as the destination endpoint
and 0xC105 as the Profile ID as this combination is reserved for internal XBee 3 Zigbee RF Module
operations.

Endpoints 0xDC - OXEE are reserved for special use by Digi and should not be used in an
application outside of the listed purpose. The reserved Digi endpoints are:

= OxES8 - Digi data endpoint

= (OxEB6 - Digi device object endpoint

®m OxES5 - Secure Session Server endpoint

= (OxE4 - Secure Session Client endpoint

® OxE3 - Secure Session SRP authentication endpoint

Zigbee device profile

Profile ID 0x0000 is reserved for the Zigbee device profile. This profile is implemented on all Zighbee
devices. Device Profile defines many device and service discovery features and network

Digi XBee® 3 Zigbee® RF Module 97

Zigbee networks Zigbee coordinator operation

management capabilities. Endpoint 0 is a reserved endpoint that supports the Zigbee device
profile. This endpoint is called the Zigbee device objects (ZDO) endpoint.

Zigbee device objects

The ZDO (endpoint 0) supports the discovery and management capabilities of the Zigbee device
profile. See the Zigbee specification for a complete listing of all ZDP services. Each service has an
associated cluster ID.

The XBee Zigbee firmware allows applications to easily send ZDO messages to devices in the
network using the API. For more information, see ZDO transmissions.

Zigbee coordinator operation

Form a network

The coordinator is responsible for selecting the channel, PAN ID, security policy, and stack profile
for a network. Since a coordinator is the only device type that can start a network, each Zigbee
network must have one coordinator. After the coordinator has started a network, it can allow new
devices to join the network. It can also route data packets and communicate with other devices on
the network.

To ensure the coordinator starts on a good channel and unused PAN ID, the coordinator performs
a series of scans to discover any RF activity on different channels (energy scan) and to discover
any nearby operating PANs (PAN scan). The process for selecting the channel and PAN ID are
described in the following topics.

Security policy

The security policy determines which devices are allowed to join the network, and which device(s)
can authenticate joining devices. See Zigbee security for a detailed discussion of various security
policies.

Channel selection

When starting a network, the coordinator must select a “good” channel for the network to operate
on. To do this, it performs an energy scan on multiple channels (that is, frequencies) to detect
energy levels. You can use SD (Scan Duration) to adjust how long the device dwells on each
channel during this energy scan. The coordinator removes channels with excessive energy levels
from its list of potential channels to start on and then selects a channel at random to form the
network on.

PAN ID selection

After completing the energy scan, the coordinator scans its list of potential channels (remaining
channels after the energy scan) to obtain a list of neighboring PANs. To do this, the coordinator
sends a beacon request (broadcast) transmission on each potential channel. All nearby
coordinators and routers that have already joined a Zigbee network respond to the beacon request
by sending a beacon back to the coordinator. The beacon contains information about which PAN
the device is on, including the PAN identifiers (16-bit and 64-bit). This scan (collecting beacons on
the potential channels) is typically called an active scan or PAN scan.

After the coordinator completes the channel and PAN scan, it selects a random channel and
unused 16-bit PAN ID to start on.

Digi XBee® 3 Zigbee® RF Module o8

Zigbee networks Zigbee coordinator operation

Persistent data
Once a coordinator starts a network, it retains the following information through power cycle or
reset events:
= PANID
= QOperating channel
® Security policy and frame counter value
= Child table (end device children that are joined to the coordinator)
= Binding table
= Group table
The coordinator retains this information indefinitely until it leaves the network. When the

coordinator leaves a network and starts a new network, the previous PAN ID, operating channel,
link key table, and child table data are lost.

Coordinator startup
The following table provides the network formation commands that the coordinator uses to form a
network.
CE Must be set to 1 to specify that the device will act as a coordinator and form a
network.
ID Used to determine the 64-bit PAN ID. If set to 0 (default), a random 64-bit PAN ID

will be selected.

SC Determines the scan channels bitmask used by the coordinator when forming a
network. The coordinator will perform an energy scan on all enabled SC channels.
It will then perform a PAN ID scan.

SD Set the scan duration, or time that the router will listen for beacons on each
channel.

VAS] Set the Zigbee stack profile for the network.

EE Enable or disable security in the network.

KY If encryption is enabled, a preconfigured link key can be set. Any device with a

matching link key will be allowed to join when the join window is open. If KY is set
to 0, a random link key will be assigned, and devices will have to be registered to
join or allowed to insecurely join using a default link key.

NK Set a preconfigured network key for secured networks. NK is only applicable to the
device with CE = 1 and defines the initial network key. In most situations you
should leave this value at 0.

EO Set the security policy for the network if encryption is enabled. EO defines whether
the coordinator should act as a centralized trust center or form the network as a
router in a distributed trust center network. You can also optionally allow insecure
devices to join using a well-known link key.

Configuration changes delay the start of network formation for five seconds after the last change.

Digi XBee® 3 Zigbee® RF Module 99

Zigbee networks Zigbee coordinator operation

Once the coordinator starts a network, the network configuration settings and child table data
persist through power cycles as mentioned in Persistent data.

When the coordinator has successfully started a network, it:

= Allows other devices to join the network for a time; see NJ (Node Join Time)

= SetsAl=0

® Starts blinking the Associate LED

= Sends an API modem status frame (“coordinator started”) out the serial port when using API
mode

These behaviors are configurable using the following commands:

NJ Sets the permit-join time on the coordinator, measured in seconds.
D5 Enables the Associate LED functionality.
LT Sets the Associate LED blink time when joined. If LT = 0, the default is 1 blink per

500 ms (coordinator) 250 ms (router/end device).

If any of the command values in the network formation commands table changes, the coordinator
leaves its current network and starts a new network, possibly on a different channel.

Command changes must be applied (AC or CN command) before taking effect.

Permit joining
You can use NJ (Node Join Time) to configure the permit joining attribute on the coordinator. By

default, the join window opens for 254 seconds, after which joining will not be allowed until the join
window opens again.

Joining temporarily enabled
Set NJ < OxFF, to enable joining for only a number of seconds, based on the NJ parameter. Once
the XBee 3 Zigbee RF Module joins a network, the timer starts. The coordinator does not re-enable
joining if the device is power cycled or reset. The following actions restart the permit-joining timer:
= Changing NJ to a different value (and applying changes with the AC or CN commands).
= Pressing the Commissioning button twice.
= |ssuing the CB command with a parameter of 2.

The last two actions enable joining for one minute if NJ is 0x0. Otherwise, the Commissioning
button and the CB2 command enable joining for NJ seconds.

Joining always enabled
If NJ = OxFF, joining is permanently enabled.

Digi XBee® 3 Zigbee® RF Module 100

Zigbee networks Zigbee coordinator operation

that the application consider disabling joining to prevent unwanted joins from occurring.

j Use this mode carefully. Once a network has been deployed, we strongly recommend
An always-open network operates outside of the Zigbee 3.0 specifications.

Reset the coordinator

When you reset or power cycle the coordinator, it checks its PAN ID, operating channel and stack
profile against the network configuration settings (ID, CH, ZS). It also verifies the saved security
policy against the security configuration settings (EE, NK, KY). If the coordinator's PAN ID,
operating channel, stack profile, or security policy is not valid based on its network and security
configuration settings, the coordinator leaves the network and attempts to form a new network
based on its network formation command values.

To prevent the coordinator from leaving an existing network, issue the WR command after all
network formation commands have been configured in order to retain these settings through power
cycle or reset events.

Leave a network
The following mechanisms cause the coordinator to leave its current PAN and start a new network
based on its network formation parameter values.

= Change the ID command such that the current 64-bit PAN ID is invalid.

= Change the SC command such that the current channel (CH) is not included in the channel
mask.

= Change the ZS or any of the security command values.
= |ssue the NRO command to cause the coordinator to leave.

= |ssue the NR1 command to send a broadcast transmission, causing all devices in the
network to leave and migrate to a different channel.

® Press the commissioning button four times or issue the CB command with a parameter of 4.
This restores the device to a default configuration state.

® |ssue a network ZDO leave command.

Changes to ID, SC, ZS, and security command values only take effect when changes are
applied (AC or CN commands).

Replace a coordinator (security disabled only)

On rare occasions, it may become necessary to replace an existing coordinator in a network with a
new physical device. If security is not enabled in the network, you can configure a replacement
XBee coordinator with the PAN ID (16-bit and 64-bit), channel, and stack profile settings of a
running network in order to replace an existing coordinator.

Avoid having two coordinators on the same channel, stack profile, and PAN ID (16-bit and 64-
bit) as it can cause problems in the network. When replacing a coordinator, turn off the old
coordinator before starting the new coordinator.

To replace a coordinator, read the following commands from a device on the network:

Digi XBee® 3 Zigbee® RF Module 101

Zigbee networks Zigbee coordinator operation

Command Description

OoP Read the operating 64-bit PAN ID.
0] Read the operating 16-bit PAN ID.
CH Read the operating channel.

ZS Read the stack profile.

Each of the commands listed above can be read from any device on the network. These
parameters will be the same on all devices in the network. After reading the commands from a
device on the network, program the parameter values into the new coordinator using the following

commands.

Command Description

ID Set the 64-bit PAN ID to match the read OP value.

Il Set the initial 16-bit PAN ID to match the read Ol value.

SC Set the scan channels bitmask to enable the read operating channel (CH
command). For example, if the operating channel is 0x0B, set SC to 0x0001. If the
operating channel is 0x17, set SC to 0x1000.

ZS Set the stack profile to match the read ZS value.

Il is the initial 16-bit PAN ID. Under certain conditions, the Zigbee stack can change the 16-bit PAN
ID of the network. For this reason, you cannot save the Il command using the WR command. Once
Il is set, the coordinator leaves the network and starts on the 16-bit PAN ID specified by II.

Example: start a coordinator

1. Set CE (Device Role) to 1 to indicate to the local device that it should form a network. Use
WR (Write) to save the changes.

2. SetSC and ID to the desired scan channels and PAN ID values. The defaults are usually
sufficient.

3. Ifyou change SC or ID from the default, issue the WR command to save the changes.

4. If you change SC or ID from the default, apply changes (make SC and ID changes take
effect) either by sending the AC command or by exiting AT Command mode.

5. If an Associate LED has been connected, it starts blinking once the coordinator has selected
a channel and PAN ID and the network has started.

6. The APl Modem Status frame (Coordinator Started) is sent out the serial port when using
API mode.

7. Reading the Al command (association status) returns a value of 0, indicating a successful
startup.

8. Reading the MY command (16-bit address) returns a value of 0, the Zigbee-defined 16-bit
address of the coordinator.

After startup, the coordinator allows joining based on its NJ value. We highly recommend that you
issue a WR command to write all applied settings to flash.

Digi XBee® 3 Zigbee® RF Module 102

Zigbee networks Router operation

Example: replace a coordinator (security disabled)

1. Read the OP, Ol, CH, and ZS commands on the running coordinator.

2. Setthe CE, ID, SC, and ZS parameters on the new coordinator to match the existing
coordinator, followed by WR command to save these parameter values.

3. Turn off the running coordinator.

4. Setthe Il (Initial 16-bit PAN ID) parameter on the new coordinator to match the read Ol
value on the old coordinator.

5. Wait for the new coordinator to start (Al = 0).

Router operation

Routers must discover and join a valid Zigbee network before they can participate in a Zigbee
network. After a router has joined a network, it can allow new devices to join the network. It can
also route data packets and communicate with other devices on the network.

Discover Zigbee networks

To discover nearby Zigbee networks, the router performs a PAN (or active) scan, just like the
coordinator does when it starts a network. During the PAN scan, the router sends a beacon request
(broadcast) transmission on the first channel in its scan channels list. All nearby coordinators and
routers operating on that channel that are already part of a Zigbee network respond to the beacon
request by sending a beacon back to the router.

The beacon contains information about the PAN the nearby device is on, including the PAN
identifier (PAN ID), and whether or not joining is allowed. The router evaluates each beacon
received on the channel to determine if it finds a valid PAN. A PAN is valid if any of the following
exist:

= Has a valid 64-bit PAN ID (PAN ID matches ID if ID > 0)
® Has the correct stack profile (ZS command)
= Allows joining the network

If the router does not find a valid PAN, it performs the PAN scan on the next channel in its scan
channels list and continues scanning until it finds a valid network, or until all channels have been
scanned. If the rounter scans all channels and does not discover a valid PAN, it scans all channels
again.

The Zigbee Alliance requires that certified solutions not send beacon request messages too
frequently. To meet certification requirements, the XBee firmware attempts nine scans per minute
for the first five minutes, and three scans per minute thereafter. If a valid PAN is within range of a
joining router, it typically discovers the PAN within a few seconds.

Join a network

Once the router discovers a valid network, it sends an association request to the device that sent a
valid beacon requesting a join on the Zigbee network. The device allowing the join then sends an
association response frame that either allows or denies the join.

When a router joins a network, it receives a 16-bit address from the device that allowed the join.
The device that allowed the join randomly selects the 16-bit address.

Digi XBee® 3 Zigbee® RF Module 103

Zigbee networks Router operation

Authentication

In a network where security is enabled, the router must follow an authentication process. See
Zigbee security for a discussion on security and authentication.

After the router is joined (and authenticated, in a secure network), it can allow new devices to join
the network.

Persistent data
Once a router joins a network, it retains the following information through power cycle or reset
events:

= PANID

®m Qperating channel

® Security policy and frame counter values

= Child table (end device children that are joined to the coordinator)

= Binding table

= Group table

The router retains this information indefinitely until it leaves the network. When the router leaves a
network, it loses the previous PAN ID, operating channel, and child table data.

Router joining
When the router powers on, if it is not already joined to a valid Zigbee network, it immediately
attempts to find and join a valid Zigbee network.

Set DJ (Disable Joining) to 1 to disable joining. You cannot write the DJ parameter with the WR
command, so a power cycle always clears the DJ setting.

The following commands control the router joining process.

ID Sets the 64-bit PAN ID to join. Setting ID = 0 allows the router to join any 64-bit
PAN ID.
SC Set the scan channels bitmask that determines which channels a router scans to

find a valid network. Set SC on the router to match SC on the coordinator. For
example, setting SC to 0x281 enables scanning on channels 11, 18 and 20, in that

order.
SD Set the scan duration, or time that the router listens for beacons on each channel.
ZS Set the stack profile on the device.
EE Enable or disable security in the network. This must be set to match the EE value

(security policy) of the coordinator.

KY Set the trust center link key. If set to 0 (default), the link key is expected to be
obtained (unencrypted) during joining.

EO If encryption is enabled (EE = 1), set the joining device's Encryption Options to
match the Encryption Options of the network.

Digi XBee® 3 Zigbee® RF Module 104

Zigbee networks Router operation

Configuration changes delay the start of joining for five seconds after the last change.

Once the router joins a network, the network configuration settings and child table data persist
through power cycles as mentioned in Persistent data. If joining fails, read the status of the last join
attempt in the Al command register.

If any of the above command values change, when command register changes are applied (AC or
CN commands), the router leaves its current network and attempts to discover and join a new valid
network. When a Zigbee router has successfully joined a network, it:

= Allows other devices to join the network for a time
Sets Al=0
® Starts blinking the Associate LED
= Sends an API modem status frame (associated) out the serial port when using APl mode

You can configure these behaviors using the following commands:

NJ Sets the permit-join time on the router, or the time that it allows new devices to join
the network, measured in seconds. Set NJ = OxFF to always enable permit joining.

D5 Enables the Associate LED functionality.
LT Sets the Associate LED blink time when joined. The default is 2 blinks per second
(router).

Router network connectivity

Once a router joins a Zigbee network, it remains connected to the network on the same channel
and PAN ID unless it is forced to leave (see Leave a network). If the scan channels (SC), PAN ID
(ID) and security settings (EE, KY) do not change after a power cycle, the router remains
connected to the network after a power cycle.

If a router is physically moved out of range of the network it initially joined, make sure the
application includes provisions to detect if the router can still communicate with the original
network. If communication with the original network is lost, the application may choose to force the
router to leave the network. The XBee firmware includes two provisions to automatically detect the
presence of a network and leave if the check fails.

Power-On join verification

JV (Coordinator Join Verification) enables the power-on join verification check. If enabled, the
XBee 3 Zigbee RF Module attempts to discover the 64-bit address of the coordinator when it first
joins a network. Once it has joined, it also attempts to discover the 64-bit address of the coordinator
after a power cycle event. If 3 discovery attempts fail, the router leaves the network and try to join a
new network. The default setting for Power-on join verification is disabled (JV defaults to 0).

Network watchdog

The NW (Network Watchdog Timeout) feature allows a powered router to verify the presence of a
coordinator if no communication events with the coordinator have occurred within a timeout period.
This timeout is specified in minutes using the NW command. The default setting for the network
watchdog feature is disabled (NW = 0) and can be configured for up to several days.

Anytime a router receives valid data from the coordinator or data collector, it clears the watchdog
timeouts counter and restarts the watchdog timer.

Digi XBee® 3 Zigbee® RF Module 105

Zigbee networks Router operation

RF data received from the coordinator

RF data sent to the coordinator and an acknowledgment was received
Many-to-one route request was received (from any device)

Change the value of NW

If any of the events listed above occur during the watchdog period then no additional network traffic
will be generated. If the watchdog timer does expire (no valid data received for 1 NW time period),
the router attempts to initiate communication with the coordinator by sending an IEEE 64-bit
address discovery message to the coordinator. If the router cannot discover the address, it records
one watchdog timeout. After three consecutive network watchdog timeouts expire (3 * NW) and the
coordinator has not responded to the address discovery attempts, the router will enter one of three
modes based on the configuration of DC (Joining Device Controls) bit 5 and DO (Miscellaneous
Device Options) bit 7:

1.

No Network Locator (Leave Network): If neither DC bit 5 or DO bit 7 is set, the router will
immediately leave the network and begin searching for a network to join based on its
networking settings. If APl mode is enabled, a network disassociated modem status frame
(0x03) will be emitted when the router leaves the network. If the router finds and joins a new
coordinator or the original coordinator, a joined network modem status frame (0x02) will be
emitted if APl mode is enabled.

Network Locator with Network Leave: If DO bit 7 is set but DC bit 5 is not set, the behavior
of JV and NW are modified. The router will remain on the network until a new network is
found. The router starts scanning for a network across the channels of the Scan Channel
mask (SC). Scanning occurs at a random interval of between 90 and 135 seconds. If API
mode is enabled, a network watchdog scanning modem status frame (0x42) will be emitted
when scanning begins. If the device finds a network on the old channel with the same Ol
and operating ID, the search mode ends. If the device finds a network with a new Ol but
satisfies the device's search for a matching ID and ZS, the device leaves the old network
and joins the new network with the new Ol. These leave and join actions will cause the
router to emit a disassociated network modem status (0x03) and a joined network modem
status frame (0x02) if APl mode is enabled. This supports swapping or replacing a
coordinator in a running network.

Network Locator with Rejoin: If DC bit 5 is set, the router will begin scanning the current
channel indefinitely in an attempt to find the coordinator on the original network or re-join the
coordinator if it has moved to a new network. If APl mode is enabled, a network watchdog
scanning modem status frame (0x42) will be emitted when scanning begins. Scanning
occurs at a random interval of between 90 and 135 seconds. If it finds the coordinator which
must have a matching ID (extended PAN ID) with the same PAN ID (Ol) or a new PAN ID,
the router will rejoin the coordinator even if the coordinator is configured with a NJ of 0
(joining disabled). If the router finds the coordinator on the original network or rejoins
coordinator on a new network, a joined network modem status frame (0x02) will be emitted if
API mode is enabled.

Leave a network

The following mechanisms cause the coordinator to leave its current PAN and start a new network
based on its network formation parameter values.

Digi XBee® 3 Zigbee® RF Module 106

Zigbee networks Router operation

= Change the ID command such that the current 64-bit PAN ID is invalid.

= Change the SC command such that the current channel (CH) is not included in the channel
mask.

= Change the ZS or any of the security command values.
= Send the NRO command to cause the coordinator to leave.

= Send the NR1 command to send a broadcast transmission, causing all devices in the
network to leave and migrate to a different channel.

= Press the commissioning button four times or send the CB command with a parameter of 4.
This restores the device to a default configuration state.

® Send a network leave command.

Changes to ID, SC, ZS, and security command values only take effect when changes are
applied (AC or CN commands).

Reset the router

When you reset or power cycle the router, it checks its PAN ID, operating channel and stack profile
against the network configuration settings (ID, SC, ZS). It also verifies the saved security policy is
valid based on the security configuration commands (EE, KY). If the router's PAN ID, operating
channel, stack profile, or security policy is invalid, the router leaves the network and attempts to
join a new network based on its network joining command values.

To prevent the router from leaving an existing network, issue the WR command after all network
joining commands have been configured; this retains the settings through power cycle or reset
events.

Example: join a network

After starting a coordinator that is allowing joins, the following steps cause a router to join the
network:

Set ID to the desired 64-bit PAN ID, or to 0 to join any PAN.

Set SC to the list of channels to scan to find a valid network.

Set the security settings to match the coordinator.

s wh =

If you SC or ID from the default, apply changes (that is, make SC and ID changes take
effect) by issuing the AC or CN command.

5. The Associate LED starts blinking once the router has joined a PAN.

6. If the Associate LED is not blinking, read the Al command to determine the cause of join
failure.

7. Once the router joins, the OP and CH commands indicate the operating 64-bit PAN ID and
channel the router joined.

8. The MY command reflects the 16-bit address the router received when it joined.

9. The API Modem Status frame (“Associated”) is sent out the serial port when using API
mode.

10. The joined router allows other devices to join for a time based on its NJ setting.

Digi XBee® 3 Zigbee® RF Module 107

Zigbee networks End device operation

End device operation

Similar to routers, end devices must discover and join a valid Zigbee network before they can
participate in the network. After an end device joins a network, it can communicate with other
devices on the network. Because end devices are battery powered and support low power (sleep)
modes, they cannot allow other devices to join or route data packets.

Discover Zigbee networks

End devices go through the same process as routers to discover networks by issuing a PAN scan.
After sending the broadcast beacon request transmission, the end device listens for a short time in
order to receive beacons sent by nearby routers and coordinators on the same channel. The end
device evaluates each beacon received on the channel to determine if it finds a valid PAN. A PAN
is valid if any of the following exist:

® Has a valid 64-bit PAN ID (PAN ID matches ID if ID > 0)
= Has the correct stack profile (ZS command)

Allows joining the network
= Has capacity for additional end devices

If the end device does not find a valid PAN, it performs the PAN scan on the next channel in its
scan channels list and continues this process until it finds a valid network, or until all channels have
been scanned. If the end device scan all channels and does not discover a valid PAN, it may enter
a low power sleep state and scan again later.

If scanning all SC channels fails to discover a valid PAN, XBee Zigbee devices attempt to enter a
low power state and retries scanning all SC channels after the device wakes from sleeping. If the
device cannot enter a low power state, it retries scanning all channels, similar to the router. To
meet Zigbee Alliance requirements, the end device attempts up to nine scans per minute for the
first five minutes, and three scans per minute thereafter.

The XBee Zigbee end device will not enter sleep until it has completed scanning all SC
channels for a valid network.

Join a network

Once the end device discovers a valid network, it joins the network, similar to a router, by sending
an association request (to the device that sent a valid beacon) to request a join on the Zigbee
network. The device allowing the join then sends an association response frame that either allows
or denies the join.

When an end device joins a network, it receives a 16-bit address from the device that allowed the
join. The device that allowed the join randomly selects the 16-bit address.

Parent child relationship

Since an end device may enter low power sleep modes and not be immediately responsive, the
end device relies on the device that allowed the join to receive and buffer incoming messages on
its behalf until it is able to wake and receive those messages. The device that allowed an end
device to join becomes the parent of the end device, and the end device becomes a child of the
device that allowed the join.

Digi XBee® 3 Zigbee® RF Module 108

Zigbee networks End device operation

End device capacity

Routers and coordinators maintain a table of all child devices that have joined called the child table.
This table is a finite size and determines how many end devices can join. If a router or coordinator
has at least one unused entry in its child table, the device has end device capacity. In other words,
it can allow one or more additional end devices to join. Zigbee networks have sufficient routers to
ensure adequate end device capacity.

The initial release of software on this platform supports up to 20 end devices when configured as a
coordinator or a router.

In Zigbee firmware, use the NC command (number of remaining end device children) to determine
how many additional end devices can join a router or coordinator. If NC returns 0, then the router or
coordinator device has no more end device capacity.

Because routers cannot sleep, there is no equivalent need for routers or coordinators to track
joined routers. There is no limit to the number of routers that can join a given router or coordinator
device and no “router capacity” metric.

Authentication

In a network where security is enabled, the end device must then go through an authentication
process. For more information, see Zigbee security.

Persistent data

The end device can retain its PAN ID, operating channel, and security policy information through a
power cycle. However, since end devices rely heavily on a parent, the end device does an orphan
scan to try and contact its parent. If the end device does not receive an orphan scan response
(coordinator realignment command), it leaves the network and tries to discover and join a new
network. When the end device leaves a network, it loses the previous PAN ID and operating
channel settings.

Orphan scans

When an end device comes up from a power cycle, it performs an orphan scan to verify it still has a
valid parent. The device sends the orphan scan as a broadcast transmission and contains the 64-
bit address of the end device. Nearby routers and coordinator devices that receive the broadcast
check their child tables for an entry that contains the end device's 64-bit address. If the devices find
an entry with a matching 64-bit address, they send a coordinator realignment command to the end
device that includes the 16-bit address of the end device, 16-bit PAN ID, operating channel, and
the parent's 64-bit and 16-bit addresses.

If the orphaned end device receives a coordinator realignment command, it joins the network.
Otherwise, it attempts to discover and join a valid network.

End device joining
When you power on an end device, if it is not joined to a valid Zigbee network, or if the orphan scan
fails to find a parent, the device attempts to find and join a valid Zigbee network.

Set the DJ command to 1 to disable joining. You cannot write the DJ parameter with WR, so a
power cycle always clears the DJ setting.

The following commands control the end device joining process.

Digi XBee® 3 Zigbee® RF Module 109

Zigbee networks End device operation

ID Sets the 64-bit PAN ID to join. Setting ID = 0 allows the router to join any 64-bit
PAN ID.
SC Set the scan channels bitmask that determines which channels an end device will

scan to find a valid network. SC on the end device should be set to match SC on
the coordinator and routers in the desired network. For example, setting SC to
0x281 enables scanning on channels 0x0B, 0x12, and 0x14, in that order.

SD Set the scan duration, or time that the end device will listen for beacons on each
channel.

Z8 Set the stack profile on the device.

EE Enable or disable security in the network. This must be set to match the EE value

(security policy) of the coordinator.

KY Set the trust center link key. If set to 0 (default), the link key is expected to be
obtained (unencrypted) during joining.

EO If encryption is enabled (EE = 1), set the joining device's Encryption Options to
match the Encryption Options of the network.

Once the end device joins a network, the network configuration settings persist through power
cycles as mentioned in Persistent data. If joining fails, read the status of the last join attempt in the
Al command register.

If any of these command values change when command register changes are applied, the end
device leaves its current network and attempts to discover and join a new valid network.

When a Zigbee end device has successfully started a network, it:

®m Sets Al equalto 0

® Starts blinking the Associate LED if one has been connected to the device's ASSC pin
(Micro pin 26/SMT pin 28/TH pin 15)

= Sends an API modem status frame (“associated”) out the serial port when using APl mode
= Attempts to enter the sleep mode defined by the SM parameter

You can use the following commands to configure these behaviors:

Command Description

D5 Enables the Associate LED functionality.
LT Sets the Associate LED blink time when joined. Default is 2 blinks per
second (end devices).
SM, SP, ST, SN, Parameters that configure the sleep mode characteristics. See End Device
SO,ET configuration.
Parent connectivity

The XBee 3 Zigbee RF Module end device sends regular poll transmissions to its parent when it is
awake. These poll transmissions query the parent for any new received data packets. The parent

Digi XBee® 3 Zigbee® RF Module 110

Zigbee networks Channel scanning

always sends a MAC layer acknowledgment back to the end device. The acknowledgment
indicates whether the parent has data for the end device.

If the end device does not receive an acknowledgment for three consecutive poll requests, it
considers itself disconnected from its parent and attempts to discover and join a valid Zigbee
network. For more information, see Manage End Devices.

Reset the end device

When the end device is reset or power cycled, if the orphan scan successfully locates a parent, the
end device then checks its PAN ID, operating channel and stack profile against the network
configuration settings (ID, SC, ZS). It also verifies the saved security policy is valid based on the
security configuration commands (EE, EO, KY). If the end device's PAN ID, operating channel,
stack profile, or security policy is invalid, the end device will leave the network and attempt to join a
new network based on its network joining command values.

To prevent the end device from leaving an existing network, the WR command should be issued
after all network joining commands have been configured in order to retain these settings through
power cycle or reset events.

Channel scanning

Routers and end devices must scan one or more channels to discover a valid network to join. When
a join attempt begins, the device sends a beacon request transmission on the lowest channel
specified in the SC (Scan Channels) bitmask. If the device finds a valid PAN on the channel, it
attempts to join the PAN on that channel. Otherwise, if the device does not find a valid PAN on the
channel, it attempts scanning on the next higher channel in the SC bitmask.

The device continues to scan each channel (from lowest to highest) in the SC bitmask until it finds
a valid PAN or all channels have been scanned. Once the device scans all channels, the next join
attempt starts scanning on the lowest channel specified in the SC bitmask.

For example, if the SC command is set to 0x400F, the device starts scanning on channel 11
(0x0B) and scans until it finds a valid beacon, or until it scans channels 11, 12, 13, 14, and 25 have
been scanned (in that order).

Once an XBee router or end device joins a network on a given channel, if the XBee device receives
a network leave command (see Leave a network), it leaves the channel it joined on and continues
scanning on the next higher channel in the SC bitmask.

For example, if the SC command is set to 0x400F and the device joins a PAN on channel 12
(0x0C), if the XBee 3 Zigbee RF Module leaves the channel, it starts scanning on channel 13,
followed by channels 14 and 25 if it does not find a valid network. Once all channels have been
scanned, the next join attempt starts scanning on the lowest channel specified in the SC bitmask.

Manage multiple Zigbee networks
In some applications, multiple Zigbee networks may exist in proximity of each other. The
application may need provisions to ensure the device joins the desired network. There are a
number of features in Zigbee to manage joining among multiple networks. These include the
following:

= PAN ID filtering

= Preconfigured security keys

= Permit joining

= Application messaging

Digi XBee® 3 Zigbee® RF Module 111

Zigbee networks Channel scanning

Filter PAN ID

Set ID (Extended PAN ID) to a non-zero value to configure the XBee 3 Zigbee RF Module with a
fixed PAN ID.

If you set the PAN ID to a non-zero value, the device will only join a network with the same PAN ID.

Configure security keys
Similar to PAN ID filtering, this method requires that you install a known security key on a router to
ensure it joins a Zigbee network with the same security key.

1. Use EE (Encryption Enable) to enable security.

2. UseKY (Link Key) to set the preconfigured link key to a non-zero value.

Now the XBee router or end device will only join a network with the same security key.

Prevent unwanted devices from joining

You can disable the permit-joining parameter in a network to prevent unwanted devices from
joining. When you need to add a new device to a network, enable permit-joining for a short time on
the desired network.

In the XBee firmware:

1. Set NJ (Node Join Time) to a value less than OxFF on all routers and coordinator devices to
restrict joining (recommended).

2. Use the Commissioning pushbutton or CB (Commissioning Pushbutton) to allow joining for
a short time; for more information, see Network commissioning and diagnostics.

Application messaging framework

If none of the previous mechanisms are feasible, you can build a messaging framework between
the coordinator and devices that join its network into the application. For example, the application
code in joining devices could send a transmission to the coordinator after joining a network, and
wait to receive a defined reply message. If the application does not receive the expected response
message after joining, it could force the device to leave and continue scanning; see NR (Network
Reset).

Digi XBee® 3 Zigbee® RF Module 112

Transmission, addressing, and routing

AAArESSING
Data transSmMiSSION .
Binding tranSmIiSSIONS
MURICaSt tranNSMISSIONS .
Fragmentation .
Data transmission €Xamples
RF packet roUting
Encrypted transmisSiONS
Maximum RF payload Size
TRrOUGN UL .
ZDO tranSmMiSSIONS

Digi XBee® 3 Zigbee® RF Module 113

Transmission, addressing, and routing Addressing

Addressing

All Zigbee devices have two different addresses, a 64-bit and a 16-bit address. This section
describes the characteristics of each.

64-bit device addresses

The 64-bit address is a device address which is unique to each physical device. It is sometimes
also called the MAC address or extended address and is assigned during the manufacturing
process. The first three bytes of the 64-bit address is a Organizationally Unique Identifier (OUI)
assigned to the manufacturer by the IEEE. The OUI of XBee devices is 0x0013A2.

16-bit device addresses

A device receives a 16-bit address when it joins a Zigbee network. For this reason, the 16-bit
address is also called the network address. The 16-bit address of 0x0000 is reserved for the
coordinator. All other devices receive a randomly generated address from the router or coordinator
device that allows the join. The 16-bit address can change under certain conditions:

® An address conflict is detected where two devices are found to have the same 16-bit
address

= A device leaves the network and later joins (it can receive a different address)
All Zigbee transmissions are sent using the source and destination 16-bit addresses. The routing
tables on Zigbee devices also use 16-bit addresses to determine how to route data packets

through the network. However, since the 16-bit address is not static, it is not a reliable way to
identify a device.

To solve this problem, the 64-bit destination address is often included in data transmissions to
guarantee data is delivered to the correct destination. The Zigbee stack can discover the 16-bit
address, if unknown, before transmitting data to a remote.

Application layer addressing
Zigbee devices support multiple application profiles, cluster IDs, and endpoints (for more
information, see Zigbee application layers: in depth). Application layer addressing allows data
transmissions to be addressed to specific profile IDs, cluster IDs, and endpoints. Application layer
addressing is useful if an application must do any of the following:

= |nteroperate with other Zigbee devices outside of the Digi application profile.

= Use service and network management capabilities of the ZDO.

= QOperate on a public application profile such as Home Automation or Smart Energy.

API mode provides a simple yet powerful interface that easily sends data to any profile ID,
endpoint, and cluster ID combination on any device in a Zigbee network.

Data transmission

You can send Zigbee data packets as either unicast or broadcast transmissions. Unicast
transmissions route data from one source device to one destination device, whereas broadcast
transmissions are sent to many or all devices in the network.

Digi XBee® 3 Zigbee® RF Module 114

Transmission, addressing, and routing Data transmission

Broadcast transmissions
Broadcast transmissions within the Zigbee protocol are intended to be propagated throughout the
entire network such that all nodes receive the transmission. To accomplish this, the coordinator
and all routers that receive a broadcast transmission retransmits the packet three times.

When a router or coordinator delivers a broadcast transmission to an end device child, the

transmission is only sent once (immediately after the end device wakes and polls the parent for any
new data). For more information, see Parent operation.

!
o
!

Cordinator

™~ @® Router
[./ 1\.“ End Device
o

g
A
® /.

Each node that transmits the broadcast also creates an entry in a local broadcast transmission
table. This entry keeps track of each received broadcast packet to ensure the packets are not
transmitted endlessly. Each entry persists for 8 seconds, and the broadcast transmission table
holds 8 entries, effectively limiting network broadcast transmissions to once per second.

For each broadcast transmission, the Zigbee stack reserves buffer space for a copy of the data
packet that retransmits the packet as needed. Large broadcast packets require more buffer space.
Users cannot change any buffer spacing; information on buffer space is for general knowledge
only. The XBee 3 Zigbee RF Module handles buffer spacing automatically.

Broadcast transmissions do not use ACKs, so there is no guarantee that every node will hear
a particular broadcast. Because the XBee devices re-transmit broadcast transmissions by every
device in the network, use broadcast messages sparingly.

Unicast transmissions

Unicast transmissions are sent from one source device to another destination device. The
destination device could be an immediate neighbor of the source, or it could be several hops away.
Unicast transmissions sent along a multiple hop path require some means of establishing a route to
the destination device. For more information, see RF packet routing.

Address resolution

Each device in a Zigbee network has both a 16-bit (network) address and a 64-bit (extended)
address. The 64-bit address is unique and assigned to the device during manufacturing, and the
16-bit address is obtained after joining a network. The 16-bit address can also change under
certain conditions.

Digi XBee® 3 Zigbee® RF Module 115

Transmission, addressing, and routing Data transmission

When sending a unicast transmission, the Zigbee network layer uses the 16-bit address of the
destination and each hop to route the data packet. If you do not know the 16-bit address of the
destination, the Zigbee stack includes a discovery provision to automatically discover the
destination 16-bit address of the device before routing the data.

To discover a 16-bit address of a remote, the device initiating the discovery sends a broadcast
address discovery transmission. The address discovery broadcast includes the 64-bit address of
the remote device with the 16-bit address being requested. All nodes that receive this transmission
check the 64-bit address in the payload and compare it to their own 64-bit address. If the addresses
match, the device sends a response packet back to the initiator. This response includes the
remote's 16-bit address. When the device receives the discovery response, the initiator transmits
the data.

You can address frames using either the extended or the network address. If you use the extended
address form, set the 16-bit network address field to OXFFFE (unknown). If you use the 16-bit
network address form, set the 64-bit extended address field to OxFFFFFFFFFFFFFFFF (unknown).

If you use an invalid 16-bit address as a destination address, and the 64-bit address is unknown
(OXFFFFFFFFFFFFFFFF), the modem status message shows a delivery status code of 0x21
(network ack failure) and a discovery status of 0x00 (no discovery overhead). If you use a non-
existent 64-bit address as a destination address, and the 16-bit address is unknown (OxFFFE), the
device attempts address discovery and the modem status message shows a delivery status code
of 0x24 (address not found) and a discovery status code of 0x01 (address discovery was
attempted).

Address table

Each Zigbee device maintains an address table that maps a 64-bit address to a 16-bit address.
When a transmission is addressed to a 64-bit address, the Zigbee stack searches the address
table for an entry with a matching 64-bit address to determining the destination's 16-bit address. If
the Zigbee stack does not find a known 16-bit address, it performs address discovery to discover
the device's current 16-bit address.

64-bit address 16-bit address

0013 A200 4000 0001 0x4414
0013 A200 400A 3568 0x1234
0013 A200 4004 1122 0xC200
0013 A200 4002 1123 OxFFFE (unknown)

The XBee 3 Zigbee RF Module supports up to 20 address table entries. For applications where a
single device (for example, coordinator) sends unicast transmissions to more than 10 devices, the
application implements an address table to store the 16-bit and 64-bit addresses for each remote
device. Use API mode for any XBee device that sends data to more than 10 remotes. The
application can then send both the 16-bit and 64-bit addresses to the XBee device in the API
transmit frames which significantly reduces the number of 16-bit address discoveries and greatly
improves data throughput.

If an application supports an address table, the size should be larger than the maximum number of
destination addresses the device communicates with. Each entry in the address table should
contain a 64-bit destination address and its last known 16-bit address.

When sending a transmission to a destination 64-bit address, the application searches the address
table for a matching 64-bit address. If it finds a match, the application populates the 16-bit address

Digi XBee® 3 Zigbee® RF Module 116

Transmission, addressing, and routing Binding transmissions

into the 16-bit address field of the API frame. If it does not find a match, set the 16-bit address to
OxFFFE (unknown) in the API transmit frame. The API provides indication of a remote device's 16-
bit address in the following frames:

= All receive data frames

= Rx Data (0x90)

= Rx Explicit Data (0x91)

= |/O Sample Data (0x92)

= Node Identification Indicator (0x95)

= Route Record Indicator (0xA1) and so forth

= Transmit status frame (0x8B)

Group table
Each router and the coordinator maintain a persistent group table. Each entry contains the
following:

= Endpoint value

= Two byte group ID

= Optional name string of zero to 16 ASCII characters

® |ndex into the binding table
More than one endpoint may be associated with a group ID, and more than one group ID may be
associated with a given endpoint. The capacity of the group table is 16 entries.

The application always updates the 16-bit address in the address table when it receives one of the
frames to ensure the table has the most recently known 16-bit address. If a transmission failure
occurs, the application sets the 16-bit address in the table to OXFFFE (unknown).

Binding transmissions

Binding transmissions use indirect addressing to send one or more messages to other destination
devices. The device handles an Explicit Addressing Command Request - 0x11 using the Indirect
Tx Option (0x04) as a binding transmission request.

Multicast transmissions

XBee modules use multicast transmissions to broadcast a message to destination devices that
have active endpoints associated with a common group ID. The device handles an Explicit
Addressing Command Request - 0x11 using the Multicast Tx Option (0x08) as a multicast
transmission request.

Address resolution

The 64 bit destination address value does not matter and we recommend that it be set to
OxFFFFFFFFFFFFFFFF. Set the 16 bit destination address value to the destination groupID.

Address resolution

The XBee 3 Zigbee RF Module use the source endpoint and cluster ID values of a binding
transmission as keys to lookup matching binding table entries. For each matching binding table

Digi XBee® 3 Zigbee® RF Module 117

Transmission, addressing, and routing Fragmentation

entry, the type field of the entry indicates whether to send a unicast or a multicast message. In the
case of a unicast entry, the transmission request is updated with the Destination Endpoint and
MAC Address, and unicast to its destination. In the case of a multicast entry, the device updates
the message using the two least significant bytes of the Destination MAC Address as the grouplD,
and multicast to its destinations.

Binding table

Each router and coordinator maintain a persistent binding table to map source endpoint and cluster
ID values into 64 bit destination address and endpoint values. The capacity of the binding table is
16 entries.

Fragmentation

Each unicast transmission may support up to 84 bytes of RF payload, although enabling security or
using source routing can reduce this number. For more information, see NP (Maximum Packet
Payload Byies). However, the XBee Zigbee firmware supports a Zigbee feature called
fragmentation that allows a single large data packet to be broken up into multiple RF transmissions
and reassembled by the receiver before sending data out its serial port.

Tx Data

Rx Data

XBee device XBee device

The transmit frame can include up to 255 bytes of data broken up into multiple transmissions and
reassembled on the receiving side. If one or more of the fragmented messages are not received by
the receiving device, it drops the entire message, and the sender indicates a transmission failure in
Extended Transmit Status - 0x8B.

Applications that do not wish to use fragmentation should avoid sending more than the maximum
number of bytes in a single RF transmission—see Maximum RF payload size.

If you use the D6 command to enable RTS flow control on the receiving device it receives a
fragmented message; it ignores RTS flow control.

Broadcast transmissions do not support fragmentation. Maximum payload size = up to 92
bytes.

Data transmission examples

This section provides examples for data transmission.

Send a packet in Transparent mode

To send a data packet in Transparent mode (AP = 0), set the DH and DL commands to match the
64- bit address of the destination device. DH must match the upper 4-bytes, and DL must match

Digi XBee® 3 Zigbee® RF Module 118

Transmission, addressing, and routing Data transmission examples

the lower 4 bytes. Since the coordinator always receives a 16-bit address of 0x0000, a 64-bit
address of 0x0000000000000000 is the coordinator's address (in Zigbee firmware). The default
values of DH and DL are 0x00, which sends data to the coordinator.

Example: Send a transmission to the coordinator.
In this example, a "\r' refers to a carriage return character.
A router or end device can send data in two ways. First, set the destination address (DH and DL
commands) to 0x00.
1. Enter Command mode (+++).
2. After receiving an OK\r, issue the following commands:
= ATDHO\r
= ATDLO
= ATCN\r
3. Verify that each of the three commands returned an OK\r response.
4. After setting these command values, all serial characters received on the UART are sent as
a unicast transmission to the coordinator.

Alternatively, if the coordinator's 64-bit address is known, you can set DH and DL to the
coordinator's 64-bit address. Suppose the coordinator's address is 0x0013A200404A2244.

1. Enter Command mode (+++)
2. After receiving an OK\r, issue the following commands:
a. ATDH13A200\r
b. ATDL404A2244\r
c. ATCNVr
3. Verify that each of the three commands returned an OK\r response.

4. After setting these command values, all serial characters received on the UART are sent as
a unicast transmission to the coordinator.

Send data in APl mode

API mode is used exclusively for outgoing and incoming messages when the AP parameter is non-
zero. Use the transmit request, or explicit transmit request frame (0x10 and 0x11 respectively) to
send data to the coordinator. The 64-bit address can either be set to 0x0000000000000000, or to
the 64-bit address of the coordinator. The 16-bit address should be set to 0OxFFFE when using the
64-bit address of all 0x00s.

To send an ASCII 1 to the coordinator's 0x00 address, use the following API frame:

7E 00 OF 10 01 0000 0000 0000 0000 FFFE 00 00 31 CO

If you use the explicit transmit frame, set the the cluster ID to 0x0011, the profile ID to 0xC105, and
the source and destination endpoints to OXxE8. These are the recommended defaults for data
transmissions in the Digi profile.

You can send the same transmission using the following explicit transmit frame:

7E 001511 01 0000 0000 0000 0000 FFFE E8 E8 0011 C105 00 00 3118

The 16-bit address is set to OXFFFE. This is required when sending to a 64-bit address of 0x00s.

Suppose the coordinator's 64-bit address is 0x0013A200404A2244. The following transmit request
API frame (0x10) sends an ASCII 1 to the coordinator:

Digi XBee® 3 Zigbee® RF Module 119

Transmission, addressing, and routing Data transmission examples

7E 00 OF 10 01 0013 A200 404A 2244 0000 0000 31 18

Example: Send a broadcast transmission
In this example, a "\r' refers to a carriage return character.
Perform the following steps to configure a broadcast transmission:

1. Enter Command mode (+++)
2. After receiving an OK\r, issue the following commands:
= ATDHO\r
= ATDLffff\r
= ATCN\r
3. Verify that each of the three commands returned an OK\r response.

4. After setting these command values, all serial characters are sent as a broadcast
transmission.

APl frame examples

A transmit request API frame (0x10) can send an ASCII 1 in a broadcast transmission using the
following API frame:

7E 00 OF 10 01 0000 0000 0000 FFFF FFFE 00 00 31 C2
The destination 16-bit address is set to OxFFFE for broadcast transmissions.

Example: Send an indirect (binding) transmission.

This example uses the explicit transmit request frame (0x11) to send a transmission using indirect
addressing through the binding table. It assumes the binding table has already been set up to map
a source endpoint of D5 and cluster ID of 0x0001 to a destination endpoint and 64 bit destination
address. The message data is a manufacturing specific profile message using profile ID 0xC105,
command ID 0x00, a ZCL Header of 151E10, transaction number EE, and a ZCL payload of
000102030405:

7E001E 11 01 FF FF FF FF FF FF FF FF FF FF D5 D5 00 01 C1 0500 04 15 1E 10 EE 00 01
0203 04 05 42

The 64 bit destination address has been set to all 0xFF values, and the destination endpoint
set to OxFF. The Tx Option 0x04 indicates indirect addressing. The 64 bit destination address and
destination endpoint are completed by looking up data associated with binding table entries. This
matches the following example.

Example: Send a multicast (group ID) broadcast.

This example uses the explicit transmit request frame (0x11) to send a transmission using
multicasting. It assumes the destination devices already have their group tables set up to associate
an active endpoint with the group ID (0x1234) of the multicast transmission. The message data is a
manufacturing specific profile message using profile ID 0xC105 command ID 0x00, a ZCL Header
of 151E10, transaction number EE, and a ZCL payload of 000102030405:

7E001E 1101 FF FF FF FF FF FFFF FF 1234 D5 D500 01 C1 050008 15 1E 10 EE 00 01
0203 04 05 F6

Digi XBee® 3 Zigbee® RF Module 120

Transmission, addressing, and routing RF packet routing

The 64 bit destination address has been set to all 0xFF values, and the destination endpoint
set to OxFE. The Tx Option 0x08 indicates use of multicast (group) addressing.

RF packet routing

Unicast transmissions may require some type of routing. Zigbee includes several different methods
to route data, each with its own advantages and disadvantages as summarized in the following

table.
Routing
approach Description When to use
Ad hoc On- Routing paths are created between source and Use in networks that will
demand destination, possibly traversing multiple nodes not scale beyond about
Distance (“hops”). Each device knows where to send data 40 destination devices.

Vector (AODV) | next to eventually reach the destination.
Mesh Routing

Many-to-One A single broadcast transmission configures reverse | Useful when many

Routing routes on all devices into the device that sends the | remote devices must
broadcast. send data to a single
gateway or collector
device.
Source Routing | Data packets include the entire route the packet Improves routing
should traverse to get from source to destination. efficiency in large

networks (over 40
remote devices).

End devices do not make use of these routing protocols. Rather, an end device sends a
unicast transmission to its parent and allows the parent to route the data packet in its behalf.

To revert from Many-to-One routing to AODV routing, a network must first do a network reset
(NR).

Link status transmission

Before discussing the various routing protocols, it is worth understanding the primary mechanism
in Zigbee for establishing reliable bi-directional links. This mechanism is especially useful in
networks that may have a mixture of devices with varying output power and/or receiver sensitivity
levels.

Each coordinator or router device periodically sends a link status message as a 1-hop broadcast
transmission, received only by one-hop neighbors. The link status message contains a list of
neighboring devices and incoming and outgoing link qualities for each neighbor. Using these
messages, neighboring devices determines the quality of a bi-directional link with each neighbor
and uses that information to select a route that works well in both directions.

For example, consider a network of two neighboring devices that send periodic link status
messages. Suppose that the output power of device A is +18 dBm, and the output power of device

B is +3 dBm (considerably less than the output power of device A). The link status messages might
indicate the following:

Digi XBee® 3 Zigbee® RF Module 121

Transmission, addressing, and routing RF packet routing

+3 dBm TX power

Link status (B to A)
Neighbor A:

QOutgoing cost: very poor

Incoming cost: very good

Device A

+18 dBm TX power

Link status (A to B)
Neighbor B:
Outgoing cost: very good
Incoming cost: very poor

Device B

This mechanism enables devices A and B to recognize that the link is not reliable in both directions
and select a different neighbor when establishing routes. Such links are called asymmetric links,
meaning the link quality is not similar in both directions.

When a router or coordinator device powers on, it sends link status messages every couple
seconds to attempt to discover link qualities with its neighbors quickly. After being powered on for
some time, the link status messages are sent at a much slower rate, about every 3-4 times per
minute.

AODV mesh routing

Zigbee employs mesh routing to establish a route between the source device and the destination.
Mesh routing allows data packets to traverse multiple nodes (hops) in a network to route data from
a source to a destination. Routers and coordinators can participate in establishing routes between
source and destination devices using a process called route discovery. The Route discovery
process is based on the Ad-hoc On-demand Distance Vector routing (AODV) protocol.

Sample transmission through a mesh network:

Digi XBee® 3 Zigbee® RF Module 122

Transmission, addressing, and routing RF packet routing

“a N

AODV routing algorithm

Routing under the AODV protocol uses tables in each node that store the next hop (intermediary
node between source and destination nodes) for a destination node. If a next hop is unknown,
route discovery takes place to find a path. Since only a limited number of routes can be stored on a
router, route discovery takes place more often on a large network with communication between
many different nodes.

Node Destination address Next hop address
R3 Router 6 Coordinator

C Router 6 Router 5

R5 Router 6 Router 6

When a source node discovers a route to a destination node, it sends a broadcast route request
command. The route request command contains the source network address, the destination
network address and a path cost field (a metric for measuring route quality). As the route request
command propagates through the network (see Broadcast transmissions), each node that re-
broadcasts the message updates the path cost field and creates a temporary entry in its route
discovery table.

The following graphic is a sample route request (broadcast) transmission where R3 is trying to
discover a route to R6:

Digi XBee® 3 Zigbee® RF Module 123

Transmission, addressing, and routing RF packet routing

When the destination node receives a route request, it compares the ‘path cost’ field against
previously received route request commands. If the path cost stored in the route request is better
than any previously received, the destination node transmits a route reply packet to the node that
originated the route request. Intermediate nodes receive and forward the route reply packet to the
source node (the node that originated route request).

The following graphic is a sample route reply (unicast) where R6 sends a route reply to R3:

O

Legend
—p Firstroute reply
------- » Second route reply

R6 could send multiple replies if it identifies a better route.

Retries and acknowledgments

Zigbee includes acknowledgment packets at both the Mac and Application Support (APS) layers.
When data is transmitted to a remote device, it may traverse multiple hops to reach the destination.
As the device transmits data from one node to its neighbor, it transmits an acknowledgment packet
(Ack) in the opposite direction to indicate that the transmission was successfully received. If the
Ack is not received, the transmitting device retransmits the data, up to four times.

This Ack is called the Mac layer acknowledgment. In addition, the device that originated the
transmission expects to receive an acknowledgment packet (Ack) from the destination device. This
Ack traverses the same path the data traversed, but in the opposite direction. If the originator fails
to receive this Ack, it retransmits the data, up to two times until it receives an Ack. This Ack is called
the Zigbee APS layer acknowledgment.

Refer to the Zigbee specification for more details.

Digi XBee® 3 Zigbee® RF Module 124

Transmission, addressing, and routing RF packet routing

Many-to-One routing

In networks where many devices must send data to a central collector or gateway device, AODV
mesh routing requires significant overhead. If every device in the network had to discover a route
before it could send data to the data collector, the network could easily become inundated with
broadcast route discovery messages.

Many-to-one routing is an optimization for these kinds of networks. Rather than require each
device to do its own route discovery, the device sends a single many-to-one broadcast
transmission from the data collector to establish reverse routes on all devices.

The many-to-one broadcast is a route request message with the target discovery address set to the
address of the data collector. Devices that receive this route request create a reverse many-to-one
routing table entry to create a path back to the data collector. The Zigbee stack on a device uses
historical link quality information about each neighbor to select a reliable neighbor for the reverse
route.

When a device sends data to a data collector, and it finds a many-to-one route in its routing table, it
transmits the data without performing a route discovery. Send the many-to-one route request
(MTORR) periodically to update and refresh the reverse routes in the network.

Applications that require multiple data collectors can also use many-to-one routing. If more than
one data collector device sends a many-to-one broadcast, devices create one reverse routing table
entry for each collector.

The Zigbee firmware uses AR (Aggregate Routing Notification) to enable many-to-one
broadcasting on a device. AR sets a time interval (measured in 10 second units) for sending the
many to one broadcast transmission.

High/Low RAM Concentrator mode

When Many to One (MTO) requests are broadcast, DO = 40 (bit 6) determines if the concentrator is
operating in high or low RAM mode. High RAM mode indicates to the network that the concentrator
has enough memory to store source routes for the whole network, and remote nodes may stop
sending route records after the concentrator has successfully received one. Low RAM mode
indicates to the network that the concentrator lacks RAM to store route records, and that route
records be sent to the concentrator to precede every inbound APS unicast message. If you have a
network with more than forty devices or will be using a Digi gateway, we recommend operating in
low RAM concentrator mode and externally manage source routing.

A device will become a concentrator when AR < OxFF or when acting as a Centralized Trust
Center.

Source routing

In applications where a device must transmit data to many remotes, AODV routing requires
performing one route discovery for each destination device to establish a route. If there are more
destination devices than there are routing table entries, new routes overwrite established AODV
routes, causing route discoveries to occur more regularly. This can result in larger packet delays
and poor network performance.

Zigbee source routing helps solve these problems. In contrast to many-to-one routing that
establishes routing paths from many devices to one data collector, source routing allows the
collector to store and specify routes for many remotes.

To use source routing, a device must use the APl mode, and it must send periodic many-to-one
route request (MTORR) broadcasts—AR command—to create a many-to-one route to it on all
devices. When remote devices send RF data using a many-to-one route, they first send a route
record transmission. The route record transmission is unicast along the many-to-one route until it

Digi XBee® 3 Zigbee® RF Module 125

Transmission, addressing, and routing RF packet routing

reaches the data collector. As the route record traverses the many-to-one route, it appends the 16-
bit address of each device in the route into the RF payload. When the route record reaches the data
collector, it contains the address of the sender, and the 16-bit address of each hop in the route. The
data collector can store the routing information and retrieve it later to send a source routed packet
to the remote as shown in the following images.

® ® ® ®
Py [
o o
x k4
\‘\ '¢
o [. It ®
.
) ’
[J @.
. o
. i ' h ~ -~
I’ ' ~~
e ' N
& | Ao
o '
) ° ° Y
L]
_______ Route request broadcast
° L4 a

Route reply unicast

Data collector

[) Router

The data collector sends a many-to-one route request broadcast to create reverse routes on all

devices.
o o
® o
® o

A remote device sends an RF data packet to the data collector. This is prefaced by a route record
transmission to the data collector.

Digi XBee® 3 Zigbee® RF Module 126

Transmission, addressing, and routing RF packet routing

o e

After obtaining a source route, the data collector sends a source routed transmission to the remote
device.

Acquire source routes

Acquiring source routes requires the remote devices to send a unicast to a data collector (device
that sends many-to-one route request broadcasts). There are several ways to force remotes to
send route record transmissions.

1. If the application on remote devices periodically sends data to the data collector, each
transmission forces a route record to occur.

2. The data collector can issue a network discovery command (ND command) to force all
XBee devices to send a network discovery response. A route record prefaces each network
discovery response.

3. You can enable periodic I/0O sampling on remotes to force them to send data at a regular
rate. A route record prefaces each I/0 sample. For more information, see |/O support.

4. If the NI string of the remote device is known, the DN command can be issued with the NI
string of the remote in the payload. The remote device with a matching NI string would send
a route record and a DN response.

5. Setbit 6 of DC (Joining Device Controls) so that every time a remote device receives many-
to-one route request (MTORR), it automatically sends a unicast back to the aggregator to
teach the aggregator the source route back to that node. This ensures that the aggregator
always has accurate source routes to each node that receives a MTORR.

Store source routes

When a data collector receives a route record, it sends it out the serial port as a Route Record
Indicator - 0xA1. To use source routing, the application receives these frames and stores the
source route information.

Send a source routed transmission

To send a source routed transmission, the application must send a Create Source Route - 0x21 to
the XBee 3 Zigbee RF Module to create a source route in its internal source route table. After
sending the Create Source Route frame, the application can send data transmission or remote
command request frames as needed to the same destination, or any destination in the source

Digi XBee® 3 Zigbee® RF Module 127

Transmission, addressing, and routing RF packet routing
route. Once data must be sent to a new destination (a destination not included in the last source
route), the application must first send a new Create Source Route - 0x21.

If a Create Source Route API frame does not precede the data frames, you may encounter
data loss.

The XBee 3 Zigbee RF Module can buffer one source route that includes up to 11 hops (excluding

source and destination). For example, suppose a network exists with a coordinator and 5 routers
(R1, R2, R3, R4, R5) with known source routes as shown in the following image.

Coordinator
/ R4

R5

To send a source-routed packet to R3, the application sends a Create Source Route API frame
(0x21) to the XBee, with a destination of R3, and 2 hops (R1 and R2). If the 64- bit address of R3 is
0x0013A200 404a1234 and the 16-bit addresses of R1, R2, and R3 are:

Device 16-bit address
R1 0xAABB
R2 0xCCDD
R3 OXEEFF

The Create Source Route API frame would be:
7E 001221 00 0013A200 404A1234 EEFF 00 02 CCDD AABB 5C

Field composition

0x0012 length
0x21 API ID (create source route)
0x00 frame ID (set to 0 always)

Digi XBee® 3 Zigbee® RF Module 128

Transmission, addressing, and routing RF packet routing

0x0013A200 404A1234 64-bit address of R3 (destination)

OxEEFF 16-bit address of R3 (destination)

0x00 Route options (set to 0)

0x02 Number of intermediate devices in the source route

0xCCDD Address of furthest device (1-hop from target)

OxAABB Address of next-closer device

0x5C Checksum (0xFF - SUM (all bytes after length))
Repair source routes

Itis possible for a network to have an existing source route fail (for example, a device in the route
moves or goes down). If a device goes down in a source routed network, all routes that used the
device will be broken.

As mentioned previously, source routing must be used with many-to-one routing. A device that
uses source routing must also send a periodic many-to-one broadcast in order to keep routes
fresh. If a source route breaks, remote devices send in new route record transmissions to the data
collector to provide it with a new source route. This requires that remote devices periodically send
data transmissions into the data collector. For more information, see Acquire source routes.

Retries and acknowledgments

Zigbee includes acknowledgment packets at both the Mac and Application Support (APS) layers.
When data transmits to a remote device, it may traverse multiple hops to reach the destination. As
data transmits from one node to its neighbor, an acknowledgment packet (Ack) transmits in the
opposite direction to indicate that the transmission was successfully received. If the transmitting
device does not receive the Ack, it retransmits the data up to four times. This Ack is called the Mac
layer acknowledgment.

In addition, the device that originated the transmission expects to receive an acknowledgment
packet (Ack) from the destination device. This Ack traverses the same path that the data traversed,
but in the opposite direction. If the originator fails to receive this Ack, it retransmits the data, up to
two times until an Ack is received. This Ack is called the Zigbee APS layer acknowledgment.

Refer to the Zigbee specification for more details.

Disable MTO routing
To disable MTO (many-to-one) routing in a network, first reconfigure the AR setting on the
aggregator and then broadcast a network wide power reset to rebuild the routing tables.

1. Set AR on the aggregator to OxFF.

2. Complete an AC command to enact the change.

3. Complete a WR command if the saved configuration setting value for AR is not OxFF.
This ends the periodic broadcast of aggregator messages if the previous setting was 0x01 - OxFE,
and prevents a single broadcast after a power reset if the previous setting was 0x00. Broadcast a
FR remote command to the network and wait for the network to reform. This removes the

aggregator's status as an aggregator from the network's routing tables so that no more route
records will be sent to the aggregator.

Digi XBee® 3 Zigbee® RF Module 129

Transmission, addressing, and routing Encrypted transmissions

Disable route records
If an aggregator collects route records from the nodes of the network and no longer needs route
records sent (which consume network throughput) :

1. SetBit 6 of DO to Enable High RAM Concentrator mode. High RAM mode means the
aggregator has sufficient memory to hold route records for its potential destinations.

2. Set AR to 0x00 for a one-time broadcast (which some nodes might miss), or a value in the
range of 0x01 to OxFE (in units of 10 seconds) to periodically send a broadcast to inform the
network that the aggregator is operating in High RAM Concentrator mode and no longer
needs to receive route records.

3. Use Create Source Route - 0x21 to load the route record for a destination into the local
device's source route table.

4. Send a unicast to the destination. The route record embeds in the payload and determines
the sequence of routers to use in transmitting the unicast to the destination. After receiving
the unicast, the destination no longer sends route records to the aggregator, now that it has
confirmed the High RAM Concentrator aggregator 'knows' its route record.

Clear the source route table

To clear the source route table, change the AR setting from a non-0OxFF setting to OxFF and
complete an AC command. To re-establish periodic aggregator broadcasts, change the AR setting
to a non-0xFF setting and complete an AC command.

Encrypted transmissions

Encrypted transmissions are routed similar to non-encrypted transmissions with one exception. As
an encrypted packet propagates from one device to another, each device decrypts the packet
using the network key and authenticates the packet by verifying packet integrity. It then re-encrypts
the packet with its own source address and frame counter values and sends the message to the
next hop. This process adds some overhead latency to unicast transmissions, but it helps prevent
replay attacks. For more information see Zighee security.

Maximum RF payload size

The maximum payload size on the XBee 3 Zigbee RF Module is a function of the following:

= Message type: broadcast or unicast
= AES encryption (EE command)

= APS security (TO bit 4)

®m Secure Session (TO bit 5)

= Source Routing

The maximum payload size of a single packet is:

Unencrypted (EE = 0) 84 bytes 92 bytes
Encrypted (EE =1) 66 bytes 74 bytes
APS Security (EE =1, TO bit 5) 57 bytes N/A

Digi XBee® 3 Zigbee® RF Module 130

Transmission, addressing, and routing Maximum RF payload size

When operating in Transparent mode (AP = 0), all outgoing transmissions are sent as non-
fragmented messages.

When sending a unicast transmission in APl mode or through MicroPython, the maximum payload
is 255 bytes. If the combination of payload and optional APS security overhead is too high, the
message fragments into a maximum of five fragments. The firmware encrypts and transmits each
fragment separately. The destination device reassembles the fragments into a full message.

Broadcast transmissions are sent as non-fragmented messages and cannot use APS security.

= Enabling encryption (EE = 1) reduces maximum payload size by 18 bytes.

= Enabling APS security (TO bit 5) reduces maximum payload size by 9 bytes.

= Enabling Secure Session (TO bit 4) reduces maximum payload size by 5 bytes.
Using source routing will further reduce payload size depending on how many hops are being
traversed. When an aggregator (AR < OxFF) sends a source-routed message, it embeds the route

into the message as overhead, or into each fragment of the message if fragmentation is necessary.
If you use APS security (EE 1, Tx Option 0x20), it reduces the number further.

The route overhead is two bytes plus two bytes per hop. The bytes are:

= One byte for the number of hops.

= One byte is an index into the route list that increments in value at each hop.

= Foreach hop, two bytes are used for the 16-bit network address of each routing device.
Aggregator source-routed payload maximums do not apply to messages that are sourced by non-
aggregator nodes (AR = OxFF).

The following table shows the aggregator source-routed payload maximums (in bytes) as a
function of hops and APS security:

Hops Maximum payload Maximum APS-encrypted payload
1 255 255
2 255 255
3 255 255
4 255 255
5 255 255
6 255 215
7 250 205
8 240 195
9 230 185
10 220 175
11 210 165
12 200 155

Digi XBee® 3 Zigbee® RF Module 131

Transmission, addressing, and routing Throughput

13 190 145
14 180 135
15 170 125
16 160 115
17 150 105
18 140 95
19 130 85
20 120 75
21 110 65
22 100 55
23 90 45
24 80 35
25 70 25
Throughput

Throughput in a Zigbee network can differ by a number of variables, including:

= Number of hops

= Encryption enabled/disabled
= Sleeping end devices

= Failures/route discoveries

ZDO transmissions

Zigbee defines a Zigbee device objects layer (ZDO) that provides device and service discovery and
network management capabilities.

Cluster
Cluster name ID Description

Network Address Request 0x0000 | Request a 16-bit address of the radio with a matching
64-bit address (required parameter).

Active Endpoints Request 0x0005 | Request a list of endpoints from a remote device.

LQI Request 0x0031 | Request data from a neighbor table of a remote
device.

Routing Table Request 0x0032 | Request to retrieve routing table entries from a

remote device.

Digi XBee® 3 Zigbee® RF Module 132

Transmission, addressing, and routing ZDO transmissions

Cluster
Cluster name ID Description

Network Address Response | 0x8000 | Response that includes the 16-bit address of a
device.

LQI Response 0x8031 | Response that includes neighbor table data from a
remote device.

Routing Table Response 0x8032 | Response that includes routing table entry data from
a remote device.

Refer to the Zigbee specification for a detailed description of all Zigbee device profile services.

Send a ZDO command

When operating in APl mode, ZDO commands can be sent as the payload of an explicit transmit
API frame (0x11). The outgoing ZDO command must be formatted properly with the correct byte
order and endianness observed. In order to receive responses to outgoing ZDO commands, you
need to enable ZDO pass-through using AO (API Options).

To send a ZDO command:

1. Set the source and destination endpoints and profile ID to 0.

2. Setthe cluster ID to match the cluster ID of the appropriate service. For example, to send an
active endpoints request, set the cluster ID to 0x0005.

3. The first byte of payload in the API frame is an application sequence number (transaction
sequence number) that can be set to any single byte value. The first byte of the ZDO
response uses this same value.

4. Allremaining payload bytes must be set as required by the ZDO. All multi-byte values must
be sent in little endian byte order.

Receiving ZDO command and responses

Incoming ZDO commands and responses are handled by the XBee application by default. In order
to receive and work with incoming ZDO commands, you must configure the device to pass ZDOs to
the serial port instead of the XBee handling them. AO (API Options) is used to control this.

When operating in APl mode and with AO set to 0, the output format for received data packets is
Digi's native 0x90 receive frame format. In this configuration, the XBee application will handle and
respond to any incoming ZDO requests. For unsupported ZDO commands, the XBee 3 Zigbee RF
Module will respond with: ZDO not supported. The following figure shows AO set to 0.

Digi XBee® 3 Zigbee® RF Module 133

#reference/r_frame_0x90.htm

Transmission, addressing, and routing ZDO transmissions

Data

E1ed
JUNOUUY Ulof

C

007 papoddns——p»-

Data
Join Announce
Unsupported ZDO
Supported ZDO——p

When AO is non-zero, the API frame format for received data packets is an explicit 0x91 receive
frame. This frame contains the additional fields necessary to interpret ZDO messages.

Bits 1, 2, and 3 of the AO command dictate the routing of incoming ZDO messages. When these
bits are cleared, the XBee 3 Zigbee RF Module will handle and respond to ZDO commands. When
these bits are set, then Supported ZDO, Unsupported ZDO, and/or Bind Requests are passed
through the UART and the XBee device will not respond.

Bit 4 of the AO command will allow any supported ZDO commands that the XBee application
handles to be echoed out of the serial port. This is useful as a diagnostic tool to identify when the
XBee 3 Zigbee RF Module is responding to ZDO commands and what types.

Setting bit 5 of AO will suppress all ZDO output and disable pass through. Setting bit 5 will behave
as if bits 1, 2, and 3 are 0 (XBee device handles incoming requests). This is useful if you want to
use the 0x91 receive frame, but only emit Digi-specific messages out of the serial port. The
following figure shows AO set to a non-zero value.

Digi XBee® 3 Zigbee® RF Module 134

#reference/r_frame_0x91.htm
#reference/r_frame_0x91.htm

Transmission, addressing, and routing ZDO transmissions

Data

Join Announce

AO bit 4 set:

Echo Supported ZDO

—
>

a
22UNOUUY UIOf

0az pauioddnsg
:1e9)2 T 29 OV

Data AO bit 1 set:
Pass Supported ZDO

Join Announce:
S AO bit 2 set:
Unsupported ZDO N

Pass Unsupported ZDO

——Supported ZDO——P»

When a ZDO message is received on endpoint 0 and profile ID 0, the cluster ID indicates the type
of ZDO message received. The first byte of payload is generally a sequence number that
corresponds to a sequence number of a request. The remaining bytes are set as defined by the
ZDO. Similar to a ZDO request, all multi-byte values in the response are in little endian byte order.

Example 1: Send a ZDO LQI request to read the neighbor table contents of a
remote

Looking at the Zigbee specification, the cluster ID for an LQI Request is 0x0031, and the payload
only requires a single byte (start index). This example sends an LQI request to a remote device
with a 64-bit address of 0x0013A200 40401234. The start index is set to 0, and the transaction
sequence number is set to 0x76.

APl Frame
7E 0016 11 01 0013A200 40401234 FFFE 00 00 0031 0000 00 00 76 00 CE

Field composition

0x0016 length
0x11 Explicit transmit request
0x01 Frame ID (set to a non-zero value to enable the transmit status message, or set

to 0 to disable)

0x0013A200 64-bit address of the remote
40401234

OxFFFE 16-bit address of the remote (OXFFFE = unknown). Optionally, set to the 16-bit
address of the destination if known.

Digi XBee® 3 Zigbee® RF Module 135

Transmission, addressing, and routing ZDO transmissions

0x00 Source endpoint

0x00 Destination endpoint

0x0031 Cluster ID (LQI Request, or Neighbor table request)

0x0000 Profile ID (Zigbee device profile)

0x00 Broadcast radius

0x00 Tx Options

0x76 Transaction sequence number

0x00 Required payload for LQI request command

OxCE Checksum (0xFF - SUM (all bytes after length))
Description

This APl frame sends a ZDO LQI request (neighbor table request) to a remote device to obtain data
from its neighbor table. You must set the AO command correctly on an API device to enable the
explicit API receive frames to receive the ZDO response.

Example 2: Send a ZDO network Address Request to discover the 16-bit
address of a remote

Looking at the Zigbee specification, the cluster ID for a network Address Request is 0x0000, and
the payload only requires the following:

[64-bit address] + [Request Type] + [Start Index]

This example sends a Network Address Request as a broadcast transmission to discover the 16-
bit address of the device with a 64-bit address of 0x0013A200 40401234. The request type and
start index are set to 0, and the transaction sequence number is set to 0x44.

API frame

7E001F 11 01 00000000 0000FFFF FFFE 00 00 0000 0000 00 00 44 34124040 00A21300 00 00
33

Field composition

0x001F length

0x11 Explicit transmit request

0x01 Frame ID (set to a non-zero value to enable the transmit status
message, or set to 0 to disable)

0x00000000 64-bit address for a broadcast transmission

0000FFFF

OxFFFE Set to this value for a broadcast transmission

0x00 Source endpoint

0x00 Destination endpoint

Digi XBee® 3 Zigbee® RF Module 136

Transmission, addressing, and routing ZDO transmissions

0x0000 Cluster ID (Network Address Request)

0x0000 Profile ID (Zigbee device profile)

0x00 Broadcast radius

0x00 Tx Options

0x44 Transaction sequence number

0x34124040 Required payload for Network Address Request command

00A21300 00 00

0x33 Checksum (0xFF - SUM (all bytes after length))
Description

This APl frame sends a broadcast ZDO Network Address Request to obtain the 16-bit address of a
device with a 64-bit address of 0x0013A200 40401234. We inserted the bytes for the 64-bit
address in little endian byte order. You must insert data for all multi-byte fields in the API payload of
a ZDO command in little endian byte order. You must set the AO command correctly on an API
device to enable the explicit API receive frames to receive the ZDO response.

Support ZDOs with the XBee API

The Zigbee Device Profile is a management and discovery service layer supported on all Zigbee
devices. Like all other profiles, the Zigbee Device Profile defines a set of clusters that can be used
to perform a variety of advanced network management and device discovery operations. Since the
Zigbee Device Profile is supported to some extent on all Zigbee devices, many Zigbee Device
Profile cluster operations can be performed on a variety of Zigbee devices, regardless of the stack
or chipset manufacturer.

The Zigbee Device Profile has an application profile identifier of 0x0000. All Zigbee devices
support a reserved endpoint called the Zigbee Device Objects (ZDO) endpoint. The ZDO endpoint
runs on endpoint 0 and supports clusters in the Zigbee Device Profile. All devices that support the
Zigbee Device Profile clusters support endpoint 0.

ZDO services include the following features:

= View the neighbor table on any device in the network

= View the routing table on any device in the network

= View the end device children of any device in the network

= QObtain a list of supported endpoints on any device in the network

= Force a device to leave the network

= Enable or disable the permit-joining attribute on one or more devices

Support the ZDP with the XBee API

The XBee API provides a simple interface to the Zigbee Device Objects endpoint. The explicit
transmit APl frame (API ID 0x11) allows data transmissions to set the source and destination
endpoints, cluster ID, and profile ID. ZDO commands can be sent by setting the source and
destination endpoints to the ZDO endpoint (0x00), the profile ID to the Zigbee Device Profile ID
(0x0000), and the cluster ID to the appropriate ZDO cluster ID.

The data payload must contain a sequence number as the first byte (transaction sequence
number), followed by all required payload bytes for the ZDO. Multi-byte fields must be sent in little

Digi XBee® 3 Zigbee® RF Module 137

Transmission, addressing, and routing ZDO transmissions

endian byte order.

To receive ZDO commands and responses, the AO (APl Output) command must be set to 1. This
enables the explicit receive API frame (API ID 0x91) which indicates the source and destination
endpoints, cluster ID, and profile ID.

ZDO clusters

The following section outlines common ZDO commands including the following:

Note Not all of these commands are supported by the XBee. Unsupported commands can be
handled by a host processor or in MicroPython by enabling unsupported ZDO passthrough—See
AO (API Options).

ZDO command Cluster ID | Supported by the XBee
Network (16-bit) Address Request 0x0000 Yes
Network (16-bit) Address Response 0x8000 Yes
IEEE (64-bit) Address Request 0x0001 Yes
IEEE (64-bit) Address Response 0x8001 Yes
Node Descriptor Request 0x0002 Yes
Node Descriptor Response 0x8002 Yes
Simple Descriptor Request 0x0004 No
Simple Descriptor Response 0x8004 No
Active Endpoints Request 0x0005 Yes
Active Endpoints Response 0x8005 Yes
Match Descriptor Request 0x0006 No
Match Descriptor Response 0x8006 No
End Device Bind Request 0x0020 Yes
End Device Bind Response 0x8020 Yes
Unbind Request 0x0022 Yes
Unbind Response 0x8022 Yes
Management LQI (Neighbor Table) Request 0x0031 Yes
Management LQI (Neighbor Table) Response 0x8031 Yes
Management Rtg (Routing Table) Request 0x0032 Yes
Management Rtg (Routing Table) Response 0x8032 Yes
Management Leave Request 0x0034 Yes
Management Leave Response 0x8034 Yes

Digi XBee® 3 Zigbee® RF Module 138

Transmission, addressing, and routing ZDO transmissions

ZDO command Cluster ID | Supported by the XBee

Management Permit Join Request 0x0036 Yes
Management Permit Join Response 0x8036 Yes
Management Network Update Request 0x0038 No
Management Network Update Response 0x8038 No

Network Address Request

Cluster ID

0x0000

Description

Broadcast transmission used to discover the 16-bit (network) address of a remote device with a
matching 64-bit address.

Size
Field Name | (bytes) | Description
Sequence 1 Transaction sequence number—arbitrarily chosen.
number
IEEE 8 64-bit address of a device in the network whose 16-bit (network)
Address address

is being discovered.

Request 1 0x00 - Single device response. Only the device with a matching IEEE
Type address responds.
0x01 - Extended response. The device with a matching IEEE address
responds AND sends a list of the 16-bit addresses of devices in its
associated device list starting at 'Start Index' until the next entry will not
fitin the data payload.

StartIndex | 1 Indicates the starting index in the associated device list to return 16-bit
addresses. Only used if extended response is requested.

Network Address Response

Cluster ID
0x8000

Description

Indicates the 16-bit (network) address of a remote whose 64-bit address matched the address in
the request. If an extended response was requested, this will also include the 16-bit addresses of
devices in the associated device list.

Digi XBee® 3 Zigbee® RF Module 139

Transmission, addressing, and routing ZDO transmissions

Size
Field Name (bytes) Description

Sequence number 1 Transaction sequence number used in the request.
Status 1

IEEE Address 8 Indicates the 64-bit address of the responding device.
Network 2 Indicates the 16-bit address of the responding device.
Address

Number of 0/1 Returns the number of addresses in the packet. Byte
Addresses notincluded in

response if an extended response was not requested.

Start Index 0N Starting index into the associated device list for this
report. Multiple
requests might be necessary to read all devices in the
list.

Network Addresses of Variable | List of all 16-bit addresses in the associated device list.
Associated
Device List

IEEE Address Request

Cluster ID
0x0001

Description

Unicast transmission used to discover the 64-bit (IEEE) address of a remote device with a
matching 16-bit address.

Size
Field Name | (bytes) | Description
Sequence 1 Transaction sequence number (arbitrarily chosen).
number
Network 2 16-bit address of a device in the network whose 64-bit (network)
Address address is being discovered.
Request 1 0x00 - Single device response. (Only the device with a matching IEEE
Type address responds.)

0x01 - Extended response. (The device with a matching IEEE address
responds AND sends a list of the 16-bit addresses of devices in its
associated device list starting at 'Start Index' until the next entry won't fit
in the data payload.

StartIndex | 1 Indicates the starting index in the associated device list to return 16-bit
addresses. Only used if extended response is requested.

Digi XBee® 3 Zigbee® RF Module 140

Transmission, addressing, and routing ZDO transmissions

IEEE Address Response

Cluster ID
0x8001

Description

Indicates the 64-bit (IEEE) address of a remote whose 16-bit address matched the address in the
request. If an extended response was requested, this will also include the 16-bit addresses of
devices in the associated device list.

Size
Field Name (bytes) Description
Sequence 1 Transaction sequence number used in the request.
number
Status 1
IEEE Address 8 Indicates the 64-bit address of the responding device.
Network 2 Indicates the 16-bit address of the responding device.
Address
Number of 01 Returns the number of addresses in the packet. Byte not
Addresses included in response if an extended response was not
requested.
Start Index 0N Starting index into the associated device list for this report.
Multiple
requests might be necessary to read all devices in the list.
Network Variable | List of all 16-bit addresses in the associated device list.
Addresses of
Associated
Device List

Node Descriptor Request

Cluster ID
0x0002

Description
Transmission used to discover the node descriptor of a device with a matching 16-bit address.

Size
Field Name (bytes) Description

Sequence 1 Transaction sequence number (arbitrarily chosen).
number
Network 2 16-bit address of a device in the network whose node descriptor
Address is being
requested.

Digi XBee® 3 Zigbee® RF Module 141

Transmission, addressing, and routing ZDO transmissions

Node Descriptor Response

Cluster ID
0x8002

Description
Indicates the node descriptor of the device.

Field Name Size (bytes) | Description
Sequence number | 1 Transaction sequence number used in the request.
Status 1
Network 2 Indicates the 16-bit address of the responding device.
Address
Node Variable See node descriptor below.
Descriptor
Node Descriptor
Size

Name (bits) | Description
Logical Type 3 Indicates the logical device type:

000 - Coordinator

001 - Router

010 - End device

Complex Descriptor | 1 1. Complex descriptor not supported
Available 2. Complex descriptor supported
User Descriptor 1 1. User descriptor not supported
Available 2. User descriptor supported
Reserved 3
APS flags 3 Not supported. Set to 0.
Frequency Band 5 bit0 - 868 MHz

bit1 - Reserved

bit2 - 900 MHz

bit3-2.4 GHz

bit4 - Reserved

MAC capability flags | 8 Bit0 - Alternate PAN coordinator
Bit1 - Device Type
Bit2 - Power source
Bit3 - Receiver on when idle
Bit4-5 - Reserved
Bit6 - Security capability
Bit7 - Allocate address

Digi XBee® 3 Zigbee® RF Module 142

Transmission, addressing, and routing ZDO transmissions

Size
(bits) | Description

Manufacturer Code 16 Indicates the manufacturer's code assigned by the Zigbee
Alliance.

Maximum Buffer Size | 8 Maximum size in bytes, of a data transmission (including APS
bytes).

Maximum incoming 16 Maximum number of bytes that can be received by the node.

transfer size

Server mask 16

Maximum 16 Maximum number of bytes that can be transmitted by this

outgoingtransfer size device, including fragmentation.

Descriptor capability | 8 Bit0 - Extended active endpoint list available

field Bit1 - Extended simple descriptor list available

Simple Descriptor Request

Cluster ID
0x0004

Description
Transmission used to discover the simple descriptor of a device with a matching 16-bit address.

Size
Field Name (bytes) Description

Sequence 1 Transaction sequence number (arbitrarily chosen).

number

Network 2 16-bit address of a device in the network whose simple descriptor is

Address being requested.

Endpoint 1 The endpoint on the destination from which to obtain the simple
descriptor.

Simple Descriptor Response

Cluster ID
0x8004

Description
Indicates the simple descriptor of the device.

Sequence number | 1 Transaction sequence number used in the request.

Digi XBee® 3 Zigbee® RF Module 143

Transmission, addressing, and routing ZDO transmissions

Status 1

Network Address 2 Indicates the 16-bit address of the responding device.
Length 1 Length of the simple descriptor.

Simple Variable See Simple Descriptor below.

Descriptor

Simple Descriptor

Size
Name (bits) Description
Endpoint 8 The endpoint on the node to which this descriptor refers.
Application | 16 The profile ID supported on this endpoint.
profile ID
Application | 16 Specifies the device description identifier supported on the device.
device
ID
Application |4 The version of the device description supported on this endpoint.
device
version

Reserved 4

Input cluster 8 The number of input clusters supported on this endpoint.
count

Input cluster | Variable | The list of input clusters supported on this endpoint. Each cluster is 2

list bytes in size. This field is not included if the input cluster count is 0.
Output 8 The number of output clusters supported on this

cluster count endpoint.

Output Variable | The list of output clusters supported on this endpoint.

cluster list Each cluster is 2 bytes in size. This field is not included if the output

cluster count is 0.

Active Endpoints Request

Cluster ID
0x0005

Description
Transmission used to discover the active endpoints on a device with a matching 16-bit address.

Digi XBee® 3 Zigbee® RF Module 144

Transmission, addressing, and routing ZDO transmissions

Size
Field Name (bytes) Description

Sequence 1 Transaction sequence number (arbitrarily chosen)

number

Network Address | 2 16-bit address of a device in the network whose active endpoint
list

being requested.

Active Endpoints Response

Cluster ID
0x8005

Description
Indicates the list of active endpoints supported on the device.

Size
Field Name (bytes) Description

Sequence number | 1 Transaction sequence number used in the request.
Status 1

Network Address 2 Indicates the 16-bit address of the responding device.
Active Endpoint 1 Number of endpoints in the following endpoint list.
Count

Active Endpoint List | Variable List of endpoints supported on the destination device. One
byte per
endpoint.

Match Descriptor Request

Cluster ID
0x0006

Description

Broadcast or unicast transmission used to discover the device(s) that supports a specified profile
ID and/or clusters.

Field Name Size (bytes) Description

Sequence 1 Transaction sequence number (arbitrarily chosen).
number

Network 2 16-bit address of a device in the network whose power
Address descriptor is

being requested.

Digi XBee® 3 Zigbee® RF Module 145

Transmission, addressing, and routing ZDO transmissions

Profile ID 2 Profile ID to be matched at the destination.

Number of 1 The number of input clusters in the In Cluster List for

Input Clusters matching. Set to 0 if no clusters supplied.

Input Cluster 2 * Number of List of input cluster IDs to be used for matching.

List Input Clusters

Number of 1 The number of output clusters in the Output Cluster List for
Output Clusters matching. Set to 0 if no clusters supplied.

Output Cluster | 2 * Number of List of output cluster IDs to be used for matching.
List Input Clusters

Match Descriptor Response

Cluster ID
0x8006

Description

If a descriptor match is found on the device, this response contains a list of endpoints that support
the request criteria.

Size
Field Name (bytes) Description
Sequence 1 Transaction sequence number used in the request.
number
Status 1
Network 2 Indicates the 16-bit address of the responding device.
Address
Length 1 The number of endpoints on the remote device that match the
request
criteria.
Match List Variable List of endpoints on the remote that match the request criteria.

End Device Bind Request

Cluster ID
0x0020

Description
Unicast transmission to the coordinator for binding devices.

Digi XBee® 3 Zigbee® RF Module 146

Transmission, addressing, and routing ZDO transmissions

Sequence number 1 Transaction sequence number (arbitrarily
chosen).

Network Address 2 Node ID of source device.
Extended Address 8 64 bit Address of the source device.
Endpoint 1 Targeted binding endpoint.
Profile ID 2 Profile of the targeted binding device.
Number of input 1 The number of targeted input cluster(s).
Clusters
Input Cluster ID 2 bytes for each The targeted input cluster(s).

entry
Number of output 1 The number of targeted output cluster(s).
Clusters
Output Cluster ID 2 bytes for each The targeted output cluster(s).

entry

End Device Bind Response

Cluster ID
0x8020

Description
Response to end device request.

Field Name Size (bytes) | Description
Sequence number 1 Transaction sequence number used in the request.
Status 1 Status of End device request.

Bind/Unbind Request

Cluster ID

0x0021/0x0022

Description

Bind and Unbind Requests have the same format

Size
Field Name | (bytes) | Description
Sequence 1 Transaction sequence number (arbitrarily chosen)
number

Digi XBee® 3 Zigbee® RF Module 147

Transmission, addressing, and routing ZDO transmissions

Size
Field Name | (bytes) | Description

Extended 8 64 bit Source Address of the device sending the request

Address

Source 1 The endpoint needed for binding

Endpoint

ClusterID |2 The cluster ID needed for binding. If doing unbind will be this cluster ID if

previously used the Bind request, otherwise it will be the Output Cluster
ID used in End Device Bind request.

Address 1 A fixed value indicating using one of the following address modes:

Mode 0x01 - Destination group (will require 2 additional bytes, see Note)
0x03 - Destination extended address and endpoint (9 additional
bytes, see Note)

Note Tables below has the additional fields for the payload.

Address mode 0x01: Unbind Destination Group

Destination group | 2 Destination group used in the Bind Request Cluster ID
0x0021.

Address mode 0x03: Unbind Destination extended address and endpoint

Field Size

Name (bytes) | Description

Extended |8 64 bit Address of the destination device to be bind/unbind together. If

Address doing unbind will be address used in the Bind or End Device Bind
request.

Endpoint 1 The endpoint needed for binding. If doing unbind will be endpoint used in

the Bind or End Device Bind request.

Bind/Unbind Response

Cluster ID
0x8021/0x8022

Description
Response to either the Bind or Unbind request.

Digi XBee® 3 Zigbee® RF Module 148

Transmission, addressing, and routing ZDO transmissions

Sequence number 1 Transaction sequence number used in the request.

Status 1 Status from ether the Bind or Unbind request.

Management LQI (Neighbor Table) Request

Cluster ID
0x0031

Description
Unicast transmission used to cause a remote device to return the contents of its neighbor table.

Size
Field Name | (bytes) | Description

Sequence 1 Transaction sequence number (arbitrarily chosen)
number
StartIndex | 1 Start index in the neighbor table to return neighbor entries. The

response cannot include more than 2-3 entries. Multiple LQI requests
may be required to read the entire neighbor table.

Management LQI (Neighbor Table) Response

Cluster ID
0x8031

Description
Indicates the neighbor table contents of the device.

Sequence number 1 Transaction sequence number used in the request.
Status 1

Neighbor Table Entries 1 The total number of neighbor table entries.

Start Index 1 The starting point in the neighbor table.

Network Table List Count ' 1 The number of neighbor table entries in this response.
Neighbor Table List Variable A list of neighbor table entries.

Digi XBee® 3 Zigbee® RF Module 149

Transmission, addressing, and routing ZDO transmissions

Neighbor Table Entry

Size
(bits) | Description

Extended PANID | 64 The 64-bit extended PAN ID of the neighboring device.
ExtendedAddress | 64 64-bit address of the neighboring device.
NetworkAddress 16 The 16-bit address of the neighboring device.

Device Type 2 The type of neighbor:
0x0 - Zigbee coordinator
0x1 - Zigbee router
0x2 - Zigbee end device
0x3 - Unknown

Receiver On When | 2 Indicates if the neighbor's receiver is enabled during idle times.
Idle 0x0 - Receiver is off

0x1-Receiveris on

0x02 - Unknown

Relationship 3 The relationship of the neighbor with the remote device:
0x0 - Neighbor is the parent
0x1 - Neighbor is a child
0x2 - Neighbor is a sibling
0x3 - None of the above
0x4 - Previous child

Reserved 1 Setto 0.

Permit Joining 2 Indicates if the neighbor is accepting join requests.
0x0 - Neighbor not accepting joins
0x1 - Neighbor is accepting joins
0x2 - Unknown

Reserved 6 Setto 0.

Depth 8 The tree depth of the neighbor device. A value of 0x00 indicates
the device is the Zigbee coordinator for the network.

Lal 8 The estimated link quality of data transmissions from this
neighboring device.

Management Rtg (Routing Table) Request

Cluster ID
0x0032

Description
Unicast transmission used to cause a remote device to return the contents of its routing table.

Digi XBee® 3 Zigbee® RF Module 150

Transmission, addressing, and routing ZDO transmissions

Size
Field Name | (bytes) | Description

Sequence 1 Transaction sequence number (arbitrarily chosen)
number
Start Index 1 Start index in the routing table to return routing table entries. The

response cannot include more than a handful of entries. Multiple routing
table requests may be required to read the entire routing table.

Management Rtg (Routing Table) Response

Cluster ID
0x8032

Description
Indicates the routing table contents of the device.

Sequence number 1 Transaction sequence number used in the request.
Status 1
Routing Table Entries 1 The total number of routing table entries.
Start Index 1 The starting point in the routing table.
Routing Table List Count | 1 The number of routing table entries in this response.
Routing Table List Variable A list of routing table entries.
Routing Table Entry

(bits) | Description
Destination 16 The 16-bit address of the destination device.
Address
Status 3 Status of the route:

0x0 - Active

0x1 - Discovery Underway
0x2 - Discovery Failed

0x3 - Inactive

0x4 - Validation Underway

Memory 1 Indicates if the device is a low-memory concentrator.

Constrained

Flag

Many-to-One 1 Flag indicating the destination is a concentrator (ssued a many-to-
Flag onerequest).

Digi XBee® 3 Zigbee® RF Module 151

Transmission, addressing, and routing ZDO transmissions

Size
(bits) | Description

Route Record 1 Flag indicating if a route record message should be sent to the
Required device prior to the next data transmission.

Reserved 2

Next-hop 16 16-bit address of the next hop.

Address

Management Leave Request

Cluster ID
0x0034

Description
Transmission used to cause a remote device to leave the network.

Size
Field Name (bytes) Description
Sequence 1 Transaction sequence number (arbitrarily chosen)
number
Device 8 Address of the device the command is addressed to. See section
Address 3.2.2.1.6 for details.
Options 1 Bitfield:

0x01 - Rejoin—If set, the device is asked to rejoin the network.
0x02 - Remove Children—If set, the device should remove its
children.

Management Leave Response

Cluster ID
0x8034

Description
Indicates the status of a leave request.

Field Name Size (bytes) | Description
Sequence number 1 Transaction sequence number used in the request
Status 1 Indicates the status of a leave request.

Management Permit Join Request

Cluster ID
0x0036

Digi XBee® 3 Zigbee® RF Module 162

Transmission, addressing, and routing ZDO transmissions

Description
Unicast or broadcast transmission used to cause a remote device or devices to enable joining for a
time.
Size
Field Name (bytes) Description
Sequence number 1 Transaction sequence number (arbitrarily chosen)
Permit Duration 1 Specifies the time that joining should be enabled (in

seconds). If set to
OxFF, joining is enabled permanently.

Trust Center 1 If setto 1 and the remote is a trust center, the command
Significance affects the
trust center authentication policy. Otherwise, it has no effect.

Management Permit Joining Response

Cluster ID
0x8036

Description
Indicates the status of a permit joining request.

Sequence number 1 Transaction sequence number used in the request

Status 1 Indicates the status of a permit joining request.

Management Network Update Request

Cluster ID
0x0038

Description
Unicast transmission used to cause a remote device to do one of several things:

= Update the channel mask and network manager address (if scan duration = OxFF)
= Change the network operating channel (if scan duration = OxFE)

= Request to scan channels and report the results (if scan duration < 6)

Size
Field Name | (bytes) | Description
Sequence 1 Transaction sequence number (arbitrarily chosen)
number
Scan 4 Bitmap indicating the channel mask that should be scanned.

Digi XBee® 3 Zigbee® RF Module 153

Transmission, addressing, and routing ZDO transmissions

Size
Field Name | (bytes) | Description

Channels Examples (big endian byte order):
Channel 0x0B = 0x800
Channel 0x10 = 0x10000
Channel 0x1A = 0x4000000
All Channels (0x0B - 0x1A) = 0x07FFF800

Scan 1 Set as described above to invoke the desired command.

Duration

Scan Count | 0/1 If scan duration < 6, specifies the number of energy scans to conduct
and report. This can result in multiple responses being sent.

Network 01 Set by the network channel manager

Update ID

Network 0/2 If scan duration = OxFF, indicates the network address of the network

Manager manager—who has network manager bit set in its node descriptor.

Address

Management Network Update Response

Cluster ID
0x8038

Description
Indicates the RF conditions near the device.

Size
Field Name (bytes) Description
Sequence number | 1 Transaction sequence number used in the request.
Status 1 Status of the Management Network Update notify command.
Scanned Channels | 4 List of channels scanned by the request.
Total Transmissions | 2 Count of the total transmissions reported by the device.
Transmission 2 Sum of the transmission failures reported by the device.
Failures
ScannedChannels | 1 The number of records contained in the energy values list.
List Count
Energy Values Variable | The result of an energy measurement made on the scanned

channels, one byte per energy measurement.
O0xFF - Too much interference on the channel.

APl example 1

Send a broadcast transmission to discover the 16-bit address of a device with a 64-bit address of
0x0013A200 44332211 using the Network Address Request ZDO—cluster ID = 0x0000. Format the

Digi XBee® 3 Zigbee® RF Module 154

Transmission, addressing, and routing ZDO transmissions

command to also discover the 16-bit addresses of its children—if any.

1. To send this command, use the following fields:

ox11 API ID—transmit request.

0x00 Frame ID—set to 0 to disable transmit status.

0x00000000 0000FFFF 64-bit address for a broadcast transmission.
OxFFFE 16-bit address for a broadcast transmission.

0x00 Source endpoint—ZDO endpoint.

0x00 Destination endpoint—ZDO endpoint.

0x0000 Cluster ID-Network Address Request.

0x0000 Profile ID—Zigbee Device Profile ID.

0x00 Broadcast radius.

0x00 Transmit options.

2. Inthe ZDO payload, set a transaction sequence number.

3. Follow with the required payload for the network address request ZDO. The following bytes
will be inserted into the data payload portion of the API frame:

0x01 Transaction sequence number—arbitrarily chosen.
0x44332211 00A21300 IEEE (64-bit) address of target device—little-endian byte order.
0x01 Request type—extended device request.

0x00 Start Index.

4. Calculate the length and checksum bytes to construct the final API frame.

Length Count all bytes after the length bytes, excluding the checksum.
Checksum (OxFF - SUM—all bytes after length).
Final API frame
7E 00 1F 11 00 00000000 0000FFFF FFFE 00 00 0000 0000 00 00 01 44332211 00A21300 01 00
92
APl example 2

Send a broadcast transmission to discover the 64-bit address of a device with a 16-bit address of
0x3344 using the IEEE Address Request ZDO—cluster ID = 0x0001.

1. To send this command, use the following fields:

Digi XBee® 3 Zigbee® RF Module 155

Transmission, addressing, and routing ZDO transmissions

Ox11 API ID—transmit request.

0x00 Frame ID—set to 0 to disable transmit status.

0x00000000 0000FFFF 64-bit address for a broadcast transmission.
OxFFFE 16-bit address for a broadcast transmission.

0x00 Source endpoint—ZDO endpoint.

0x00 Destination endpoint—ZDO endpoint.

0x0001 Cluster ID—IEEE Address Request.

0x0000 Profile ID—Zigbee Device Profile ID.

0x00 Broadcast radius.

0x00 Transmit options.

2. Inthe ZDO payload, set a transaction sequence number.

3. Follow with the required payload for the network address request ZDO. The following bytes
will be inserted into the data payload portion of the API frame:

0x02 Transaction sequence number—arbitrarily chosen.

0x4433 Network (16-bit) address of target device—little-endian byte order.
0x01 Request type—single device request.

0x00 Start Index.

4. Calculate the length and checksum bytes to construct the final API frame.

Length Count all bytes after the length bytes, excluding the checksum.
Checksum (OxFF - SUM—-all bytes after length).
Final API frame

7E 00 19 11 00 00000000 O000FFFF FFFE 00 00 0001 0000 00 00 02 4433 00 00 79

APl example 3

Send a broadcast transmission to discover the node descriptor of a device with a 16-bit address of
0x3344.

1. To send this command, use the following fields:

Ox11 API ID—-transmit request.
0x00 Frame ID—set to 0 to disable transmit status.
0x00000000 0000FFFF 64-bit address for a broadcast transmission.

Digi XBee® 3 Zigbee® RF Module 156

Transmission, addressing, and routing ZDO transmissions

OxFFFE 16-bit address for a broadcast transmission.

0x00 Source endpoint—ZDO endpoint.
0x00 Destination endpoint—ZDO endpoint.
0x0002 Cluster ID—Node Descriptor Request.
0x0000 Profile ID—Zigbee Device Profile ID.
0x00 Broadcast radius.

0x00 Transmit options.

2. Inthe ZDO payload, set a transaction sequence number.

3. Follow with the required payload for the network address request ZDO. The following bytes
will be inserted into the data payload portion of the API frame:

0x03 Transaction sequence number—arbitrarily chosen.

0x4433 Network (16-bit) address of target device—little-endian byte order.
0x01 Request type—single device request.

0x00 Start Index.

4. Calculate the length and checksum bytes to construct the final API frame.

Length Count all bytes after the length bytes, excluding the checksum.
Checksum (OxFF - SUM—all bytes after length).
Final API frame

7E 0017 1100 00000000 0000FFFF FFFE 00 00 0002 0000 00 00 03 4433 77

APl example 4

Send a unicast data transmission to read the neighbor table of a router with 64-bit address
0x0013A200 40401234 using the LQI Request ZDO—cluster ID = 0x0031.

1. To send this command, use the following fields:

0x11 API ID—transmit request.
0x00 Frame ID—set to 0 to disable transmit status.

0x0013A200 40401234 64-bit address for a broadcast transmission.
OxFFFE 16-bit address for a broadcast transmission—0xFFFE if unknown.

0x00 Source endpoint—ZDO endpoint.

Digi XBee® 3 Zigbee® RF Module 157

Transmission, addressing, and routing ZDO transmissions

0x00 Destination endpoint—ZDO endpoint.
0x0031 Cluster ID-LQI Request.

0x0000 Profile ID—Zigbee Device Profile ID.
0x00 Broadcast radius.

0x00 Transmit options.

2. Inthe ZDO payload, set a transaction sequence number.

3. Follow with the required payload for the network address request ZDO. The following bytes
will be inserted into the data payload portion of the API frame:

0x76 Transaction sequence number—arbitrarily chosen.

0x00 Start Index.

4. Calculate the length and checksum bytes to construct the final API frame.

Length Count all bytes after the length bytes, excluding the checksum.
Checksum (OxFF - SUM—all bytes after length).
Final API frame

7E 0016 11 00 0013A200 40401234 FFFE 00 00 0031 0000 00 00 76 00 CF

APl example 5

Send a unicast data transmission to have a remote router perform an energy scan on all channels
using a ZDO Management Network Update Request—cluster ID = 0x0038. In this example, the 64-
bit address of the router is 0x0013A200 40522BAA.

1. To send this command, use the following fields:

0x11 API ID—transmit request.
0x00 Frame ID—set to 0 to disable transmit status.

0x0013A200 40522BAA 64-bit address for a broadcast transmission.
OxFFFE 16-bit address for a broadcast transmission—0xFFFE if unknown.

0x00 Source endpoint—ZDO endpoint.

0x00 Destination endpoint—ZDO endpoint.

0x0038 Cluster ID-Management Network Update Request.
0x0000 Profile ID—Zigbee Device Profile ID.

0x00 Broadcast radius.

0x00 Transmit options.

Digi XBee® 3 Zigbee® RF Module 158

Transmission, addressing, and routing ZDO transmissions

2. Inthe ZDO payload, set a transaction sequence number.

3. Follow with the required payload for the network address request ZDO. The following bytes
will be inserted into the data payload portion of the API frame:

0x01 Transaction sequence number—arbitrarily chosen.
0xO0F8FF07 Scan channels—all 16 channels, little-endian byte order.
0x03 Scan duration.

0x02 Scan count—perform two energy scans.

4. The Network Update ID and Network Manager Address fields are not required for this
operation.

5. Calculate the length and checksum bytes to construct the final API frame.

Length Count all bytes after the length bytes, excluding the checksum.
Checksum (OxFF - SUM—-all bytes after length).
Final API frame

7E001B 11 00 0013A200 40522BAA FFFE 00 00 0038 0000 00 00 01 00F8FF07 03 02 99

APl example 6

Parse a Management Network Update Response received in response to AP| example 5 to extract
energy data on the scan channels mask.

Recall that AO (API Options) must be set on an API device to receive ZDO responses. Suppose
the following API frame is received.

API frame

7E 002D 91 0013A200 40522BAA 06FC 00 00 8038 0000 01 01 00 00F8FF07 1D00 0000 10 54
5E 69 5B 4B 48 44 48 55 55 57 46 51 41 44 4B 6E

Decoded API frame

Ox7E Start delimiter.

0x002D Length.

0x91 Explicit receive API frame.

0x0013A200 40522BAA 64-bit address of the remote—who
performed the energy scan.
0x06FC 16-bit address of the remote.

0x00 Source endpoint—ZDO endpoint.

0x00 Destination endpoint—ZDO endpoint.

Digi XBee® 3 Zigbee® RF Module 159

Transmission, addressing, and routing ZDO transmissions

0x8038 Cluster ID-Management network update notify.
0x0000 Profile ID—Zigbee Device Profile ID.

0x01 Rx options—packet was acknowledged.
0x010000F8FF071D00000010545E.. | Data payload.

41444B

Ox6E Checksum.

The data payload bytes can be interpreted as a ZDO management network update notify packet.
Recall that the first byte in the data payload is a transaction sequence number that matches the
sequence number of the request.

Data payload bytes (Management Network Update Response)

0x01 Transaction sequence number used in request.

0x00 Status (SUCCESS).

O0xO0F8FF07 Channel mask (16 channels enabled, represented in little endian byte order).
0x1D00 Total transmissions (0x001D = 29).

0x0000 Transmission failures.

0x10 Scanned channel count.

0x54 1St channel in channel mask energy level (channel 0x0B).

Ox5E 2nd channel in channel mask energy level (channel 0x0C).

0x4B last channel in channel mask energy level (channel O0x1A).

In the Ember stack, to convert energy levels to dBm units, do the following:
Energy(dBm) = (energy level - 154)
For example, the energy level reported on channel 0x0B (0x54) is (84 - 154) = -70 dBm.

As a general rule, lower raw energy value readings indicate lower RF energy on the channel. The
energy level representation and conversion equations might be different for other (non-Ember)
platforms.

API Example 7

Parse the Network Address Response (extended response) received from a device with a 64-bit
address of 0x0013A200 404A2257. Use the data in the response to determine the 16-bit address
of the device and to determine the addresses of its end device children.

Recall that AO (API Options) must be set on an API device to receive ZDO responses. Suppose
the following Explicit Rx APl frame is received.

Digi XBee® 3 Zigbee® RF Module 160

Transmission, addressing, and routing ZDO transmissions

API frame

7E 0022 91 FFFFFFFF FFFFFFFF 0848 00 00 8000 0000 01 01 00 57 22 4A 40 00 A2 13 0048 08
0100 AA

AC 45

Decoded API frame

Ox7E Start delimiter.

0x0022 Length.

0x91 Explicit receive API frame.

OxFFFFFFFF FFFFFFFF - 64-bit source address—all OxFFs
if network layer did not include a source 64-bit
address.
0x0848 - 16-bit source address.

0x00 Source endpoint—ZDO endpoint.

0x00 Destination endpoint—ZDO endpoint.

0x8000 Cluster ID-Network Address Response.

0x0000 Profile ID—Zigbee Device Profile ID.

0x01 Receive options—packet was acknowledged.

0x010057224A4000A2130048080100AAAC | Data payload.
0x45 Checksum (0xFF - SUM(all bytes after length).

The data payload bytes can be interpreted into a network address response. Recall that the first
byte in the data payload is a transaction sequence number that matches the sequence number of
the request.

Data payload bytes (Network Address Response)

0x01 Transaction Sequence Number.
0x00 Status (SUCCESS).

0x57224A40 00A21300 - 64-bit address of the responder—in little-endian byte order.
0x4808 - 16-bit address of the response—in little-endian byte order.

0x01 Number of associated devices—end device children.
0x00 Start index—starting index in the child table list.
0xAAAC 16-bit address of the child—in little-endian byte order.

From the ZDO Network Address Response, we have identified the following:

Digi XBee® 3 Zigbee® RF Module 161

Transmission, addressing, and routing Transmission timeouts

= The remote with 64-bit address 0x0013A200 404A2257 has a 16-bit address of 0x0848.
= The remote has one end device child.
® The end device child of the remote has a 16-bit address of OXACAA.

Transmission timeouts

The Zigbee stack includes two kinds of transmission timeouts, depending on the nature of the
destination device. Destination devices such as routers with receivers always on use a unicast
timeout. The unicast timeout estimates a timeout based on the number of unicast hops the packet
should traverse to get data to the destination device. For transmissions destined for end devices,
the Zigbee stack uses an extended timeout that includes the unicast timeout (to route data to the
end device's parent), and it includes a timeout for the end device to finish sleeping, wake, and poll
the parent for data.

The Zigbee stack includes some provisions for a device to detect if the destination is an end
device. The Zigbee stack uses the unicast timeout unless it knows the destination is an end device.

The XBee API includes a transmit options bit that you can set to specify the extended timeout used
for a given transmission. If you set this bit, the extended timeout will be used when sending RF data
to the specified destination. To improve routing reliability, applications set the extended timeout bit
when sending data to end devices if:

= The application sends data to 10 or more remote devices, some of which are end devices.

® The end devices may sleep longer than the unicast timeout.

Equations for these timeouts are computed in the following sections.

The timeouts in this section are worst-case timeouts and should be padded by a few hundred
milliseconds. These worst-case timeouts apply when an existing route breaks down (for example,
intermediate hop or destination device moved).

Unicast timeout

Set the unicast timeout with the NH command. The actual unicast timeout is computed as ((50 *
NH) + 100). The default NH value is 30 which equates to a 1.6 second timeout.

The unicast timeout includes 3 transmission attempts (1 attempt and 2 retries).
The maximum total timeout is approximately:
3*((50 * NH) + 100)
For example, if NH=30 (Ox1E), the unicast timeout is approximately 3 * ((50 * 30) + 100) or one of
the following:
= 3*(1500 + 100)
= 3*(1600)
= 4800 ms
= 4 8 seconds

Extended timeout

The worst-case transmission timeout when you are sending data to an end device is a larger issue
than when transmitting to a router or coordinator. As described in Parent operation, RF data
packets are sent to the parent of the end device, which buffers the packet until the end device
wakes to receive it. The parent buffers an RF data packet for up to (1.2 * SP) time.

Digi XBee® 3 Zigbee® RF Module 162

Transmission, addressing, and routing Transmission timeouts

To ensure the end device has adequate time to wake and receive the data, the extended
transmission timeout to an end device is:

(50 *NH) + (1.2 * SP)
This timeout includes the packet buffering timeout (1.2 * SP) and time to account for routing
through the mesh network (50 * NH).

If no acknowledgment is received within this time, the sender resends the transmission up to two
more times. With retries included, the longest transmission timeout when sending data to an end
device is:

3*((50 *NH) + (1.2* SP))
The SP value in both equations must be entered in millisecond units. The SP command setting
uses 10 ms units and must be converted to milliseconds to be used in this equation.

For example, suppose a router is configured with NH=30 (0x1E) and SP=0x3ES8 (10,000 ms), and
that it is either trying to send data to one of its end device children, or to a remote end device. The
total extended timeout to the end device is approximately:

3*((50 *NH) + (1.2 * SP)) or one of the following:

3* (1500 + 12000)
3 *(13500)

40500 ms

40.5 seconds

Transmission examples

Example 1: Send a unicast API data transmission to the coordinator using 64-bit address 0, with
payload “TxData”.

API frame
7E 0014 10 01 00000000 00000000 FFFE 00 00 54 78 44 61 74 61 AB
Field composition
0x0014 length
0x10 API ID (TX data)
0x01 Frame ID (set greater than 0 to enable the TX-status response)
0x00000000 00000000 64-bit address of coordinator (ZB definition)
OxFFFE Required 16-bit address if sending data to 64-bit address of 0
0x00 Broadcast radius (0 = max hops)
0x00 Tx options
0x54 78 44 61 74 61 ASCII representation of “TxData” string
OxAB Checksum (0xFF - SUM (all bytes after length))

Digi XBee® 3 Zigbee® RF Module 163

Transmission, addressing, and routing Transmission timeouts

Description

This transmission sends the string “TxData” to the coordinator, without knowing the 64-bit address
of the coordinator device. ZB firmware defines a 64-bit address of 0 as the coordinator. If the
coordinator's 64-bit address was known, the 64-bit address of 0 could be replaced with the
coordinator's 64-bit address, and the 16-bit address could be set to 0.

Example 2: Send a broadcast API data transmission that all devices can receive (including
sleeping end devices), with payload “TxData”.

API frame
7E 0014 10 01 00000000 0000FFFF FFFE 00 00 54 78 44 61 74 61 AD

Field composition

0x0014 length
0x10 API ID (TX data)
0x01 Frame ID (set to a non-zero value to enable the TX-status response)

0x00000000 O000FFFF | Broadcast definition (including sleeping end devices)

OxFFFE Required 16-bit address to send broadcast transmission
0x00 Broadcast radius (0 = max hops)
0x00 Tx options

0x54 78 44 61 74 61 ASCII representation of “TxData” string
OxAD Checksum (0xFF - SUM (all bytes after length))

Description

This transmission sends the string “TxData” as a broadcast transmission. Since the destination
address is set to OxFFFF, all devices, including sleeping end devices can receive this broadcast.

If receiver application addressing is enabled, the XBee 3 Zigbee RF Module reports all received
data frames in the explicit format (0x91) to indicate the source and destination endpoints, cluster
ID, and profile ID where each packet was received. Status messages like modem status and route
record indicators are not affected.

To enable receiver application addressing, set the AO command to 1 using the Local AT Command
Request - 0x08 as follows:

API frame
7E 0005 08 01 414F 01 65

Field composition

0x0005 length

Digi XBee® 3 Zigbee® RF Module 164

Transmission, addressing, and routing Transmission timeouts

0x08 API ID (AT command)
0x01 Frame ID (set to a non-zero value to enable AT command response frames)

Ox414F ASCII representation of 'A','O' (the command being issued)

0x01 Parameter value
0x65 Checksum (0xFF - SUM (all bytes after length))
Description

Setting AO = 1 is required for the XBee 3 Zigbee RF Module to use the Explicit Receive Indicator -
0x91 when receiving RF data packets. This is required if the application needs indication of source
or destination endpoint, cluster ID, or profile ID values used in received Zigbee data packets. ZDO
messages can only be received if AO = 1.

Digi XBee® 3 Zigbee® RF Module 165

Zigbee security

Security overview
Network key
LiNK KEY
JOINWINAOW .. e

Key management
Device registration

Digi XBee® 3 Zigbee® RF Module 166

Zigbee security Security overview

Security overview

Zigbee security protects network traffic using 128-bit AES cryptography techniques. A standard

security model is defined for supporting authentication and key management. Security is a very

important factor in designing a mesh network. Digi makes it easy to find the right level of security
for your specific application, ranging from a completely open and unencrypted network to a high
security model with out-of-band device registration.

generous join window. These defaults are meant for ease of development and should

WARNING! The out-of-the-box default configuration is an unencrypted network with a
A not be used on the finished product. Enabling security is highly recommended.

Enabling encryption also enables source routing with the coordinator acting as a high RAM
concentrator by default. For smaller networks (less than 40 nodes) and low-throughput
applications, this will not have a significant impact to the network, as source routing will
automatically be handled by the XBee application. If you are deploying a larger network, you will
likely require a full source routing implementation with the coordinator configured as a low RAM
concentrator. For more information, see Source routing.

Network key

The network key encrypts and decrypts over the air messages at the network layer. When you
enable encryption, each node on the network is required to have the network key to communicate
with other nodes. The network key is shared by every device on the network and only needs to be
set on the network coordinator. Use the NK parameter to set a user-defined network key; this
parameter is only applicable to a coordinator (CE = 1). In most situations, the network key should
be randomly generated (NK = 0) and managed by the network.

If you are running a centralized trust center, you can change the NK parameter on the trust center
which propagates to the rest of the network a few seconds later. This is useful for high-security
applications where regular network key rotation may be desired. In a distributed trust center, the
key is defined when the network is formed and cannot be changed without reforming the network.

Optionally, network keys can be sent and received in-the-clear by setting the EO bit 0 (EO = 1) on
the forming and joining nodes. Digi strongly discourages this setting, because it could allow
unauthorized devices to obtain a copy of the network key.

In addition for centralized trust center you can use RK (Trust Center Network Key Rotation Interval)
to do network key rotation (only when NK = 0) with a range of 1 to 22 days automatic interval. Also
you can perform a one time key update by setting RK to zero, which could be used to extend the
time interval beyond 22 days or any interval implemented by your application.

Link key

Link keys are used at the APS layer to provide an extra level of encryption for end-to-end security.
The XBee 3 Zigbee RF Module application uses global link keys for both joining and APS-
encrypted transmissions. When joining a network with encryption enabled, the network key is
securely exchanged by encrypting it with the link key.

When using a centralized trust center, the link key that is used to join is exchanged with a more
secure key that is randomly generated by the trust center.

This section provides information about the types of link keys.

Digi XBee® 3 Zigbee® RF Module 167

Zigbee security Join window

Preconfigured link key - moderate security

Using a preconfigured global link key provides a very simple way to secure a network, which is
accomplished by configuring the same write-only KY value on every node on the network. Defining
a link key in this manner provides a moderate level of security while allowing for easy network
deployment. The security configuration can be done during manufacturing rather than at
deployment.

If the joining node has a preconfigured link key that the trust center is not aware of, then it must be
registered using an out-of-band method. Issue a 0x24 registration frame on the trust center, which
contains the link key and serial number of the joining device.

Well-known default link key - low security

The Zigbee Alliance specifies a well-known default link key. You can use this link key to allow
unsecure devices to easily join a secured network. By default, the XBee 3 Zigbee RF Module
rejects any device that attempts to join using this well-known key. To allow these devices to join,
set the EO bit 4 (EO=0x10) on the centralized trust center.

If a joining device has KY = 0 (default), it attempts to use the well-known default link key to join.

Install code derived link key - high security

Every device supporting Zigbee 3.0 is required to have an install code. Read the install code by
querying the I? command, which consists of a 16-byte install code + 2 byte CRC. The install code
must be read from the joining node and entered to the trust center through an out-of-band method.
Typically, the user reads an install code from some type of display or application on the joining
node. The user then provides the joiner's install code and serial number to the trust center using a
locally issued 0x24 registration API frame by setting bit 0 of the options field.

Using install codes for generating link keys is the most secure method, because it allows users to
clearly identify the joining node to the trust center, and it guarantees that each joining device has a
random link key.

For a joining device to use an install code, DC bit 0 (DC = 1) must be set on the joining device. This
generates a link key based on the install code and the KY parameter will be ignored.

Join window

Zigbee imposes a limited window of time in which a network can permit joining. The maximum
joining window time allowed by the Zigbee specifications is 254 seconds (NJ = OXFE). Whenever
the join window opens, the NJ value of the device that opens the window is used. This timeout
value is not shared by the rest of the network.

The following conditions cause the network join window to open for NJ seconds:

® | ocal device forms a network (CE = 1).
= A router joins the network. This uses the router's NJ value to open the window.

® The commissioning button is enabled (DO = 1) and pressed twice on a router or coordinator
on the network.

= A CB2 command is issued to a router or coordinator on the network.

= A device is successfully registered to the trust center via 0x24 API frame.
= NJ parameter value is changed and applied.

= | ocal device is power cycled.

Digi XBee® 3 Zigbee® RF Module 168

Zigbee security Key management

When the join window opens using CB2, the device sends a broadcast to the rest of the network.
The joining device does not need to be adjacent to the device that opened the joining window.
When setting NJ on a device, the join window is only opened on the local device, a broadcast to the
network does not get sent.

If NJ is set to 0, the join window remains closed unless explicitly opened via the commissioning
button or CB command. In this scenario, the join window open for a fixed period of 60 second when
opened. For a highly-secured network, Digi recommends setting NJ to 0 on every device so the join
window does not open inadvertently.

When using an encrypted network with a trust center, opening the join window must be performed
on the coordinator. If routers are also needed to allow joining, we recommend executing CB2 on
the coordinator which will broadcast the join window management message thus keeping all
devices in sync for both the transient link key and join window timeout. We also recommend setting
KT and NJ to the same value to have a uniform timeout.

Opening the join window will cause the transient link key to be entered into the key table. This
allows the link key used by the network to be exchanged with a joining device. If the key table

timeout (KT) is set lower than NJ, a joining device could fail to obtain the necessary keys even
though the network allows joining.

When the device executes CB2 or NJ > 0 and NJ < OxFF the device performs a fast blink while the
joining window is open. For all NJ settings and executing CB2 a modem status for opening or
closing the join window is sent out the serial port when using AP1.

= (0x43: Joining window open

= (0x44: Joining window closed

network to operate outside of the Zigbee specifications. This option is provided for ease

WARNING! An always-open join window is permitted (NJ = 0xFF), but this causes the
A of development and should not be used on the finished product.

Key management

Zigbee defines two security models for key management: centralized security model and
distributed security model.

Centralized security

A centralized trust center network is defined as a Zigbee network where one node acts as the
centralized key authority. This centralized trust center defines the network key and manages its
distribution, determines when and if nodes can join the network, and issues application link keys.
Upon formation of the network, the network coordinator assumes the role of the trust center. The
trust center has a reserved address of 0 on the network, and any traffic sent to this address is
routed to the trust center.

When a node attempts to join, it first establishes a MAC association with a router on the network.
The router sends a request to the trust center, indicating the node wants to join. The trust center
decides if the node can join based on the current join policy (Open join window + EO options). If the
trust center approves the attempt to join, the network key is encrypted using a trust center link key
and sent to the joining node. The joining node must have a copy of the link key in order to decrypt
the network key and successfully join the network.

If the joining node does not have a link key that matches the network or has an install code derived
link key, then it must be registered to the trust center. Registration is the means by which a link key

Digi XBee® 3 Zigbee® RF Module 169

Zigbee security Device registration

is given to the trust center using an out-of-band method. Registration requires the trust center
operate in APl mode (AP=1 or 2) and cannot be performed in Command or Transparent mode.

Distributed security

A distributed trust center does not have a node designated as a coordinator. All routers in the
network have a copy of the network key and are able to authorize joining devices, meaning every
router on the network is a trust center. The network key is set at the time the network is formed and
cannot change. The device that forms the network (CE is set to 1) will become the Network
Manager. As devices join the network, the Network Manager broadcasts an update with its address
information. Any traffic sent to the reserved 0 address will be directed to the Network Manager.

When a node joins a distributed trust center network, an adjacent router shares a copy of the
network key to the joining device. The network key is protected by encrypting the exchange with
the joining device with a global link key. The network key can optionally be sent in-the-clear by
setting EO bit 1 on every device on the network. Digi strongly discourages this setting, because it
allows unsecure devices access the network key.

You can perform device registration on a distributed trust center, but the 0x24 registration frame
must be issued on a router that is adjacent to the joining device; registration information is not
shared with the rest of the network.

Device registration

When a device attempts to joins a secure network, it must obtain a copy of the network key to
successfully communicate.

You can send the network key in the clear, but in most situations it will be encrypted with a link key.
If the link key is not preconfigured on both devices, the trust center must be told the link key the
joining device will be using to join. We call this process "registration" and is the method by which a
link key and serial number of the joining device is securely given to the trust center through the
physical serial interface. Because the registration information is not provided over-the-air, this is
considered out-of-band registration and provides the highest level of security since the credentials
cannot be extracted through RF channels.

Registration is performed using a Register Joining Device - 0x24 frame and is issued to the trust
center (either centralized or distributed). The registration frame is used to register a link key,
register an install code derived link key, or remove a previously registered device.

Centralized trust center

On a centralized trust center (EO = 2), registration is transient, meaning that a registered device
will only be authorized to join for a fixed period of time. This period is separate from the network join
window and is defined by the KT parameter on the centralized trust center. By default, a registered
device is authorized to join for a period of five minutes. If the device fails to join within this period, it
must be re-registered. After joining, it securely rejoins and does not need to be registered again
unless the device is explicitly removed from the network using an NR command or leave request.
The 0x24 registration frame must be issued to the centralized trust center in this scenario, and
routers that are adjacent to the joining device route the join request to the trust center. The key
table entries on a centralized trust center is stored in RAM and is not preserved across a power
cycle.

The key defined by the Trust Center's KY parameter value will always persist in the key table and
never expire. If EO bit 4 is set, then the well-known link key of ZigbeeAlliance09 will be persistently
active in the key table.

Digi XBee® 3 Zigbee® RF Module 170

Zigbee security Device registration

Distributed trust center

On a distributed trust center (EO = 0), registration is persistent, meaning that the registered device
will always be authorized to join as long as the join window is open. Registration information is not
shared to the rest of the network, so the 0x24 registration frame must be issued to a router that is
adjacent to the joining device. Because the link key table has a limited number of entries, you must
explicitly remove key table entries by deregistering devices using a 0x24 frame after they
successfully join to add subsequent devices. The key table on a distributed trust center is stored in
flash and persists across a power cycle.

Once a device joins the network and obtains a copy of the network key, it retains information about
the network and performs a secure rejoin, if power cycled. If you change a network parameter on
the device, it receives a leave request or a secure rejoin fails after three tries. The device must join
the network via association which requires registration.

Example: Form a secure network

The following example show how to form a secure Zigbee 3.0 network. This is the recommended
configuration for most networks, because it allows for ease of deployment while also maintaining a
moderate level of security.

Configure an XBee 3 Zigbee RF Module with the following parameters:
= CE=1
This indicates that the device attempts to form a network rather than join an existing one.
= EE=1
This enables encryption for the network.

= EO=2
« This forms the network as a centralized trust center. If you want a distributed trust
center, set this parameter to 0.

« Any joining device must have the same value set to properly handle any key exchanges
that occur.

= KY = non-zero
» This defines a preconfigured link key for the network.
« This key can be configured on joining devices as a preconfigured global link key.

« If joining devices do not use the preconfigured link key, they must be registered to the
trust center before joining.

= NK=0
« Using a zero NK value is preferred, as the XBee will generate a random network key that
cannot be read.

 If acting as a centralized trust center, this parameter can be changed after network
formation to update the network key for all devices on the network.

= NJ < OxFF
This defines the amount of time you want to allow devices to join when the join window
opens. You can modify this after the network forms.

If you want to increase the level of security for this network, set KY = 0 on the forming node. This
generates a random link key that cannot be read and requires every joining device to be

Digi XBee® 3 Zigbee® RF Module 171

Zigbee security Device registration

individually registered. This configuration guarantees that only authorized devices can join the
network, because the global link key is unclear and cannot be read.

Example: Join a secure network using a preconfigured link key

The following examples show you how join an existing network that has security enabled and the
preconfigured link key configured on the network is known. Using this example, it is easy to deploy
a secure network, because each device is preconfigured to join the network. An installer only
needs to be concerned with opening the join window for new devices.

Configure a joining XBee 3 Zigbee RF Module with the following parameters:
= EE=1
The joining node must have the same encryption settings as the network it will be joining.

= EQO=2
« If joining a centralized trust center, EO bit 1 must be set so the joining device is aware
that a link key exchange is needed.
« Ifjoining a distributed trust center, clear EO bit 1.
= KY = KY from trust center

Because the KY value is known, it should be preconfigured on the joining device. Provided
the KY values match, it will be able to obtain the network key and join.

= NJ<OxFF

Consider the join time that is configured on joining devices. If the device successfully joins
the network as a router (SM = 0), itimmediately opens the join window for NJ seconds,
effectively refreshing the window. If you do not wish to reopen the join window in this
manner, set NJ = 0 on all joining devices.

To join the device to the network, write the previous configuration to flash with a WR command,
and bring it within RF range of the network.

To open the join window, press the commissioning button twice on a network router or the trust
center. If the pushbutton is not available, you can issue a CB2 command.

Joining devices continuously attempt to join a network (unless explicitly told not to viaaDJ =0
command). However, if you want to have the module immediately attempt to join, press the
commissioning button once, orissue a CB1 command on the joining node.

Example: Register a joining node without a preconfigured link key

Using the previous example for joining a network, if the joining node is not aware of the link key on
the trust center (that is, it is either obscured (KY = 0) or otherwise unknown to the joining device)
then it must be registered to the trust center.

Configure a joining XBee 3 Zigbee RF Module with the following parameters:
= EE=1
The joining node must have the same encryption settings as the network it will be joining.

= EO=2

Digi XBee® 3 Zigbee® RF Module 172

Zigbee security Device registration

« If joining a centralized trust center, EO bit 1 must be set so the joining device is aware
that a link key exchange is needed.

* If joining a distributed trust center, clear EO bit 1.
= KY = non-zero value
Configure a known link key value for this particular joining device. This value must be known
by the installer, because it must be passed to the trust center out-of-band.
On the trust center, you must register this device using an API frame. Generate a 0x24 frame that
contains the following information:
= The link key (KY) of the joining device.
= The serial number of the joining device.

Link Key registration example

A device with the serial number 0013A200 12345678 that has a KY of 12345 is trying to join a
secure network.

The following 0x24 frame is generated and passed into the UART of the trust center:
7E0010247B 0013 A200 12345678 FF FE 00 01 23 45 31

The trust center will respond with the following OxA4 registration response frame:
7E 0003 A4 7B 00 EO

The Frame ID (0x7B) in the response corresponds with the Frame ID of the registration
attempt. A 00 result indicates that the key was successfully registered.

When the registration succeeds, the join window automatically opens for NJ seconds (or 60
seconds if NJ = 0).

If the trust center is centralized, this registered key table entry is transient and expires after KT
seconds. In a distributed trust center, it persist until it is explicitly cleared.

Example: Register a joining node using an install code

To provide the highest level of security, Digi recommends using install codes to register devices.
Install codes are randomly assigned to each Zigbee 3.0 device at the factory for the purpose of
securely joining a network. The process to register a device using an install code is similar to
registering a link key, but with some additional steps:

Configure a joining XBee 3 Zigbee RF Module with the following parameters:

" EE=1

= EO=2
« Ifjoining a centralized trust center, EO bit 1 must be set so the joining device is aware a
link key exchange is needed.
* Ifjoining a distributed trust center, clear EO bit 1.
= DC=1
This tells the joining device to generate a link key from the install code of the device. If this
bit is enabled, then the device ignores and does not use the KY parameter. If you want to

register the device with the trust center using the device's link key, do not set the DC
parameter. The DC parameter is only used for registering a device using the 1? install code.

Digi XBee® 3 Zigbee® RF Module 173

Zigbee security Device registration

On the trust center, you must register this device using an API frame. Generate a 0x24 frame that
contains the following information:

= The install code (I?) of the joining device.
= The serial number of the joining device.

Install code registration example

A device with the serial number 0013A200 12345678 that has a I? value of
F6F1913D834A08D6ADAF1F91BAF4052D7316 is trying to join a secure network.

The following 0x24 frame is generated and passed into the UART of the trust center. Set the
options field of the APl frame to 01 to indicate that the supplied key is actually an install code:

7E001F 24 D500 13 A200 123456 78 FF FE 01 F6 F1 91 3D 83 4A 08 D6 AD AF 1F
91 BAF4 052D 73 16 6A

The trust center will respond with the following 0xA4 registration response frame:
7E 00 03 A4 D5 00 86

The Frame ID (0xD5) in the response corresponds with the Frame ID of the registration
attempt. A 00 result indicates that the key was successfully registered.

When the registration succeeds, the join window automatically opens for NJ seconds (or 60
seconds if NJ = 0).

If the trust center is centralized, this registered key table entry is transient and expires after KT
seconds. In a distributed trust center, it persists until explicitly cleared.

Example: Deregister a previously registered device

This feature is only needed in a distributed trust center, because the key table entries are persistent
and stored in flash. In a distributed trust center, there are only a limited number of entries available,
proper management of the key table is required if more than 10 devices will be joining using
registration.

To deregister a device, issue a 0x24 registration frame on the trust center with the serial number of
the registered device and a null (blank) key.

Deregistration example

A device with the serial number 0013A200 12345678 that was previously registered has
successfully joined the network, and needs to be deregistered to make room for subsequently
joining devices.
The following 0x24 frame is generated and passed into the UART of the trust center. Note, that
there is no key field, indicating that the key entry should be removed:

7E000D 24 C40013 A200 12 34 56 78 FF FE 00 51
The trust center will respond with the following 0xA4 registration response frame:

7E 00 03 A4 C4 00 86

The Frame ID (0xC4) in the response corresponds with the Frame ID of the registration
attempt. A 00 result indicates that the key was successfully removed from the table.

Digi XBee® 3 Zigbee® RF Module 174

Zigbee security Device registration

Registration scenario

Itis possible to combine some of the previously mentioned security features to maintain a high
level of security with simplified deployment, while also providing a means for authorized devices to
securely join via registration.

For example, an established Zigbee network with a centralized trust center is exhibiting some
issues that require analysis by a network engineer. Due to the nature of the deployment, the end
user does not want to disclose any of the security credentials to the contracted network engineer.

To allow the network engineer onto the network, the end user must be authorized to join via
registration. The network administrator sets the KT parameter on the centralized trust center to
0x7080, which sets the registration timeout to eight hours. Because the network engineer is not yet
on-site, the NJ parameter can be set to OXFF to allow open joining, or opened momentarily via a
pressing the commissioning button twice on a router or coordinator when he arrives.

A 0x24 frame is issued to the trust center that contains the serial number of the network engineer's
device and a one-time-use link key. The network engineer can then use this link key to join the
network and perform whatever work is necessary.

After the analysis has been performed and the network engineer has left the site, the network
administrator closes the join window by setting NJ to 0. Deregistration is not needed, because this
is a centralized trust center. The temporary link key expires after KT seconds, or when the device
joins the network through the centralized trust center, the temporary link key will be removed from
the table. If the node is removed from the network, it will need to be registered again with the trust
center.

Digi XBee® 3 Zigbee® RF Module 175

Centralized trust center backup

To simplify the recovery of a network that has lost its centralized trust center due to a hardware
failure, it is possible to back up the necessary information to restore a centralized trust center using
a different physical XBee 3 Zigbee RF Module. This can be done without causing the network to be
re-formed in most cases.

Create the backup file
Store the file

Digi XBee® 3 Zigbee® RF Module 176

Centralized trust center backup Create the backup file

Create the backup file

To protect the security key information contained in the backup file from being accessed by
unauthorized users, the file is encrypted with 256-bit AES-CTR encryption. Use KB (Centralized
Trust Center Backup Key) to set the encryption key; it must be set before a backup file can be
created. You also need to set KB to the same value on the new device prior to restoring.

New networks

During the initial configuration of a centralized trust center, the backup encryption key should be set
using the KB command. Once a centralized trust center has been configured and formed a
network, an encrypted backup file can be created using BK (Centralized Trust Center Backup and
Restore).

Existing networks

Itis possible to begin backing up an existing centralized trust center without reforming its network if
a preconfigured link key was previously set on the trust center—KY value is hon-zero.

To ensure security, the backup encryption key—KB—must be set prior to creating the backup file. To
set KB while maintaining the current key information—KY and NK—the current value of KY must be
provided to verify that KB is being set by an authorized administrator of the network. If KB is set
without providing KY, the existing values of KY and NK are cleared; you must take care, as this
effectively invalidates the current network. See KB (Centralized Trust Center Backup Key) for more
details.

Once KB has been set the first time, then the current KB key can be used to set a new key in
place of KY. See KB (Centralized Trust Center Backup Key) for more details.

Store the file

Once a backup file has been created, it will be located in the device’s file system with the name
backup_TC<SL>.xbee where SL is the lower 32 bits of the device address. This file can be
retrieved from the trust center using XCTU’s File System Manager. The backup file must be stored
off of the device as it may be impossible to retrieve after a hardware failure. Ideally, a new backup
file should be periodically created and retrieved. If NWK keys are regularly rotated, we advise
saving a backup after the rotation.

The backup file and value of KB should be kept secure and appropriately safeguarded against
access by unauthorized users.

Recover a Centralized Trust Center

In the event of a hardware failure, the failed device may be replaced with a new device. The backup
file can be transferred to the new devicee using the File System Manager. You must set the same
encryption key value using the KB command and the restore operation can be completed with the
BK command.

After restoring a trust center backup, the configuration of the new device will completely match that
of the previous trust center. If the backup file is sufficiently recent, the coordinator should now be
able to communicate with the existing network and the process is complete.

If the restored coordinator is not able to communicate with the network it is possible that some of
the network information contained in the file may be out of date. You can retrieve updated network
information from a router that is still on the network using the CX command. The output of this

Digi XBee® 3 Zigbee® RF Module 177

Centralized trust center backup Best practices

command is then used as additional parameters for the BK command to update the new
coordinator’s network information. Finally, the network should be configured with a new network
key by issuing a NK with a new key value to the replacement trust center.

Best practices

We recommend setting a value for KY even when using install codes. This allows KB to be seton a
deployed network using the KY value without network disruption.

After a restore, no attempt should be made to reuse the original device that was used to create the
backup. This is because the new device’s EUI64 (SH + SL) will have been permanently changed to
that of the original device and an attempt to use both could result in networking conflicts. This

procedure is intended for situations where the original XBee 3 Zigbee RF Module has been
rendered inoperable.

Digi XBee® 3 Zigbee® RF Module 178

Network commissioning and diagnostics

We call the process of discovering and configuring devices in a network for operation, "network
commissioning." Devices include several device discovery and configuration features. In addition
to configuring devices, you must develop a strategy to place devices to ensure reliable routes. To
accommodate these requirements, devices include features to aid in placing devices, configuring
devices, and network diagnostics.

Place devices

For a network installation to be successful, installers must be able to determine where to place
individual XBee devices to establish reliable links throughout the network.

Test links in a network - loopback cluster

To measure the performance of a network, you can send unicast data through the network from
one device to another to determine the success rate of several transmissions. To simplify link
testing, the devices support a Loopback cluster ID (0x12) on the data endpoint (0XE8). The cluster
ID on the data endpoint sends any data transmitted to it back to the sender.

The following figure demonstrates how you can use the Loopback cluster ID and data endpoint to
measure the link quality in a mesh network.

1. Transmit data to the loopback cluster 1D 2. The remote device receives data on
(0x12) and data endpoint (0xE8) on the loopbach cluster ID and data endpoint.
a remote device.
Source \—— —— Remote
Device \ / \ /— Device
4. Source receives loopback transmission 3. Remote transmits the received packet
and sends received packet out the serial port. back to the sender.

The configuration steps for sending data to the loopback cluster ID depend on what mode the
device is in. For details on setting the mode, see AP (AP| Enable). The following sections list the
steps based on the device's mode.

Transparent operating mode configuration (AP = 0)
To send data to the loopback cluster ID on the data endpoint of a remote device:

1. Setthe Cl command to 0x12.
2. Setthe SE and DE commands to OxES8 (default value).

Digi XBee® 3 Zigbee® RF Module 179

Network commissioning and diagnostics

3. Setthe DH and DL commands to the address of the remote (0 for the coordinator, or the 64-
bit address of the remote).

After exiting Command mode, the device transmits any serial characters it received to the remote
device, which returns those characters to the sending device.

API operating mode configuration (AP = 1 or AP =2)

Send an Explicit Addressing Command Request - 0x11 using 0x12 as the cluster ID and OxE8 as
both the source and destination endpoint.

The remote device echoes back the data packets it receives to the sending device.

RSSI indicators

Itis possible to measure the received signal strength on a device using the DB command. DB
returns the RSSI value (measured in -dBm) of the last received packet. However, this number can
be misleading in Zigbee networks. The DB value only indicates the received signal strength of the
last hop. If a transmission spans multiple hops, the DB value provides no indication of the overall
transmission path, or the quality of the worst link; it only indicates the quality of the last link.
Determine the DB value in hardware using the RSSI/PWM device pin (Micro pin 7/SMT pin 7/TH
pin 6). If you enable the RSSI PWM functionality (PO command), when the device receives data, it
sets the RSSI PWM to a value based on the RSSI of the received packet (this value only indicates
the quality of the last hop). You could connect this pin to an LED to indicate if the link is stable or
not.

Device discovery

Network discovery

Use the network discovery command to discover all devices that have joined a network. Issuing the
ND command sends a broadcast network discovery command throughout the network. All devices
that receive the command send a response that includes:

= Device addressing information

= Node identifier string (see NI (Node Identifier))
= Other relevant information

You can use this command for generating a list of all module addresses in a network.

ZDO discovery

The Zigbee device profile includes provisions to discover devices in a network that are supported
on all Zigbee devices (including non-Digi products). These include the LQI Request (cluster ID
0x0031) and the Network Update Request (cluster ID 0x0038). You can use the LQI Request to
read the devices in the neighbor table of a remote device, and the Network Update Request for a
remote device to complete an active scan to discover all nearby Zigbee devices. You can send
both of these ZDO commands using the Explicit Addressing Command Request - 0x11. For more
information, see . Refer to the Zigbee specification for formatting details of these two ZDO frames.

Joining Announce

All Zigbee devices send a ZDO Device Announce broadcast transmission when they join a Zigbee
network (ZDO cluster ID 0x0013). These frames are sent out the device's serial port as an Explicit
Rx Indicator frame - 0x91 if AO is setto 1.

Digi XBee® 3 Zigbee® RF Module 180

Network commissioning and diagnostics

The device announce payload includes the following information:
[Sequence Number] + [16-bit address] + [64-bit address] + [Capability]
The 16-bit and 64-bit addresses are received in little-endian byte order (LSB first). See the Zigbee

specification for details.

Any received Network Address Requests (ZDO cluster ID 0x0000) and IEEE Address Request
(ZDO Cluster ID 0x0001) will also be emitted if AO is setto 1.

Commissioning pushbutton and associate LED

XBee devices support a set of commissioning pushbutton and LED behaviors to aid in device
deployment and commissioning. These include the commissioning push button definitions and
associate LED behaviors. The following features can be supported in hardware:

XBee 3 SMT

Push button

Pin 33 OJ—O_
a |

» -
» a
» a
B g
— a Pin 28
» a
» a R
5 -
» a
» a

ARAAAAAA -

Associate
LED

A pushbutton and an LED can be connected to the surface-mount device to support the
commissioning pushbutton and associate LED functionalities.

Digi XBee® 3 Zigbee® RF Module 181

Network commissioning and diagnostics

XBee 3 Micro

e L_J

Push button
: 1
Pin 31 — 10 O—I
Pin 26
R
Associate
LED

A pushbutton and an LED can be connected to the Micro device to support the commissioning
pushbutton and associate LED functionalities.

XBee 3 Through-hole

Push button

50
1

Pin 20

Pin 15

Associate
LED

6000 OOOGOO6O6
@000 0BOOGOOG6

A pushbutton and an LED can be connected to the through-hole-mount device to support the
commissioning pushbutton and associate LED functionalities.

Digi XBee® 3 Zigbee® RF Module 182

Network commissioning and diagnostics

Commissioning pushbutton

The commissioning pushbutton definitions provide a variety of simple functions to help with
deploying devices in a network. Enable the commissioning button functionality by setting DO
(DIO0/ADO/Commissioning Button Configuration) to 1 (enabled by default).

Button
presses | Description

1 Start Joining. Wakes a sleeping end device for 30 seconds, regardless of the ST/SN
setting. It also sends node identification broadcast if joined to a network.
A Zigbee device blinks a numeric error code on the Associate pin indicating the
cause of join failure for (Al - 32) times.
A SE router or SE end device which is associated but not authenticated to a network
leaves its network; then attempt to join.

2 Enable Joining. Broadcast a Mgmt_Permit_Joining_req (ZDO Cluster|D 0x0036)
with TC_Significance set to 0x00.
If NJ is 0x00 or OxFF, PermitDuration is set to one minute, otherwise PermitDuration
is setto NJ.

4 Restore configuration to default values and leave the network. Equivalent to issuing
NR, RE, and AC commands.

Use CB (Commissioning Pushbutton) to simulate button presses in software. Issue a CB command
with a parameter set to the number of button presses you want executed. For example, sending
CB1 executes the actions associated with a single button press.

The node identification frame is similar to the node discovery response frame; it contains the
device’s address, node identifier string (NI command), and other relevant data. All API devices that
receive the node identification frame send it out their serial interface as a Node |dentification
Indicator - 0x95.

Associate LED

The Associate pin provides an indication of the device’s network status and diagnostics
information. Connect an LED to the Associate pin as shown in the figure in Commissioning
pushbutton and associate LED. Enable the Associate LED functionality the D5 command to 1
(enabled by default). If the Associate pin is enabled, it configured as an output.

Joined indication

The Associate pin indicates the network status of a device. If the device is not joined to a network,
the Associate pin is set high. Once the device successfully joins a network, the Associate pin blinks
at a regular time interval. The following figure shows the joined status of a device.

Associate

Device Not Joined

At

Device has joined a network

Digi XBee® 3 Zigbee® RF Module 183

Network commissioning and diagnostics

The associate pin can indicate the joined status of a device. Once the device has joined a network,
the associate pin toggles state at a regular interval (At). Use the LT command to set the time.

The LT command defines the blink time of the Associate pin. Ifit is set to 0, the device uses the
default blink time (500 ms for coordinator, 250 ms for routers and end devices).

Open Join Window indication

The Associate pin indicates when the Network Join Window is open. If the device is allowing
joining, the association led will blink at 100 ms.

See Join window for information on the join window and what circumstances can cause it to open.

Diagnostics support

The Associate pin works with the commissioning pushbutton to provide additional diagnostics
behaviors to aid in deploying and testing a network. If the commissioning push button is pressed
once, and the device has not joined a network, the Associate pin blinks a numeric error code to
indicate the cause of join failure. The number of blinks is equal to (Al value - 0x20). For example, if
Al =0x22, two blinks occur.

If the commissioning push button is pressed once and the device has joined a network, the device
transmits a broadcast node identification packet. If the Associate LED functionality is enabled (D5
command), a device that receives this transmission will blink its Associate pin rapidly for 1 second.

The following image illustrates the behavior pressing the commissioning button press once when
the device has not joined a network, causing the associate pin to blink to indicate the Al Code
where: Al = # blinks + 0x20. In this example, Al = 0x22.

Associate
(D5=1
Device not joined)

-

ADO/DIOO

L

The following image illustrates the behavior pressing the button once on a remote device, causing
a broadcast node identification transmission to be sent. All devices that receive this transmission
blink their associate pin rapidly for one second if the associate LED functionality is enabled (D5 =

1).
Associate Pin
pies I N e
ADO/DIOO Pin
(Remote Device) L
Binding

The Digi XBee firmware supports three binding request messages:

Digi XBee® 3 Zigbee® RF Module 184

Network commissioning and diagnostics

= End Device Bind
= Bind
= Unbind

End_Device_Bind_req
The End Device Bind request (ZDO cluster 0x0020) is described in the Zigbee Specification.

During a deployment, an installer may need to bind a switch to a light. After pressing a
commissioning button sequence on each device, this causes them to send End_Device_Bind_req
messages to the Coordinator within a time window (60 s). The payload of each message is a
simple descriptor which lists input and output clusterIDs. The Coordinator matches the requests by
pairing complementary clusterIDs. After a match has been made, it sends messages to bind the
devices together. When the process is over, both devices will have entries in their binding tables
which support indirect addressing of messages between their bound endpoints.

The coordinator and other devices being setup for binding should have AO set to 3.
R1->C End_Device_Bind_req
R2->C End_Device_Bind_req
R1, R2 send End_Device_Bind_req within 60 s of each otherto C
C matches the requests.
C tests one to see if binding is already in place:
R2<-C Unbind_req
R2->C Unbind-rsp (status code - NO_ENTRY)
C proceeds to create binding table entries on the two devices.
R1<-C Bind_req
R1->C Bind_rsp
R2<-C Bind_req
R2->C Bind_rsp
C sends responses to the original End_Device_Bind_req messages.
R1-<C End_Device_Bind_rsp
R2-<C End_Device_Bind_rsp

End Device binding sequence (binding)

This message has a toggle action. If the same two devices were to subsequently send End_
Device_Bind_req messages to the Coordinator, the Coordinator would detect they were already
bound, and then send Unbind_req messages to remove the binding.

An installer can use this to remove a binding which was made incorrectly, say from a switch to the
wrong lamp, by repeating the commissioning button sequence used beforehand.

R1->C End_Device_Bind_req
R2->C End_Device_Bind_req
R1, R2 send End_Device_Bind_req within 60 s of each other to C
C matches the requests.
C tests one to see if binding is already in place:
R2<-C Unbind_req
R2->C Unbind-rsp (status code - SUCCESS)
C proceeds to remove binding table entries from the two devices.
R1<-C Unbind_req

Digi XBee® 3 Zigbee® RF Module 185

Network commissioning and diagnostics

R1->C Unbind_rsp
R2<-C Unbind_req
R2->C Unbind_rsp
C sends responses to the original End_Device_Bind_req messages.
R1-<C End_Device_Bind_rsp
R2-<C End_Device_Bind_rsp

Example of an End_Device_Bind_req

This example shows a correctly formatted End_Device_Bind_req (ZDO cluster 0x0020) using a
Digi 0x11 Explicit API Frame. The coordinator and other devices being setup for binding should
have AO set to 3 and must send all binding requests within the 60 second binding timeout period.

The frame as a bytelist

7E 002811010000 00 00000000 00FFFE0000002000000000033B0515957501FF
A21300D505C101010001020019

Same frame broken into labeled fields

Multibyte fields are represented in big-endian format.

7e Frame Delimiter

0028 Frame Length

11 API Frame Type (Explicit Frame)

01 Frame Identifier (for response
matching)

0000000000000000 Coordinator address

fffe Code for unknown network address

00 Source Endpoint (need not be 0x00)

00 Destination Endpoint (ZDO endpoint)

0020 Cluster 0x0020 (End_Device_Bind_
req)

0000 ProfilelD (ZDO)

00 Radius (default, maximum hops)

00 Transmit Options

033B0515957501FFA21300D505C101010001 | RFData (ZDO payload)

02 00

19 Checksum

Here is the RFData (the ZDO payload) broken into labeled fields. Note the multi-byte fields of a

ZDO payload are represented in little-endian format.

Digi XBee® 3 Zigbee® RF Module

186

01

3B 05

15957501 FF A2 1300
D5

05c1

01

0100

01

0200

Bind_req

Transaction Sequence Number

(64 bit address of sending device)

Number of input clusters
Input cluster ID list (0x0100)
Number of output clusters

Output cluster ID list (0x0200)

Network commissioning and diagnostics

Binding Target (16 bit network address of sending device)

Source Endpoint on sending device

ProfilelD (0xC105) - used when matching End_Device_Bind_requests

The Bind request (ZDO cluster 0x0021) is described in the Zigbee Specification. A binding may be

coded for either a unicast or a multicast/grouplD message.

Example of an Unbind Req

This example shows a correctly formatted Unbind_req (ZDO cluster 0x0022) using a Explicit

Addressing Command Request - 0x11 sent by the coordinator.

The frame as a bytelist

7E002A 11010013 A2FF 017595 15 FF FE 00 00 0022 00 0000 0003 15957501 FF A2 13

00D5010003229608 71 FF A2 13 00 D590
Same frame broken into labeled fields

Multibyte fields are represented in big-endian format.

7e
0028
11
01

0013 A2FF 01759515

fffe

00

00

Digi XBee® 3 Zigbee® RF Module

Frame Delimiter
Frame Length
API Frame Type (Explicit Frame)

Frame Identifier (for response
matching)

Device address which has binding
entry

Code for unknown network
address

Source Endpoint (need not be
0x00)

Destination Endpoint (ZDO
endpoint)

187

Network commissioning and diagnostics

0022 Cluster 0x0022 (Unbind_req)
0000 ProfilelD (ZDO)

00 Radius (default, maximum hops)
00 Transmit Options

0315957501 FF A21300D501 00032296 08 71 FF A2 | RFData (ZDO payload)

1300 D5

90 Checksum

Here is the RFData (the ZDO payload) broken into labeled fields.

The multi-byte fields of a ZDO payload are represented in little-endian format.

03 Transaction Sequence Number

15957501 FF A2 | 64 bit address of the source address used in the R1 end device binding
1300 request

D5 Source Endpoint used in the R1 end device binding request

0100 Output cluster ID used in the R1 end device binding request

03 Fixed value for indicating destination address mode includes endpoint

instead of group address

2296 08 71 FF A2 | 64 bit address of the source address used in the R2 end device binding

1300 request
D5 Destination Endpoint used in the R1 end device binding request
Group Table API

Unlike the Binding Table that is managed with ZDO commands, a Zigbee group table is managed
by the Zigbee cluster library Groups Cluster (0x0006) with ZCL commands.

The Digi Zigbee XBee firmware is intended to work with an external processor where a Public
Application Profile with endpoints and clusters is implemented, including a Groups Cluster.
Configure the Zigbee XBee firmware to forward all ZCL commands addressed to this Group
Cluster out the UART (see ATAO3). The XBee Zigbee will not use remote Groups Cluster
commands to manage its own Group Table.

But to implement multicast (group) addressing within the XBee, the external processor must keep
the XBee device's group table state in sync with its own. For this reason, a Group Table API has
been defined where the external processor can manage the state of the XBee 3 Zigbee RF Module
group table.

The design of the Group Table API of the XBee firmware derives from the ZCL Group Cluster
0x0006. Use the Explicit Addressing Command Request - 0x11 addressed to the Digi Device
Object endpoint (0xE6) with the Digi XBee ProfilelD (0xC105) to send commands and requests to
the local device.

Digi XBee® 3 Zigbee® RF Module 188

Network commissioning and diagnostics

The Zigbee home automation public application profile says groups should only be used for sets of
more than five devices. This implies sets of five or fewer devices should be managed with multiple
binding table entries.

There are five commands implemented in the API:;

= Add Group command
= View group

= Remove Group

= Remove All Groups

There is a sixth command of the Group Cluster described in the ZCL: Add Group If Identifying. This
command is not supported in this API, because its implementation requires access to the Identify
Cluster, which is not maintained on the XBee. The external processor needs to implement that
server command while using the Group Table API to keep the XBee device's group table in sync
using the five command primitives.

Add Group command

The purpose of the Add Group command is to add a group table entry to associate an active
endpoint with a grouplID and optionally a groupName. The groupID is a two byte value. The
groupName consists of zero to 16 ASCII characters.

The following example adds a group table entry which associates endpoint E7 with groupID 1234
and groupName “ABCD”.
The example packet is given in three parts, the preamble, ZCL Header, and ZCL payload:

Preamble = “11 01 “+LocalDevice64Addr+"FFFE E6 E7 0006 C105 00 00"

The packet is addressed to the local node, using a source endpoint of 0xE6, clusterlD of 0x0006,
and profilelD of 0xC105. The destination endpoint E7 holds the endpoint parameter for the “Add
Group” command.

ZCL_header =“01 ee 00"

The first field (byte) is a frame control field which specifies a Cluster Specific command (0x01)
using a Client->Server direction(0x00). The second field is a transaction sequence number used to
associate the response with the command request. The third field is the command identifier for
“Add Group” (0x00).

ZCL_payload =“3412 04 41 42 43 44"

The first two bytes is the group Id to add in little endian representation. The next byte is the string
name length (00 if there is no string). The other bytes are the descriptive ASCII string name
(“ABCD?”) for the group table entry. The string is represented with its length in the first byte, and the
other bytes containing the ASCII characters.

The example packet in raw hex byte form:
7e001e11010013a2004047b55cfffee6e70006c105000001ee0034120441424344c7

The response in raw hex byte form, consisting of two packets:
7e0018910013a2004047b55cfffee7e68006c1050009ee0000341238
7e00078b01fffe00000076

The response in decoded form:
Zigbee Explicit Rx Indicator

API1 0x91 64DestAddr 0x0013A2004047B55C 16DestAddr 0XFFFE SrcEP O0xE7 DestEP
OxE6

ClusterID 0x8006 ProfilelD 0xC105 Options 0x00
RF_Data 0x09EE00003412

Digi XBee® 3 Zigbee® RF Module 189

Network commissioning and diagnostics

The response in terms of Preamble, ZCL Header, and ZCL payload:
Preamble = “910013a2004047b55¢fffee7e68006¢10500”

The packet has its endpoint values reversed from the request, and the clusterID is 0x8006
indicating a Group cluster response.

ZCL_header =“09 ee 00"

The first field is a frame control field which specifies a Cluster Specific command (0x01) using a
Server-> Client direction. The second field is a transaction sequence number used to associate the
response with the command request. The third field is the command identifier “Add Group” (0x00).

ZCL_payload = “00 3412"

The first byte is a status byte (SUCCESS=0x00). The next two bytes hold the group ID (0x1234) in
little endian form.

This is the decoded second message, which is a Tx Status for the original command request. If the
Frameld value in the original command request had been zero, or if no space was available in the
transmit UART buffer, then no Tx Status message occurs.

Zigbee Tx Status
API 0x8B FramelD 0x01 16DestAddr OxFFFE
Transmit Retries 0x00 Delivery Status 0x00 Discovery Status 0x00 Success

View group
The purpose of the View Group command is to get the name string which is associated with a
particular endpoint and grouplD.

The following example gets the name string associated with the endpoint E7 and grouplD 1234.
The packet:

Preamble = “11 01 “+LocalDevice64Addr+”FFFE E6 E7 0006 C105 00 00"

The packet is addressed to the local node, using a source endpoint of 0xE6, clusterlD of 0x0006,
and profilelD of 0xC105. The destination endpoint E7 is the endpoint parameter for the “View
Group” command.

ZCL_header=“01ee 01"

The first field is a frame control field which specifies a Cluster Specific command (0x01) using a
Client->Server direction(0x00). The second field is a transaction sequence humber which is used
to associate the response with the command request. The third field is the command identifier
“View Group” (0x01) .

ZCL_payload = “3412”

The two byte value is the grouplD in little-endian representation.
The packet in raw hex byte form:

7e001911010013a2004047b55cfffee6e70006c105000001ee013412d4
The response in raw hex byte form, consisting of two packets:

7e001d910013a2004047b55cfffee7e68006c1050009ee01003412044142434424
7e00078b01fffe00000076

The command response in decoded form:

Digi XBee® 3 Zigbee® RF Module 190

Network commissioning and diagnostics

Zigbee Explicit Rx Indicator

AP| 0x91 64DestAddr 0x0013A2004047B55C 16DestAddr OxFFFE SrcEP OxE7 DestEP OxE6
ClusterID 0x8006 ProfilelD 0xC105 Options 0x00

RF_Data 0x09EE010034120441424344

The response in terms of Preamble, ZCL Header, and ZCL payload:
Preamble =“910013a2004047b55cfffee7e68006¢10500”

The packet has its endpoint values reversed from the request, and the clusterID is 0x8006
indicating a Group cluster response.

ZCL_header =“09 ee 01"

The first field is a frame control field which specifies a Cluster Specific command (0x01) using a
Server->Client direction (0x08). The second field is a transaction sequence number which
associates the response with the command request. The third field is the command identifier “View
Group” (0x01) .

ZCL_payload = “00 3412 0441424344"

The first byte is a status byte (SUCCESS=0x00). The next two bytes hold the groupID (0x1234) in
little-endian form. The next byte is the name string length (0x04). The remaining bytes are the
ASCII name string characters (“ABCD”).

The following is the decoded second message, which is a Tx Status for the original command
request. If the Frameld value in the original command request had been zero, or if no space was
available in the transmit UART buffer, then no Tx Status message would occur.

Zigbee Tx Status
API| 0x8B FramelD 0x01 16DestAddr OxFFF
Transmit Retries 0x00 Delivery Status 0x00 Discovery Status 0x00 Success

Get Group Membership (1 of 2)

The purpose of this first form of the Get Group Membership command is to get all the grouplDs
associated with a particular endpoint.

The intent of the example is to get all the grouplDs associated with endpoint E7.
The example packet is given in three parts, the preamble, ZCL Header, and ZCL payload:

Preamble = “11 01 “+LocalDevice64Addr+”FFFE E6 E7 0006 C105 00 00"

The packet is addressed to the local node, using a source endpoint of 0xE6, clusterlD of 0x0006,
and profilelD of 0xC105. The destination endpoint E7 holds the endpoint parameter for the “Get
Group Membership” command.

ZCL_header =“01 ee 02"

The first field (byte) is a frame control field which specifies a Cluster Specific command (0x02)
using a Client->Server direction(0x00). The second field is a transaction sequence number which
is used to associate the response with the command request. The third field is the command
identifier for “Get Group Membership” (0x02) .

ZCL_payload = “00”

The first byte is the group count. If it is zero, then all grouplDs with an endpoint value which
matches the given endpoint parameter will be returned in the response.

Digi XBee® 3 Zigbee® RF Module 191

Network commissioning and diagnostics

The example packet in raw hex byte form:
7e001811010013a2004047b55cfffee6e70006c105000001ee020019
The response in raw hex byte form, consisting of two packets:
7e0019910013a2004047b55cfffee7e68006c1050009ee02ff01341235

7e00078b01fffe00000076
The response in decoded form:

Zigbee Explicit Rx Indicator

API 0x91 64DestAddr 0x0013A2004047B55C 16DestAddr OxFFFE SrcEP 0xE7 DestEP 0xE6 ClusterlD
0x8006 ProfilelD 0xC105 Options 0x00

RF_Data 0Xx09EE02FF013412

The response in terms of Preamble, ZCL Header, and ZCL Payload:
Preamble = “910013a2004047b55cfffee7e68006c10500”

The packet has the endpoints reversed from the request, and the clusterID is 0x8006 indicating a
Group cluster response.

ZCL_header =“09 ee 02"

The first field is a frame control field which specifies a Cluster Specific command (0x01) using a
Server->Client direction (0x08). The second field is a transaction sequence number which is used
to associate the response with the command request. The third field is the command identifier “Get
Group Membership” (0x02) .

ZCL_payload = “FF 01 3412"

The first byte is the remaining capacity of the group table. OxFF means unknown. The XBee returns
this value because the capacity of the group table is dependent on the remaining capacity of the
binding table, thus the capacity of the group table is unknown. The second byte is the group count
(0x01). The remaining bytes are the grouplDs in little-endian representation.

The following is the decoded second message, which is a Tx Status for the original command
request. If the Frameld value in the original command request had been zero, or if no space was
available in the transmit UART buffer, then no Tx Status message would occur.

Zigbee Tx Status
AP| 0x8B FramelD 0x01 16DestAddr OxFFFE
Transmit Retries 0x00 Delivery Status 0x00 Discovery Status 0x00 Success

Get Group Membership (2 of 2)

The purpose of this second form of the Get Group Membership command is to get the set of
grouplDs associated with a particular endpoint which are a subset of a list of given grouplIDs.

The following example gets the grouplDs associated with endpoint E7 which are a subset of a
given list of grouplDs (0x1234, 0x5678).

The example packet is given in three parts, the preamble, ZCL Header, and ZCL payload:

Preamble =“11 01 “+LocalDevice64Addr+"FFFE E6 E7 0006 C105 00 00"

Digi XBee® 3 Zigbee® RF Module 192

Network commissioning and diagnostics

The packet is addressed to the local node, using a source endpoint of 0xE6, clusterlD of 0x0006,
and profileID of 0xC105. The destination endpoint E7 is the endpoint parameter for the “Get Group
Membership” command.

ZCL_header =“01 ee 02"

The first field (byte) is a frame control field which specifies a Cluster Specific command (0x02)
using a Client->Server direction(0x00). The second field is a transaction sequence number which
is used to associate the response with the command request. The third field is the command
identifier for “Get Group Membership” (0x02) .

ZCL_payload = “02 34127856"

The first byte is the group count. The remaining bytes are a grouplDs which use little-endian
representation.

The example packet in raw hex byte form:
7e001¢11010013a2004047b55cfffee6e70006¢c105000001ee020234 12785603
The response in raw hex byte form, consisting of two packets:

7e0019910013a2004047b55cfffee7e68006c1050009ee02ff01341235
7e00078b01fffe00000076

The response in decoded form:
Zigbee Explicit Rx Indicator

API1 0x91 64DestAddr 0x0013A2004047B55C 16DestAddr OxFFFE SrcEP OxE7 DestEP 0xE6
ClusterID 0x8006 ProfilelD 0xC105 Options 0x00
RF_Data 0x09EE02FF013412

The response in terms of Preamble, ZCL Header, and ZCL Payload:
Preamble = “910013a2004047b55cfffee7e68006c10500”

The packet has the endpoints reversed from the request, the clusterID is 0x8006 indicating a
Group cluster response.

ZCL_header =“09 ee 02"

The first field is a frame control field which specifies a Cluster Specific command (0x01) using a
Server->Client direction (0x08). The second field is a transaction sequence number which is used
to associate the response with the command request. The third field is the command identifier “Get
Group Membership” (0x02) .

ZCL_payload = “FF 01 3412"

The first byte is the remaining capacity of the group table. OxFF means unknown. The XBee returns
this value because the capacity of the group table is dependent on the remaining capacity of the
binding table, thus the capacity of the group table is unknown. The second byte is the group count
(0x01). The remaining bytes are the grouplDs in little-endian representation.

The following is the decoded second message, which is a Tx Status for the original command
request. If the Frameld value in the original command request had been zero, or if no space was
available in the transmit UART buffer, then no Tx Status message occurs.

Digi XBee® 3 Zigbee® RF Module 193

Network commissioning and diagnostics

Zigbee Tx Status
AP|0x8B FramelD 0x01 16DestAddr OxFFFE
Transmit Retries 0x00 Delivery Status 0x00 Discovery Status 0x00 Success

Remove Group

The purpose of the Remote Group command is to remove a Group Table entry which associates a
given endpoint with a given grouplD.

The intent of the example is to remove the association of groupID [TBD] with endpoint E7.

The example packet is given in three parts: the preamble, ZCL Header, and ZCL payload.

Preamble =“11 01 “+LocalDevice64Addr+"FFFE E6 E7 0006 C105 00 00"

The packet is addressed to the local node, using a source endpoint of 0xE6, clusterlD of 0x0006,
and profilelD of 0xC105. The destination endpoint E7 is the endpoint parameter for the “Remove
Group” command.

ZCL_header =“01 ee 03"

The first field is a frame control field which specifies a Cluster Specific command (0x01) using a
Client->Server direction(0x00). The second field is a transaction sequence number which is used
to associate the response with the command request. The third field is the command identifier
“Remove Group” (0x03) .

ZCL_payload =“3412”

The two bytes value is the grouplD to be removed in little-endian representation.
The packet in raw hex byte form:

7e001911010013a2004047b55cfffee6e70006c105000001ee033412d2
The response in raw hex byte form, consisting of two packets:

7e0018910013a2004047b55cfffee7e68006c1050009ee0300341235
7e00078b01fffe00000076

The command response in decoded form:

Zigbee Explicit Rx Indicator

API 0x91 64DestAddr 0x0013A2004047B55C 16DestAddr OxFFFE SrcE OxE DestEP OxE6
ClusterID 0x8006 ProfilelD 0xC105 Options 0x00

RF_Data 0x09EE03003412

The response in terms of Preamble, ZCL Header, and ZCL payload:
Preamble = “910013a2004047b55cfffee7e68006¢c10500”

The packet has its endpoint values reversed from the request, and the clusterID is 0x8006
indicating a Group cluster response.

ZCL_header =“09 ee 03"

The first field is a frame control field which specifies a Cluster Specific command (0x01) using a
Server->Client direction (0x08). The second field is a transaction sequence number which is used
to associate the response with the command request. The third field is the command identifier
“Remove Group” (0x03) .

Digi XBee® 3 Zigbee® RF Module 194

Network commissioning and diagnostics

ZCL_payload = “00 3412"

The first byte is a status byte (SUCCESS=0x00). The next two bytes is the groupID (0x1234) value
in little- endian form.

The following is the decoded second message, which is a Tx Status for the original command
request. If the Frameld value in the original command request had been zero, or if no space was
available in the transmit UART buffer, then no Tx Status message would occur.

Zigbee Tx Status
API0x8B FramelD 0x01 16DestAddr OxFFFE
Transmit Retries 0x00 Delivery Status 0x00 Discovery Status 0x00 Success

Remove All Groups

The purpose of the Remove All Groups command is to clear all entries from the group table which
are associated with a target endpoint.

The following example removes all groups associated with endpoint E7.
The packet:

Preamble = “11 01 “+LocalDevice64Addr+”FFFE E6 E7 0006 C105 00 00"

The packet is addressed to the local node, using a source endpoint of OxE6, clusterld of 0x0006,
and profilelD of 0xC105. The destination endpoint E7 is the endpoint parameter for the “Remove
All Groups” command.

ZCL_header =“01 ee 04"

The first field is a frame control field which specifies a Cluster Specific command (0x01) using a
Client->Server direction(0x00). The second field is a transaction sequence humber which is used
to associate the response with the command request. The third field is the command identifier
“‘Remove All Groups” (0x04) .

ZCL_payload = *

No payload is needed for this command.

Digi XBee® 3 Zigbee® RF Module 195

Network commissioning and diagnostics

The packet in raw hex byte form:
7e001711010013a2004047b55cfffee6e70006c105000001ee0417
The response in raw hex byte form, consisting of two packets:

7e0016910013a2004047b55cfffee7e68006c1050009ee04007¢
7e00078b01fffe00000076

The command response in decoded form:

Zigbee Explicit Rx Indicator

API| 0x91 64DestAddr 0x0013A2004047B55C 16DestAddr OxFFFE ~ SrcEP OxE7 DestEP OxE6
ClusterID 0x8006 ProfilelD 0xC105 Options 0x00

RF_Data 0x09ee0400

The response in terms of Preamble, ZCL Header, and ZCL payload.
Preamble = “910013a2004047b55cfffee7e68006¢10500”

The packet has its endpoints values reversed from the request, and the clusterID is 0x8006
indicating a Group cluster response.

ZCL_header = “09 ee 04"

The first field is a frame control field which specifies a Cluster Specific command (0x01) using a
Server->Client direction (0x08). The second field is a transaction sequence number which is used
to associate the response with the command request. The third field is the command identifier
“‘Remove All Groups” (0x04) .

ZCL_payload = “00”

The first byte is a status byte (SUCCESS=0x00)[4].

And here is the decoded second message, which is a Tx Status for the original command request.
If the FramelD value in the original command request had been zero, or if no space was available
in the transmit UART buffer, then no Tx Status message would occur.

Zigbee Tx Status
AP| 0x8B FramelD 0x01 16DestAddr OXFFFE
Transmit Retries 0x00 Delivery Status 0x00 Discovery Status 0x00 Success

Default responses
Many errors are returned as a default response. For example, an RFData payload of a response
containing 08010b788b would be decoded as:

ZCL_header = “08 01 03" - general command/server-to-client, transseqnum=1,
default_response_command(0x03)
ZCL_payload = “78 8b” - original cmdID, status code (0x8b) status not found

Common status codes
This section lists some of the more frequently occurring status codes.
0x00: Command request was successful

0x01: Command request failed - for example,
a call to remove an entry from the group table returned an error

Digi XBee® 3 Zigbee® RF Module 196

Network commissioning and diagnostics

0x80: no RFData in the API frame;

ZCL Payload appears truncated from what is expected

0x81: unexpected direction

in the Frame Control Field of the ZCL Header; unexpected command identifier code value
in the ZCL header

0x82: unexpected frametype

in the Frame Control Field of the ZCL Header

0x84: unexpected

manufacturer specific indication in the Frame Control Field of the ZCL Header
0x8b: An attempt at Get Group Membership or

Remove Group could not find a matching entry in the group table

Digi XBee® 3 Zigbee® RF Module 197

Manage End Devices

Zigbee end devices are intended to be battery-powered devices capable of sleeping for extended
periods of time. Since end devices may not be awake to receive RF data at a given time, routers
and coordinators are equipped with additional capabilities (including packet buffering and extended
transmission timeouts) to ensure reliable data delivery to end devices.

ENd device Operation
Parent O At ON ..
Non-Parent device Operation
End Device configuration
Recommended sleep current measurements ...
Transmit RFE data ...
Receiving RF data
O SamIPliNg .
Wake end devices with the Commissioning Pushbutton
Parentverification ...
R OINING .
Router/Coordinator configuration
Short Sleep PEHIOAS ...
Extended sleep periodsl
Sleep EXaMIPIES .

Digi XBee® 3 Zigbee® RF Module 198

Manage End Devices End device operation

End device operation

When an end device joins a Zigbee network, it must find a router or coordinator device that is
allowing end devices to join. Once the end device joins a network, it forms a parent-child
relationship with the end device and the router or coordinator that allowed it to join. For more
information, see

When the end device is awake, it sends poll request messages to its parent. When the parent
receives a poll request, it checks a packet queue to see if it has any buffered messages for the end
device. It then sends a MAC layer acknowledgment back to the end device that indicates if it has
data to send to the end device or not.

End
Parent Device
_ _ pckztal _ - Child

If the end device receives the acknowledgment and finds that the parent has no data for it, the end
device can return to idle mode or sleep. Otherwise, it remains awake to receive the data. This
polling mechanism allows the end device to enter idle mode and turn its receiver off when RF data
is not expected in order to reduce current consumption and conserve battery life.

The end device can only send data directly to its parent. If an end device must send a broadcast or
a unicast transmission to other devices in the network, it sends the message directly to its parent
and the parent performs any necessary route or address discoveries to route the packet to the final
destination.

The parent of the receiving device does not send the network ACK back to the originator until the
sleeping end device wakes and polls the data or until the timeout occurs.

Parent operation

Each router or coordinator maintains a child table that contains the addresses of its end device
children. A router or coordinator that has unused entries in its child table has end device capacity,
or the ability to allow new end devices to join. If the child table is completely filled (such that the
number of its end device children matches the number of child table entries), the device cannot
allow any more end devices to join.

Since the end device children are not guaranteed to be awake at a given time, the parent is
responsible for managing incoming data packets of its end device children. If a parent receives an
RF data transmission destined for one of its end device children, and if the parent has enough
unused buffer space, it buffers the packet. The data packet remains buffered until a timeout
expires, or until the end device sends a poll request to retrieve the data.

Digi XBee® 3 Zigbee® RF Module 199

Manage End Devices Parent operation

The parent can buffer one broadcast transmission for all of its end device children. When the
parent receives and buffers a broadcast transmission, it sets a flag in its child table when each child
polls and retrieves the packet. Once all children have received the broadcast packet, the parent
discards the buffered broadcast packet. If all children have not received a buffered broadcast
packet and the parent receives a new broadcast, it discards the old broadcast packet, clears the
child table flags, and buffers the new broadcast packet for the end device children as shown in the
following figure.

End Device Child Table

Buffered Address Received Broadcast
Broadcast 0x2120 T
Data OXF220 F
Packet OxC100 F
Ox5750 T

When an end device sends data to its parent that is destined for a remote device in the network, the
parent buffers the data packet until it can establish a route to the destination. The parent may
perform a route or 16-bit address discovery of its end device children. Once a route is established,
the parent sends the data transmission to the remote device.

End Device poll timeouts

To better support mobile end devices (end devices that can move within a network), parent router
and coordinator devices have a poll timeout for each end device child. If an end device does not
send a poll request to its parent within the poll timeout, the parent removes the end device from its
child table. This allows the child table on a router or coordinator to better accommodate mobile end
devices in the network.

End Device child table

The child table timeout is controlled by setting the ET (End Device Timeout) on the End Device.
The End Device sends the child table timeout value to the parent when joining a network. The ET
setting should be a value greater than the expected End Device sleep time—see ET (End Device
Timeout) for child table timeout values.

Packet buffer usage
Packet buffer usage on a router or coordinator varies depending on the application. The following
activities can require use of packet buffers for up to several seconds:

® Route and address discoveries

= Application broadcast transmissions

® Stack broadcasts (for example ZDO “Device Announce” messages when devices join a
network)

= Unicast transmissions buffered until acknowledgment is received from destination or retries
exhausted

= Unicast messages waiting for end device to wake

Digi XBee® 3 Zigbee® RF Module 200

Manage End Devices Non-Parent device operation

Applications that use regular broadcasting or that require regular address or route discoveries use
up a significant number of buffers, reducing the buffer availability for managing packets for end
device children. Applications can reduce the number of required application broadcasts, and
consider implementing an external address table or many-to-one and source routing if necessary
to improve routing efficiency.

Non-Parent device operation

Devices in the Zigbee network treat data transmissions to end devices differently than
transmissions to other routers and coordinators. When a device sends a unicast transmission, if it
does not receive a network acknowledgment within a timeout, the device resends the transmission.
When transmitting data to remote coordinator or router devices, the transmission timeout is
relatively short since these devices are powered and responsive.

However, since end devices may sleep for some time, unicast transmissions to end devices use an
extended timeout mechanism in order to allow enough time for the end device to wake and receive
the data transmission from its parent.

If a non-parent device does not know the destination is an end device, it uses the standard unicast
timeout for the transmission. However, provisions exist in the Silicon Labs Zigbee stack for the
parent to inform the message sender that the destination is an end device. Once the sender
discovers the destination device is an end device, future transmissions will use the extended
timeout. For more information see Router/Coordinator configuration.

End Device configuration

XBee end devices support four different sleep modes:

= Pinsleep

= Cyclic sleep

® Cyclic sleep with pin wake-up

= MicroPython sleep (with optional pin wake). For complete details see the Digi MicroPython
Programming Guide.

Pin sleep allows an external microcontroller to determine when the XBee 3 Zigbee RF Module
sleeps and when it wakes by controlling the SLEEP_RQ pin. In contrast, cyclic sleep allows the
sleep period and wake times to be configured through the use of AT commands. Cyclic sleep with
pin wake-up is the same as cyclic sleep except the device can be awakened before the sleep
period expires by lowering the SLEEP_RQ line. The SM command configures the sleep mode. The
end device continues to stay awake as long as DTR is held low. The device resumes its sleeping
pattern upon driving DTR high again.

In both pin and cyclic sleep modes, XBee end devices poll their parent every 100 ms while they are
awake to retrieve buffered data. When the end device sends a poll request, it enables the receiver
until it receives an acknowledgment from the parent. It typically takes less than 10 ms between
sending the poll request to receiving the acknowledgment. The acknowledgment indicates if the
parent has buffered data for the end device child. If the acknowledgment indicates the parent has
pending data, the end device leaves the receiver on to receive the data. Otherwise, the end device
turns off the receiver and enter idle mode (until it sends the next poll request) to reduce current
consumption (and improve battery life).

Once the device enters sleep mode, the On/Sleep pin (Micro pin 25/SMT pin 26) it de-asserts (low)
to indicate the device is entering sleep mode. If the device enables CTS hardware flow control (D7
command), it de-asserts (high) the CTS pin (Micro pin 24/SMT pin 25) when entering sleep to
indicate that serial data should not be sent to the device.

Digi XBee® 3 Zigbee® RF Module 201

https://www.digi.com/resources/documentation/Digidocs/90002219/
https://www.digi.com/resources/documentation/Digidocs/90002219/

Manage End Devices End Device configuration

If the Associate LED pin is configured (D5 command), the associate pin is driven low to avoid using
power to light the LED. The SLEEP_RQ pin is configured as a pulled-down input so that an external
device must drive it low to wake the device. All other pins are left unmodified during sleep so that
they can operate as previously configured by the user. The device does not respond to serial or RF
data when it is sleeping.

Applications that must communicate serially to sleeping end devices are encouraged to observe
CTS flow control.

When the device wakes from sleep, it asserts (high) the On/Sleep pin, and if it enables flow control,
it also asserts (low) the CTS pin. The associate LED and all other pins resume their former
configured operation. If the device has not joined a network, it scans all SC channels after waking
to try and find a valid network to join.

Pin sleep

Pin sleep allows the module to sleep and wake according to the state of the DTR/SLEEP_RQ pin
(Micro pin 9/SMT pin 10/TH pin 9). Pin sleep mode is enabled by setting the SM command to 1.

When the device asserts (high) DTR/SLEEP_RQ, it finishes any transmit or receive operations for
the current packet that is processing and enters a low power state. For example, if the device has
not joined a network and SLEEP_RQ is asserted (high), it sleeps once the current join attempt
completes (that is, when scanning for a valid network completes). The device wakes from pin sleep
when the SLEEP_RQ pin is de-asserted (low).

Devices with SPI functionality can use the SPI_SSEL pin instead of D8 for pin sleep control. If D8 =
0and P7 =1, SPI_SSEL takes the place of DTR/SLEEP_RQ and functions as described above.
In order to use SPI_ SSEL for sleep control while communicating on the UART, the other SPI pins
must be disabled (set P5, P6 , and P8 to 0). See Low power operation for information on using
SPI_SSEL for sleep control while communicating over SPI.

Sleep pin diagrams
The following figures show the device's sleep pins.

Digi XBee® 3 Zigbee® RF Module 202

Manage End Devices

Surface-mount sleep pins

SLEEP _RQ 10

O00000000000

00000000

Q0000000000000 0O0

37

26 ON /SLEEP
25 CTS

Through-hole sleep pins

SLEEP _RQ 9

kﬂ)—(/ \ﬁﬂ)_()_()_(/ \)

OICIOIOIOIOIOIOI0LNO!

Digi XBee® 3 Zigbee® RF Module

20

13 ON/SLEEP
12 CTS

End Device configuration

203

Manage End Devices End Device configuration

Micro sleep pins

25 ON /SLEEP

SLEEP_RQ 9 24 CTS

Sleep pin waveform
The following figure show the pin sleep waveforms:

SLEEP _RQ

ON /SLEEP

:
|
|
|
|
|
|
CTS !
I
I
I
|
:
|
|
:

bt t; t

In the previous figure, t1, t2, t3 and t4 represent the following events:

= t1-Time when DTR/SLEEP_RQ is asserted (high)

® {2 - Time when the device enters sleep (ﬂ state change only if hardware flow control is
enabled)

= t3-Time when DTR/SLEEP_RQ is de-asserted (low) and the device wakes

= {4 - Time when the device sends a poll request to its parent

The time between t1 and t2 varies depending on the state of the module. In the worst case
scenario, if the end device is trying to join a network, or if it is waiting for an acknowledgment from a
data transmission, the delay could be up to a few seconds. The time between t3 and t4 is 1-2 ms for
a regular device and about 6 ms for a PRO device.

When the XBee 3 Zigbee RF Module is awake and is joined to a network, it sends a poll request to
its parent to see if the parent has any buffered data. The end device continues to send poll requests
every 100 ms while it is awake.

Digi XBee® 3 Zigbee® RF Module 204

Manage End Devices End Device configuration

Demonstration of pin sleep

Parent and remote devices must be configured to buffer data correctly and to use adequate
transmission timeouts. For more information, see Router/Coordinator configuration.

Cyclic sleep

Cyclic sleep allows the device to sleep for a specified time and wake for a short time to poll its
parent for any buffered data messages before returning to sleep again. Enable cyclic sleep mode
by setting the SM command to 4 or 5. SM5 is a slight variation of SM4 that allows the device to
wake up prematurely by asserting (low) the DTR/SLEEP_RQ pin. In SM5, the XBee 3 Zigbee RF
Module can wake after the sleep period expires, or if a high-to- low transition occurs on the
SLEEP_RQ pin. When the device wakes due to DTR/SLEEP_RQ being asserted (low), the
minimum time that it will wake foris ST (Cyclic Sleep Wake Time) even if DTR/SLEEP_RQ is again
de-asserted sooner. Setting SM to 4 disables the pin wake option.

In cyclic sleep, the device sleeps for a specified time, and then wakes and sends a poll request to
its parent to discover if the parent has any pending data for the end device. If the parent has
buffered data for the end device, or if it receives serial data, the device remains awake for a time.
Otherwise, it enters sleep mode immediately.

When the device wakes, it asserts (high) the ON/SLEEP line, and de-asserted (low) when the
device sleeps. If you enable hardware flow control (D7 command), the CTS pin asserts (low) when
the device wakes and can receive serial data, and de-assert (high) when the device sleeps.

Cyclic sleep pin diagrams
The following figure shows the device's cyclic sleep pins.

Surface-mount cyclic sleep pins

37

26 ON /SLEEP
25 CTS

0000000000000
Q000000000000 O0O

00000000

Digi XBee® 3 Zigbee® RF Module 205

Manage End Devices

Through-hole cyclic sleep pins

20

12 CTS

0]OJO1010)101010)0)0)
0000000000

Micro cyclic sleep pins

25 OM /SLEEP
24 CTS

Cyclic sleep pin waveform
The following figure shows the cyclic sleep waveforms.

Digi XBee® 3 Zigbee® RF Module

13 ON /SLEEP

End Device configuration

206

Manage End Devices End Device configuration

CTS

ON /SLEEP _I

In the figure above, t1, t2, and t3 represent the following events:

= {1 - Time when the device wakes from cyclic sleep
= {2 - Time when the device returns to sleep
= {3 - Later time when the device wakes from cyclic sleep

The wake time and sleep time are configurable with software commands.

Wake time (until sleep)

In cyclic sleep mode (SM = 4 or 5), if the device receives serial or RF data, it starts a sleep timer
(time until sleep). Any data received serially or over the RF link restarts the timer. Set the sleep
timer value with ST (Cyclic Sleep Wake Time). While the device is awake, it sends poll request
transmissions every 100 ms to check its parent for buffered data messages. The device returns to
sleep when the sleep timer expires, or if it receives S| (Sleep Immediately) as shown in the
following image.

DIN ﬂi‘

ST = Time Awake

On/Sleep

TN JAN SR S T ST ST S ST Y SR SA SN N O S T TN T T Y N)

A cyclic sleep end device enters sleep mode when no serial or RF data is received for ST time.

Legend
On/Sleep -
TransmittingPoll — — — — o
Request

Sleep period

Configure the sleep period based on the SP, SN, and SO commands. The following table lists the
behavior of these commands.

Digi XBee® 3 Zigbee® RF Module 207

Manage End Devices End Device configuration

SP 0x20 - OxAFO0 (x 10 Configures the sleep period of the device.

?1?2’)0 - 28,000 ms)
SN 1- OxFFFF Configures the number of sleep periods multiplier.
SO 0 - OxFF Defines options for sleep mode behavior.

0x02 - Always wake for full ST time
0x04 - Enable extended sleep (sleep for full (SP * SN)
time)

The device supports both a Short cyclic sleep and an Extended cyclic sleep that make use of these
commands. These two modes allow the sleep period to be configured according to the application
requirements.

Short cyclic sleep

In short cyclic sleep mode, define the sleep behavior of the device by the SP and SN commands,
and the SO command must be set to 0x00 (default) or 0x02. In short cyclic sleep mode, the SP
command defines the sleep period and you can set it for up to 28 seconds. When the device enters
short cyclic sleep, it remains in a low power state until the SP time has expired.

After the sleep period expires, the XBee 3 Zigbee RF Module sends a poll request transmission to
its parent to determine if the parent has any buffered data waiting for the end device. Since router
and coordinator devices can buffer data for end device children up to 30 seconds, the SP range (up
to 28 seconds) allows the end device to poll regularly enough to receive buffered data. If the parent
has data for the end device, the end device starts its sleep timer (ST) and continues polling every
100 ms to receive data. If the end device wakes and finds that its parent has no data for it, the end
device can return to sleep immediately.

Use the SN command to control when the On/Sleep line is asserted (high). If you SN to 1 (default),
the On/Sleep line sets high each time the device wakes from sleep. Otherwise, if SN is greater than
1, the On/ Sleep line only sets high if RF data is received, or after SN wake cycles occur. This
allows an external device to remain powered off until it receives RF data, or until a number of sleep
periods have expired (SN sleep periods). This mechanism allows the device to wake at regular
intervals to poll its parent for data without waking an external device for an extended time (SP * SN
time) as shown in the following figure.

Digi XBee® 3 Zigbee® RF Module 208

Manage End Devices End Device configuration

On/Sleep
(SN =1) On /Sleep
(SN =3)

At=SP * SN At=SP * SN

[I N N I N L >

Transmitting poll request to parent Transmitting poll request to parent

At=SP At=SP

PR D D A A T N T B B

Setting SN > 1 allows the device to silently poll for data without asserting On/Sleep. If RF data is received when
polling, On/Sleep will immediately assert.

Legend
Sleep _RQ Y
Transmitting Poll . _ e
Request

SP controls the packet buffer time on routers and coordinators. Set SP on all router and
coordinator devices to match the longest end device SP time. For more information, see
Router/Coordinator configuration.

Extended cyclic sleep

In extended cyclic sleep operation, an end device can sleep for a multiple of SP time which can
extend the sleep time up to several days. Configure the sleep period using the SP and SN
commands. The total sleep period is equal to (SP * SN) where SP is measured in 10ms units. The
SO command must be set correctly to enable extended sleep.

Since routers and coordinators can only buffer incoming RF data for their end device children for up
to 30 seconds, if an end device sleeps longer than 30 seconds, devices in the network need some
indication when an end device is awake before they can send data to it. End devices that use
extended cyclic sleep should send a transmission (such as an I/O sample) when they wake to
inform other devices that they are awake and can receive data. We recommended that extended
sleep end devices set SO to wake for the full ST time to provide other devices with enough time to
send messages to the end device.

Similar to short cyclic sleep, end devices running in this mode return to sleep when the sleep timer
expires, or when they receive the S| command.

Deep sleep
The following are preconditions for maintaining low current draw during sleep:
= You must maintain the supply voltage within a valid operating range (2.1 to 3.6 V for the
XBee, 3.0 to 3.6 V for the XBee-PRO (S2), 2.7 to 3. V for the XBee-PRO S2B).

= Each GPIO input line with a pullup resistor which is driven low draws about 100 pA current
through the internal pullup resistor.

= |f circuitry external to the XBee drives such input lines low, then the current draw rises above
expected deep sleep levels.

Digi XBee® 3 Zigbee® RF Module 209

Manage End Devices Recommended sleep current measurements

= Each GPIO input line that has no pullup or pull-down resistor (is floating) has an
indeterminate voltage which can change over time and temperature in an indeterminate
manner.

MicroPython (with optional pin wake)

The MicroPython sleep option allows a user's MicroPython program to exclusively control the
device sleep operation (with optional pin wake). For complete details see the Digi MicroPython
Programming Guide.

Recommended sleep current measurements

Properly measuring the sleep current helps to accurately estimate battery life requirements. To
ensure that you take proper measurements without upsetting the normal operation of the unit under
test, read the following steps.

When you measure sleep currents, it can cause problems with the devices because the equipment
that measures very low currents accurately requires a large resistor in series with the power
supply. This large resistor starves current from the device during a momentary wake cycle, forcing
the voltage to drop to brownout levels rapidly. This voltage drop places the device in a state that
may require a reset to resolve the problem.

Achieve the lowest sleep current

To achieve the lowest sleep current, you must disable brownout detectors during sleep modes.
Even if the measurement equipment automatically changes current ranges, it is often too slow and
cannot keep up with the necessary sudden short bursts. During long cyclic sleep periods, the
device can wake every 10 to 30 seconds to reset timers and perform other necessary steps. These
wake times are small and you may not notice them when measuring sleep currents.

Compensate for switching time

To compensate for the switching time of the equipment you must temporarily add an additional
large cap when you need measurements to allow for short pulses of current draw (see the following
schematic for details). A cap of 100 uF is enough to handle 1.5 milliseconds with 20 mA of current.
You can increase or decrease the capacitor based on the switching time of the measurement
circuitry and the momentary on time of the unit. Measure the leakage current of the additional cap
to verify that it does not skew the low current reading. The capacitor averages the spike in current
draw. The actual magnitude of the current spike is no longer visible, but you can account for the
total energy consumed by integrating the current over time and multiplying by the voltage.

Internal pin pull-ups

Internal pull-up/down resistors only apply to GPIO lines that are configured as disabled (0) or digital
input (3). Use PR (Pull-up/Down Resistor Enable) to enable them on a per-pin basis and use PD
(Pull Up/Down Direction) to determine the direction.

Internal pin pull-ups can pull excess current and cause the sleep current readings to be higher than
desired if you drive or float the pull-ups.

= Disable all pull-ups for input lines that have a low driven state during sleep.
= Enable pull-ups for floating lines or inputs that do not connect to other circuitry.

If you use an analog-to-digital converter (ADC) to read the analog voltage of a pin, it may not be
possible to stop all leakage current unless you can disconnect the voltage during sleep. Each

Digi XBee® 3 Zigbee® RF Module 210

https://www.digi.com/resources/documentation/Digidocs/90002219/
https://www.digi.com/resources/documentation/Digidocs/90002219/

Manage End Devices Transmit RF data

floating input that is not at a valid high or low level can cause leakage depending on the
temperature and charge buildup that you may not observe at room temperature.

Transmit RF data

An end device may transmit data when it wakes from sleep and has joined a network. End devices
transmit directly to their parent and then wait for an acknowledgment to be received. The parent
performs any required address and route discoveries to help ensure the packet reaches the
intended destination before reporting the transmission status to the end device.

Receiving RF data

After waking from sleep, an end device sends a poll request to its parent to determine if the parent
has any buffered data for it. In pin sleep mode, the end device polls every 100 ms while the Sleep_
RQ pin is de-asserted (low). In cyclic sleep mode, the end device will only poll once before
returning to sleep unless the sleep timer (ST) is started (serial or RF data is received). If the sleep
timer is started, the end device will continue to poll every 100 ms until the sleep timer expires.

This firmware includes an adaptive polling enhancement where, if an end device receives RF data
from its parent, it sends another poll after a very short delay to check for more data. The end device
continues to poll at a faster rate as long as it receives data from its parent. This feature greatly
improves data throughput to end devices. When the end device no longer receives data from its
parent, it resumes polling every 100 ms.

I/0 sampling

End devices can be configured to send one or more I/O samples when they wake from sleep. To
enable 1/0 sampling on an end device, the IR command must be set to a non-zero value, and at
least one analog or digital I/O pin must be enabled for sampling (DO - D9, PO - P4 commands). If
I/0 sampling is enabled, an end device sends an I/0O sample when it wakes and starts the ST timer.
It will continue sampling at the IR rate until the sleep timer (ST) has expired. For more information,
see |/O support.

Wake end devices with the Commissioning Pushbutton

If you use DO (DIO0O/ADO/Commissioning Button Configuration) to enable the Commissioning
Pushbutton functionality, a high-to-low transition on the ADO/DIOO pin (Micro pin 31/SMT pin 33/TH
pin 20) causes an end device to wake for 30 seconds. For more information, see Commissioning
pushbutton and associate LED.

Parent verification

Since an end device relies on its parent to maintain connectivity with other devices in the network,
XBee end devices include provisions to verify the connection with its parent. End devices monitor
the link with their parent when sending poll messages and after a power cycle or reset event as
described below.

When an end device wakes from sleep, it sends a poll request to its parent. In cyclic sleep, if the
end device does not receive RF or serial data and the sleep timer is not started, it polls one time
and returns to sleep for another sleep period. Otherwise, the end device continues polling every
100ms. If the parent does not send an acknowledgment response to three consecutive poll request
transmissions, the end device assumes the parent is out of range, and attempts to find a new
parent.

Digi XBee® 3 Zigbee® RF Module 211

Manage End Devices Rejoining

After a power-up or reset event, the end device does an orphan scan to locate its parent. If the
parent does not send a response to the orphan scan, the end device attempts to find a new parent.

Rejoining
Once all devices have joined a Zigbee network, disable the permit-joining attribute disabled such
that new devices are no longer allowed to join the network. You can enable permit-joining later as
needed for short times. This provides some protection in preventing other devices from joining a
live network.

If an end device cannot communicate with its parent, the end device must be able to join a new
parent to maintain network connectivity. However, if permit-joining is disabled in the network, the
end device will not find a device that is allowing new joins.

To overcome this problem, Zigbee supports rejoining, where an end device can obtain a new
parent in the same network even if joining is not enabled. When an end device joins using rejoining,
it performs a PAN ID scan to discover nearby networks. If a network is discovered that has the
same 64-bit PAN ID as the end device, it joins the network by sending a rejoin request to one of the
discovered devices. The device that receives the rejoin request sends a rejoin response if it can
allow the device to join the network (that is, the child table is not full). You can use the rejoin
mechanism to allow a device to join the same network even if permit-joining is disabled.

To enable rejoining, set NJ to less than OxFF on the device joining. If NJ < OxFF, the device
assumes the network is not allowing joining and first tries to join a network using rejoining. If
multiple rejoining attempts fail, or if NJ = OXFF, the device attempts to join using association.

Router/Coordinator configuration

XBee routers and coordinators may require some configuration to ensure the following are set
correctly.

= RF Packet buffering timeout
= Child poll timeout
® Transmission timeout

The value of these timeouts depends on the sleep time used by the end devices.

RF packet buffering timeout

When a router or coordinator receives an RF data packet intended for one of its end device
children, it buffers the packet until the end device wakes and polls for the data, or until a packet
buffering timeout occurs. Use the SP command to set the timeout . The actual timeout is (1.2 * SP),
with a minimum timeout of 1.2 seconds and a maximum of 30 seconds. Since the packet buffering
timeout is set slightly larger than the SP setting, set SP the same on routers and coordinators as it
is on cyclic sleep end devices. For pin sleep devices, set SP as long as the pin sleep device can
sleep, up to 30 seconds.

In pin sleep and extended cyclic sleep, end devices can sleep longer than 30 seconds. If end
devices sleep longer than 30 seconds, parent and non-parent devices must know when the end
device is awake in order to reliably send data. For applications that require sleeping longer than 30
seconds, end devices should transmit an I/O sample or other data when they wake to alert other
devices that they can send data to the end device.

Digi XBee® 3 Zigbee® RF Module 212

Manage End Devices Short sleep periods

Child poll timeout

Router and coordinator devices maintain a timestamp for each end device child indicating when the
end device sent its last poll request to check for buffered data packets. If an end device does not
send a poll request to its parent for a certain period of time, the parent will discard the packet.

Set the child poll timeout with the SP and SN commands. SP and SN should be set such that SP *
SN matches the longest expected sleep time of any end devices in the network. The device
calculates the actual timeout as (3* SP * SN), with a minimum of five seconds. For networks
consisting of pin sleep end devices, set the SP and SN values on the coordinator and routers so
the SP * SN matches the longest expected sleep period of any pin sleep device.

Adaptive polling
PO (Polling Rate) determines the regular polling rate. However, if RF data has been recently
received by an end device, it is likely that more RF data could be on the way. Therefore, the end

device polls at a faster rate, gradually decreasing its adaptive poll rate until polling resumes at the
regular rate as defined by the PO command.

Transmission timeout

When you are sending RF data to a remote router, because routers are always on, the timeout is
based on the number of hops the transmission may traverse. Set the timeout using NH (Maximum
Unicast Hops). For more information, see Transmission, addressing, and routing.

Since end devices may sleep for lengthy periods of time, the transmission timeout to end devices
also allows for the sleep period of the end device. When sending data to a remote end device, the
transmission timeout is calculated using the SP and NH commands. If the timeout occurs with no
acknowledgment received, the source device re-sends the transmission until it receives an
acknowledgment, up to two more times.

The transmission timeout per attempt is:
3 * ((unicast router timeout) + (end device sleep time))
3*((50 *NH) + (1.2 * SP)), where SP is measured in 10 ms units.

Short sleep periods

Pin and cyclic sleep devices that sleep less than 30 seconds can receive data transmissions at any
time since their parent devices are able to buffer data long enough for the end devices to wake and
poll to receive the data. Set SP the same on all devices in the network. If end devices in a network
have more than one SP setting, set SP on the routers and coordinators to match the largest SP
setting of any end device. This ensure the RF packet buffering, poll timeout, and transmission
timeouts are set correctly.

Extended sleep periods

Pin and cyclic sleep devices that might sleep longer than 30 seconds cannot receive data
transmissions reliably unless you take certain design approaches. Specifically, the end devices
should use I/O sampling or another mechanism to transmit data when they wake to inform the
network they can receive data. SP and SN should be set on routers and coordinators such that (SP
* SN) matches the longest expected sleep time.

As a general rule, SP and SN should be set the same on all devices in almost all cases.

Digi XBee® 3 Zigbee® RF Module 213

Manage End Devices Sleep examples

Sleep examples

Some sample XBee configurations to support different sleep modes follow. In Command mode,
issue each command with a leading AT and no = sign, for example, ATSM4. In the API, the two
byte command is used in the command field, and parameters are populated as binary values in the
parameter field.

Example 1: Configure a device to sleep for 20 seconds, but set SN
such that the On/sleep line will remain de-asserted for up to 1
minute.

The following settings should be configured on the end device.

= SM =4 (cyclic sleep) or 5 (cyclic sleep, pin wake).
= SP = 0x7D0 (2000 decimal). This causes the end device to sleep for 20 seconds since SP is
measured in units of 10 ms.

= SN = 3. (With this setting, the On/Sleep pin asserts once every 3 sleep cycles, or when it
receives RF data) SO = 0.
Set all router and coordinator devices on the network SP to match SP on the end device. This set
the RF packet buffering times and transmission timeouts correctly.

Since the end device wakes after each sleep period (SP), you can set the SN command to 1 on all
routers and the coordinator.

Example 2: Configure an end device to sleep for 20 seconds, send
4 1/0 samples in 2 seconds, and return to sleep.

Because SP is measured in 10 ms units, and ST and IR are measured in 1 ms units, configure an
end device with the following settings:

® SM =4 (cyclic sleep) or 5 (cyclic sleep, pin wake).

= SP =0x7D0 (2000 decimal). This causes the end device to sleep for 20 seconds.

= SN=1.

= SO=0.

= ST =0x7DO0 (2000 decimal). This sets the sleep timer to 2 seconds.

= |R =0x258 (600 decimal). Set IR to a value greater than (2 seconds / 4) to get 4 samples in
2 seconds. The end device sends an I/0 sample at the IR rate until the sleep timer has
expired.

You must enable at least one analog or digital I/O line for I/O sampling to work. To enable
AD1/DIO1 (Micro pin 30/SMT pin 32/TH pin 19) as a digital input line, you must set the following:
D1=3

Set all router and coordinator devices on the network SP to match SP on the end device. This
ensures that RF packet buffering times and transmission timeouts are set correctly.

Digi XBee® 3 Zigbee® RF Module 214

Manage End Devices Sleep examples

Example 3: configure a device for extended sleep: to sleep for 4
minutes.

® SP and SN must be set such that SP * SN = 4 minutes. Since SP is measured in 10 ms
units, use the following settings to obtain 4 minute sleep.

= SM =4 (cyclic sleep) or 5 (cyclic sleep, pin wake) SP = 0x7D0 (2000 decimal, or 20
seconds).

= SN = 0x0B (12 decimal).

= SO =0x04 (enable extended sleep).
With these settings, the module sleeps for SP * SN time, or (20 seconds * 12) = 240 seconds = 4
minutes.

For best results, the end device should send a transmission when it wakes to inform the
coordinator (or network) when it wakes. It should also remain awake for a short time to allow
devices to send data to it. The following are recommended settings.

® ST =0x7DO0 (2 second wake time)
= SO = 0x06 (enable extended sleep and wake for ST time)

= |R =0x800 (send 1 I/0 sample after waking). Enable at least one analog or digital I/O
sample enabled for I/O sampling.

With these settings, the end device wakes after 4 minutes and sends 1 1/0 sample. It then remains
awake for 2 seconds before returning to sleep.

Set SP and SN to the same values on all routers and coordinators that could potentially allow the
end device to join. This ensures the parent does not timeout the end device from its child table too
quickly.

The SI command can optionally be sent to the end device to cause it to sleep before the sleep timer
expires.

Digi XBee® 3 Zigbee® RF Module 215

I/0 support

The following topics describe analog and digital I/O line support, line passing and output control.

Digital 1/0 support
Analog I/O support
Monitor 1O NS .
I/O sample data format
APl frame SUPP O .
On-demand sampling
Periodic 11O sampling ...
Digital I/0O change detection
I/0 behavior during sleep

Digi XBee® 3 Zigbee® RF Module 216

1/O support Digital I/0 support

Digital 1/0 support

Digital I/O is available on lines DIO0 through DIO12 (DO (DIO0/ADO/Commissioning Button
Configuration) - D9 (DIO9/ON_SLEEP) and PO (DIO10/RSSI Configuration) - P4 (DIO14/DIN
Configuration)). Digital sampling is enabled on these pins if configured as 3, 4, or 5 with the
following meanings:

= 3is digital input.
e Use PR (Pull-up/Down Resistor Enable) to enable internal pull up/down resistors for

each digital input. Use PD (Pull Up/Down Direction) to determine the direction of the
internal pull up/down resistor. All disabled and digital input pins are pulled up by default.

= 4 s digital output low.
= 5 is digital output high.

Function | Micro Pin | SMT Pin -Fl;ll-r: AT Command

DIOO 31 33 20 DO (DIO0/ADO/Commissioning Button
Configuration)

DIO1 30 32 19 D1 (AD1/DIO1/TH_SPI_ATTN Configuration)

DIO2 29 31 18 D2 (DIO2/AD2/TH_SPI_CLK Configuration)

DIO3 28 30 17 D3 (DIO3/AD3/TH_SPI_SSEL Configuration)

DI04 23 24 11 D4 (DIO4/TH_SPI_MOSI Configuration)

DIOS 26 28 15 D5 (DIO5/Associate Configuration)

DIO6 27 29 16 D6 (DIO6/RTS)

DIO7 24 25 12 D7 (DIO7/CTS)

DIO8 9 10 9 D8 (DIO8/DTR/SLP_RQ)

DIO9 25 26 13 D9 (DIO9/ON_SLEEP)

DIO10 7 7 6 PO (DIO10/RSSI Configuration)

DIO11 8 8 7 P1 (DIO11 Configuration)

DIO12 5 5 4 P2 (DIO12/TH_SPI_MISO Configuration)

DIO13 3 3 2 P3 (DIO13/DOUT Configuration)

DIO14 4 4 3 P4 (DIO14/DIN Configuration)

O sampling is not available for pins P5 through P9. See the XBee 3 Hardware Reference Manual
for full pinouts and functionality.

Analog I/0 support

Analog input is available on DO through D3. Configure these pins to 2 (ADC) to enable analog
sampling.

Digi XBee® 3 Zigbee® RF Module 217

https://www.digi.com/resources/documentation/digidocs/90001543/Default.htm

I/O support Monitor I/0O lines

TH

ADCO DO (DIO0/ADO/Commissioning Button
Configuration)

ADC1 30 32 19 D1 (AD1/DIO1/TH_SPI_ATTN Configuration)

ADC2 29 31 18 2 (DIO2/AD2/TH_SPI_CLK Configuration)

ADC3 28 30 17 D3 (DIO3/AD3/TH_SPI_SSEL Configuration)

PWMO 7 7 6 0 (DIO10/RSSI Configuration)

PWM1 8 8 7 P1 (DIO11 Configuration)

AV (Analog Voltage Reference) specifies the analog reference voltage used for the 10-bit ADCs.
Analog sample data is represented as a 2-byte value. For a 10-bit ADC, the acceptable range is
from 0x0000 to 0xO3FF. To convert this value to a useful voltage level, apply the following formula:

ADC /1023 (vREF) = Voltage

ADCs sampled through MicroPython will have 12-bit resolution.

Example

An ADC value received is 0xO1AE; to convert this into a voltage the hexadecimal value is first
converted to decimal (0xO1AE = 430). Using the default AV reference of 1.25 V, apply the formula
as follows:

430/1023 (1.25V) =525 mV

Monitor I/0 lines

You can monitor pins you configure as digital input, digital output, or analog input and generate 1/0
sample data. If you do not define inputs or outputs, no sample data is generated.

Typically, I/O samples are generated by configuring the device to sample 1/O pins periodically
(based on a timer) or when a change is detected on one or more digital pins. These samples are
always sent over the air to the destination address specified by DH (Destination Address

High) and DL (Destination Address Low).

You can also gather sample data using on-demand sampling, which allows you to collect the state
of the device's I/O pins by issuing an AT command. You can do this on either a local or remote
device via an AT command request.

The three methods to generate sample data are:

= Periodic sample (IR (I/O Sample Rate))
« Periodic sampling based on a timer
« Samples are taken immediately upon wake (excluding pin sleep)
e Sample data is sent to DH+DL destination address
» Can be used with line passing
¢ Requires APl mode on receiver

Digi XBee® 3 Zigbee® RF Module 218

I/O support

I/O sample data format

= Change detect (IC (Digital Change Detection))
» Samples are generated when the state of specified digital input pin(s) change

e Sample data is sent to DH+DL destination address

» Can be used with line passing

¢ Requires APl mode on receiver
= On-demand sample (IS (Force Sample))
» Immediately query the device’s I/O lines

e Can be issued locally in Command Mode

e Can be issued locally or remotely in APl mode

These methods are not mutually exclusive and you can use them in combination with each other.

I/O sample data format

Regardless of how I/O data is generated, the format of the sample data is always represented as a
series of bytes in the following format:

Bytes | Name

1

2

Sample
sets

Digital
channel
mask

Analog
channel
mask

Description

Number of sample sets. There is always one sample set per frame.

Indicates which digital I/0 lines have sampling enabled. Each bit
corresponds to one digital I/O line on the device.

bit 0 = DIOO

bit 1 =DIO1

bit 2 = DIO2

bit 3 = DIO3

bit 4 = DIO4

bit 5 = DIO5

bit 6 = DIO6

bit 7 = DIO7

bit 8 = DIO8

bit 9 = DIO9

bit 10 =DIO10

bit 11 =DIO11

bit 12 =DIO12

bit 13 =DIO13

bit 14 =DIO14

bit 15 =N/A

Example: a digital channel mask of 0x002F means DIOO, 1,2, 3and 5 are
configured as digital inputs or outputs.

Indicates which lines have analog inputs enabled for sampling. Each bit in
the analog channel mask corresponds to one analog input channel. If a bit
is set, then a corresponding 2-byte analog data set is included.

bit 0 = AD0O/DIO0

bit 1 = AD1/DIO1

bit 2 = AD2/DI02

bit 3 = AD3/DIO3

Digi XBee® 3 Zigbee® RF Module 219

I/0 support API frame support

Byes Nome —Deseipion

2 Digital Each bit in the digital data set corresponds to a bit in the digital channel
data set mask and indicates the digital state of the pin, whether high (1) or low (0).
If the digital channel mask is 0x0000, then these two bytes are omitted as
no digital I/O lines are enabled.

2 Analog Each enabled ADC line in the analog channel mask will have a separate
data set 2-byte value based on the number of ADC inputs on the originating
(multiple) | device. The data starts with ADO and continues sequentially for each

enabled analog input channel up to AD3.
If the analog channel mask is 0x00, then no analog sample bytes is
included.

API frame support

I/0 samples generated using Periodic I/O sampling (IR) and Digital I/O change detection (IC) are
transmitted to the destination address specified by DH and DL. In order to display the sample data,
the receiver must operate in APl mode (AP =1 or 2). The sample data is represented as an I/O
sample API frame.

See /O Sample Indicator - 0x92 for more information on the frame's format and an example.

On-demand sampling

You can use IS (Force Sample) to query the current state of all digital I/O and ADC lines on
the device and return the sample data as an AT command response. If no inputs or outputs are
defined, the command returns an ERROR.

On-demand sampling can be useful when performing initial deployment, as you can send IS locally
to verify that the device and connected sensors are correctly configured. The format of the sample
data matches what is periodically sent using other sampling methods. You can also send IS
remotely using a remote AT command. When sent remotely from a gateway or server to each
sensor node on the network, on-demand sampling can improve battery life and network
performance as the remote node transmits sample data only when requested.

If you send IS using Command mode, then the device returns a carriage return delimited list
containing the I/0 sample data. If IS is sent either locally or remotely via an API frame, the I/O
sample data is presented as the parameter value in the AT command response frame (Local AT
Command Response - 0x88 or Remote AT Command Response- 0x97).

Example: Command mode
An IS command sent in Command mode returns the following sample data:

Ouiput | Deseripton |

01 One sample set

0coC Digital channel mask, indicates which digital lines are sampled
(0x0COC = 0000 1100 0000 1100b = DIO2, 3, 10, 11)

03 Analog channel mask, indicates which analog lines are sampled
(0x03 = 0000 0011b = ADO, 1)

Digi XBee® 3 Zigbee® RF Module 220

1/O support

On-demand sampling

uiput | Deseripton |

0408 Digital sample data that corresponds with the digital channel mask
0x0408 = 0000 0100 0000 1000b = DIO3 and DIO10 are high, DIO2 and DIO11 are

low

03D0 Analog sample data for ADO

0124 Analog sample data for AD1

Example: Local AT command in APl mode

The IS command sent to a local device in APl mode would use a Local AT Command Request -
0x08 or Queue Local AT Command Request - 0x09 frame:

7E 00 04 08 534953 08
The device responds with a Local AT Command Response - 0x88 that contains the sample data:
7E 00 OF 885349530001 0C0C03040803D0012468

I

7E Start
Delimiter

00 OF Length

88 Frame type

53 Frame ID

49 53 AT
Command

00 Status

01

ococC

03
I/O sample
data

04 08

03 DO

0124

68 Checksum

Indicates the beginning of an API frame

Length of the packet
AT Command response frame
This ID corresponds to the Frame ID of the 0x08 request

Indicates the AT command that this response corresponds to
0x49 0x53 =18

Indicates success or failure of the AT command
00=0K

if no I/0 lines are enabled, this will return 01 (ERROR)
One sample set

Digital channel mask, indicates which digital lines are sampled
(0x0COC = 0000 1100 0000 1100b = DIO2, 3, 10, 11)

Analog channel mask, indicates which analog lines are sampled
(0x03 = 0000 0011b = ADO, 1)

Digital sample data that corresponds with the digital channel mask
0x0408 = 0000 0100 0000 1000b = DIO3 and DIO10 are high, DIO2
and DIO11 are low

Analog sample data for ADO
Analog sample data for AD1

Can safely be discarded on received frames

Digi XBee® 3 Zigbee® RF Module 221

I/O support

Periodic I/O sampling

Example: Remote AT command in APl mode
The IS command sent to a remote device with an address of 0013A200 12345678 uses a Remote

AT Command Request - 0x17:

7E000F 178700 13 A2 00 1234 56 78 FF FE 00 49 53 FF

The sample data from the device is returned in a Remote AT Command Response- 0x97 frame
with the sample data as the parameter value:

7E 001997870013 A200 1234 56 78 FF FE4953 00 01 0C 0C 03 04 08 03 FF 03 FF 53

Output Field

7E Start
Delimiter

0019 Length

97 Frame type

87 Frame ID

0013A200 64-bit

12345678 source

0000 16-bit
source

49 53 AT
Command

00 Status

01

ococ

03
I/0 sample
data

04 08

03 DO

0124

50 Checksum

Periodic I/0 sampling

Description

Indicates the beginning of an API frame

Length of the packet
Remote AT Command response frame
This ID corresponds to the Frame ID of the 0x17 request

The 64-bit address of the node that responded to the request

The 16-bit address of the node that responded to the request

Indicates the AT command that this response corresponds to
0x49 0x53 = IS

Indicates success or failure of the AT command

00 =0K

if no I/O lines are enabled, this will return 01 (ERROR)
One sample set

Digital channel mask, indicates which digital lines are sampled
(0x0COC = 0000 1100 0000 1100b =DIO2, 3, 10, 11)

Analog channel mask, indicates which analog lines are sampled
(0x03 =00000011b = ADO, 1)

Digital sample data that corresponds with the digital channel
mask

0x0408 = 0000 0100 0000 1000b = DIO3 and DIO10 are high,
DIO2 and DIO11 are low

Analog sample data for ADO
Analog sample data for AD1

Can safely be discarded on received frames

Periodic sampling allows a device to take an I/O sample and transmit it to a remote device ata

periodic rate.

Digi XBee® 3 Zigbee® RF Module

222

I/0 support Digital I/O change detection

Source
Use IR (I/0 Sample Rate) to set the periodic sample rate for enabled 1/O lines.

= To disable periodic sampling, set IR to 0.

= For all other IR values, the device samples data when IR milliseconds elapse and transmits
the sampled data to the destination address.

The DH (Destination Address High) and DL (Destination Address Low) commands determine the
destination address of the I/O samples. You must configure at least one pin as a digital /0 or ADC
input on the sending node to generate sample data.

Destination

If the receiving device is operating in AP| operating mode the I1/0 sample data format is emitted out
of the serial port. Devices that are in Transparent operating mode discard the I/O data samples
they receive unless you enable line passing.

Digital I/0O change detection

You can configure devices to transmit a data sample immediately whenever a monitored digital I/O
pin changes state. IC (Digital Change Detection) is a bitmask that determines which digital I/O lines
to monitor for a state change. If you set one or more bits in IC, the device transmits an 1/0 sample
as soon as it observes a state change on the monitored digital I/0 line(s) using edge detection.

Change detection is only applicable to digital /O pins that are configured as digital input (3) or
digital output (4 or 5).

The figure below shows how 1/0 change detection can work in combination with Periodic I/O
sampling to improve sampling accuracy. In the figure, the gray dashed lines with a dot on top
represent samples taken from the monitored DIO line. The top graph shows only

periodic IR samples, the bottom graph shows a combination of IR periodic samples

and IC detected changes. In the top graph, the humps indicate that the sample was not taken at
that exact moment and needed to wait for the next IR sample period.

Monitored digital
10 line

Sample taken

Period_ic ¢ M=IR o
Sampling | |
(IR only)

Periodic Sampling ¢ At=IR ¢
with Change ' !
Detect (IR and IC)

Use caution when combining change detect sampling with sleep modes. IC only causes a
sample to be generated if a state change occurs during a wake period. If the device is sleeping
when the digital transition occurs, then no change is detected and an I/O sample is not generated.
Use periodic sampling with IR in conjunction with IC in this instance, since IR generates an 1/0
sample upon wakeup and ensures that the change is properly observed.

Digi XBee® 3 Zigbee® RF Module 223

r_sleep_modes.htm

I/0 support I/O behavior during sleep

I/0O behavior during sleep

When the device sleeps (SM ! = 0) the I/O lines are optimized for a minimal sleep current.

Digital 1/0O lines

Digital I/0O lines set as digital output high or low maintain those values during sleep. Disabled or
input pins continue to be controlled by the PR/PD settings. Peripheral pins (with the exception of
CTS) are set low during sleep and SPI pins are set high. Peripheral and SPI pins resume normal
operation upon wake.

Digital I/0O lines that have been set using I/O line passing hold their values during sleep, however
the digital timeout timer (TO through T9, and Q0 through Q2) are suspended during sleep and
resume upon wake.

Analog and PWM |/O lines

Lines configured as analog inputs or PWM output are not affected during sleep. PWM lines are
shut down (set low) during sleep and resume normal operation upon wake.

PWM output pins set by analog line passing are shutdown during sleep and revert to their preset
values (M0 and M1) on wake. This happens regardless of whether the timeout has expired or not.

Digi XBee® 3 Zigbee® RF Module 224

AT commands

NetWOrKing COMMaANAS ...
DisSCOVEry COMMANGS
Operating Network commands
Zigbee Addressing COMMANAS ...
Zigbee configuration commands
SECUNtY COMMANGS ...
Secure Session COMMANAS ...
RF interfacing commands
MAC diagnostics cCOmmands
Sleep settings CommMaNds
MicroPython COmMmands ...
File System commands ...
Bluetooth Low Energy (BLE) commands
API configuration commmands
UART interface commands ...
AT Command OptiONS
UART pin configuration commands
SMT/MMT SPlinterface commands ...
/O settings COMM@ANAS i
I/O sampling COMMANAS i e
Location COMMANAS
Diagnostic commands - firmware/hardware information
Memory access COMMANGS ...
Custom Defaultcommands ...

Digi XBee® 3 Zigbee® RF Module 225

AT commands Networking commands

Networking commands

This section lists the AT commands that affect the operation of the Zigbee network and joining
device behavior.

CE (Device Role)

Determines whether the device should form or join a network.

When forming a network, the device acts as a Zigbee network manager/coordinator. Sleep must be
disabled before CE can be set.

Changing CE after network association causes the device to leave the network.

Parameter range

0-1
0 Join Network
1 Form Network (SM must be 0 to set CE to
1)
Default
0

ID (Extended PAN ID)

The preconfigured Extended PAN ID used when forming or joining a network.

ID restricts joining to only networks with a matching Operating Pan (OP) value. If ID is set to 0, the
device attempt to join any open network.

When forming a network (CE = 1), ID preconfigures the Extended PAN ID used to form the
network. When you set ID to 0, a random Extended PAN ID is generated.

Changing ID after network association causes the device to leave the network.

Parameter range
0 - OXFFFFFFFFFFFFFFFF

Default
0

I (Initial 16-bit PAN ID)

The preconfigured 16-bit PAN ID used when forming a network. Use this command to replace a
coordinator node on an existing unencrypted Zigbee network.

When you set Il to the default value (recommended) the device forms a network on a random 16-bit
PAN ID.

Changing Il on the coordinator after the network is formed causes it to leave and form a new
network.

Digi XBee® 3 Zigbee® RF Module 226

AT commands Networking commands

Range
0 - OXFFFF

Default
OxFFFF

ZS (Zigbee Stack Profile)

Set or read the initial Zigbee stack profile used by the device. This parameter must be the same on
all devices joining the same network. If XBee devices are the only type of radio on your network,
leave ZS at the default value of 0; a non-zero value allows third-party Zigbee devices to join.

If operating in Command mode, any changes to ZS is made active only when Command mode
exits (via timeout or CN (Exit Command mode)). Changing ZS causes all current parameters to be
written to persistent storage and the module restarts; this is equivalent to issuing WR and FR
commands.

When the device restarts as a result of changing ZS or C8, no modem status is generated. CTS will
also de-assert during this period, so flow control is advised. If hardware flow control is not being
used, a 1-second delay after exiting Command mode (or applying changes if using APl) may be
necessary to avoid data loss.

Changing ZS after network association causes the device to leave the network.

Parameter range

0-2
0 Digi Proprietary
1 Zigbee 2006 (legacy)
2 Zigbee-PRO (third-party)
Default
0
CR (Conflict Report)

The number of PAN ID conflict reports that must be received by the network manager within one
minute to trigger a PAN ID change.

A corrupt beacon can cause a report of a false PAN ID conflict.
A higher value reduces the chance of a false PAN ID change.

A value of zero disables automatically changing the PAN ID due to PAN ID conflicts. In this case, if
a PAN ID conflict is detected and API mode is enabled (AP = 1 or 2), the coordinator will emit a
modem status value of 0x3E.

Parameter range
0 - 0x3F

Default
3

Digi XBee® 3 Zigbee® RF Module 227

AT commands Networking commands

NJ (Node Join Time)

Configure the amount of time the local device’s join window is open for. The join window specified
by NJ only affects the window for the local node and does not affect the timing of the rest of the
network. This value can be changed at run time without requiring a Coordinator or Router to restart.

Zigbee 3.0 does not allow the network to be always open for joining; modules that attempt to join
when the join window is closed will report an Al value of 0x23. The join window can optionally be
persistently opened by setting NJ = OxFF, but this causes the device to operate outside of the
Zigbee 3.0 specifications.

See Join window for information on the join window and what circumstances can cause it to open.

When the Join Window is opened, the Association LED will blink rapidly to indicate that joining is
allowed. If operating in APl mode (AP = 1 or 2), a 0x8A Modem Status frame will be generated
when the state of the join window changes:

= (0x43 - Join window is open
= (0x44 - Join window is closed

If you set NJ to 0, the join window will always shut and be closed; this is the recommended setting
for secure networks. When configured with this setting, using a CB2 AT command or pressing the
commissioning button twice opens the join window for one minute.

On end devices, NJ also enables or disables rejoining attempts. For an end device to enable
rejoining, set NJ less than OxFF on the device that joins. If NJ < OxFF, the device assumes the
network is not allowing joining and first tries to join a network using rejoining. If multiple rejoining
attempts fail, or if NJ = OxFF, the device attempts to join using association.

When a device is rejoining a network, the join window does not need to be open. However, if
the rejoin attempt fails six times, the module attempts to join by association which requires an open
joining window.

Parameter range

0 - OXFF (seconds)

Default
OxFE (254 seconds)

DJ (Disable Joining)

Prevent a local device from joining a network.

This does parameter does not affect end devices that are already joined to a network. It only
prevents those devices from joining another network.

This parameter is not written to flash with the WR command and reverts to default after a
power cycle.

Parameter range
0-1

Digi XBee® 3 Zigbee® RF Module 228

AT commands Networking commands

0 Enable Joining
1 Disable Joining
Default
1
NR (Network Reset)

Resets network layer parameters on one or more modules within a PAN. Responds immediately
with an OK then causes a network restart. The device loses all network configuration and routing
information.

If NR = 0: Resets network layer parameters on the node issuing the command.

If NR = 1: Sends broadcast transmission to reset network layer parameters on all nodes in the
PAN.

NR and NRO both perform the same function and may be used interchangeably.

Parameter range
0-1

Default
N/A

NW (Network Watchdog Timeout)

Set the network watchdog timeout used to ensure that a coordinator is active on the network (for
example, a keep alive message).

If NW is set > 0, the router monitors communication from the coordinator (or data collector) and
leaves the network if it cannot communicate with the coordinator for 3 NW periods. Alternatively, If
DC bit 5 is set, the router will not leave the network but will instead attempt to rejoin the coordinator.
The device resets the timer each time it receives or sends data to a coordinator, or if it receives a
many-to-one broadcast.

Parameter range
0 - Ox64FF [x 1 minute](up to approximately 18 days)

Default
0 (disabled)

JV (Coordinator Join Verification)

Used during join and rejoin attempts to determine if a coordinator is present on the target network.
This verification option is only applicable for a Distributed Trust Center (EO = 0) or unencrypted
network (EE = 0). On a Centralized Trust Center network (EO = 2), the coordinator is required to be
present for devices to associate so JV will have no effect.

If JV =1, a router or end device verifies the coordinator is on its operating channel when joining or
coming up from a power cycle. If a coordinator is not detected, the router or end device leaves its

Digi XBee® 3 Zigbee® RF Module 229

AT commands Networking commands

current channel and attempts to join a new PAN. If JV = 0, the router or end device continues
operating on its current channel even if a coordinator is not detected.

Parameter range

0-1
0 No coordinator verification
1 Coordinator verification enabled
Default
0

JN (Join Notification)

Broadcast Join Notification upon successful join attempt.

If enabled, the device transmits a broadcast node identification packet on power up and when
joining. This action blinks the Associate LED rapidly on all devices that receive the transmission,
and sends an API frame out the serial port of API devices.

Digi recommends you disable this feature for large networks to prevent excessive broadcasts.

Parameter range

0-1
0 Disabled
1 Broadcast notification to network upon joining
Default
0

DO (Miscellaneous Device Options)

A bitfield that contains advanced device options that do not have dedicated AT commands.

Leave unused bits clear so future device options are not inadvertently enabled during a firmware
update.

Bit field:
Unused bits must be set to 0. These bits may be logically OR'ed together:

Bit | Description
0 Reserved.

1 Reserved.

Digi XBee® 3 Zigbee® RF Module 230

AT commands Networking commands

B e

Reserved.
Reserved.
Disable Tx packet extended timeout.

Disable ACK for end device I/0 sampling.

o b, W N

Enable High-RAM concentrator. Set this bit to 0 for Low-RAM concentrator, where Route
Record Indicator - 0xA1 frames will be emitted for external storage and use in subsequent
Create Source Route - 0x21 frames. This option will only take effect when AR < OxFF or
when enabling source routing.

7 When the Network Watchdog triggers, search for a coordinator on a new network to join.
The Network Watchdog must be enabled for this to take effect—NVV (Network Watchdog
Timeout) > 0.

With this bit set, the device will remain on the current network until a valid coordinator is
found. If the coordinator is found on a different network, the device will leave the current
network and join the new network.

Parameter range
0 - OxFF

Default
0x40

DC (Joining Device Controls)

A bitfield that contains advanced joining device controls that do not have dedicated AT commands.
These options only apply to joining devices (CE=0).

Leave unused bits clear so future device controls are not inadvertently enabled during a firmware
update.

Bit field:
Unused bits must be set to 0. These bits may be logically OR'ed together:

0 Generate a preconfigured link key using device's install code (KY is ignored). Enabling this
option requires the joining device be registered to the trust center.

1 Ignore NWK leave requests after joining.
2 Enable verbose join information.

3 Join network with best response (strongest signal) instead of first responder.
4 Reserved
5

An orphaned router will not leave the network but will attempt to rejoin the coordinator
indefinitely. This functionality also requires the network watchdog to be enabled (NW > 0).

Digi XBee® 3 Zigbee® RF Module 231

AT commands Networking commands

B peserpuon

6 A router or sleeping end device that receives a many-to-one-route-request (MTORR)
sends a unicast back to the aggregator so that it can send a unicast back to that device
using a source route.

This unicast is randomized over the NT parameter.

Parameter range
0 - OxFFFF

Default
0

C8 (Compatibility Options)
A bitfield that contains options for compatibility with other XBee Zigbee devices.

Devices prior to the XBee 3 Zigbee RF Module use a different scale to represent LQI. C8 bit 4 (C8 |
0x10) enables an LQI compatibility mode. Networks that contain a mix of XBee 3 Zigbee and
legacy XBee devices should enable this feature. Otherwise operating a mixed network without this
bit set will prioritize legacy devices when determining route cost.

If operating in Command mode, changing C8 bit 4 is made active only when Command mode exits
via timeout or CN (Exit Command mode). Changing this bit causes all current parameters to be
written to persistent storage and the device restarts; this is equivalent to issuing WR and FR
commands. When the device restarts, no modem status is generated. CTS will also de-assert
during this period, so flow control is advised. If hardware flow control is not being used, a 1-second
delay after exiting Command mode (or applying changes if using API) may be necessary to avoid
data loss.

Changing C8 after network association causes the device to leave the network.

Parameter range
0x00, 0x10

Bit field:
Unused bits must be set to 0. These bits may be logically OR'ed together:

Bit Meaning

0 Reserved

1 Reserved

2 Reserved

3 Reserved

4 Legacy LQI Calculation Compatibility

Default
0x00

Digi XBee® 3 Zigbee® RF Module 232

AT commands Discovery commands

Discovery commands

Network Discovery and corresponding discovery options.

NI (Node Identifier)

The node identifier is a user-defined name or description of the device. Use this string with network
discovery commands in order to easily identify devices on the network.

Use the ND (Network Discovery) command with this string as an argument to filter network
discovery results.

Use the DN (Discover Node) command with this string as an argument to resolve the 64-bit
address of a node with a matching NI string.

Parameter range

A string of case-sensitive ASCII printable characters from 0 to 20 bytes in length. A carriage
return or a comma automatically ends the command.

Default
0x20 (an ASCII space character)

DD (Device Type ldentifier)

Stores the Digi device type identifier value. Use this value to differentiate between multiple types of
devices (for example, sensors or lights).

This command can optionally be included in network discovery responses by setting bit 1 of NO.

Parameter range
0 - OXFFFFFFFF

Default
0x120000

NT (Node Discover Timeout)

Sets the amount of time a base node waits for responses from other nodes when using the ND
(Network Discovery) and DN (Discover Node) commands. When a discovery is performed, the
broadcast transmission includes the NT value to provide all remote devices with a response
timeout. Remote devices wait a random time, less than NT, before sending their response to avoid
collisions.

Parameter range
0x20 - OXFF (x 100 ms)

Default
0x3C (6 seconds)

NO (Network Discovery Options)

Set the Advanced Options that affect how a particular device responds to network discoveries (ND
and DN commands) and when sending a node identification.

Digi XBee® 3 Zigbee® RF Module 233

AT commands Discovery commands

Bit field:
Unused bits must be set to 0. These bits may be logically OR'ed together:

0 Append the DD (Digi Device Identifier) value to ND responses and node identification
frames.

1 Local device sends its own ND response when ND is issued.

Parameter range
0-3

Default
0x0

ND (Network Discovery)

Discovers and reports all of the devices it finds on a network. The command reports the following
information after a jittered time delay (based on the local device’s NT value).

MY<CR> (2 bytes) (always OxFFFE)

SH<CR> (4 bytes)

SL<CR> (4 bytes)

DB<CR> (Contains the detected signal strength of the response in negative dBm units)

NI <CR> (variable, 0-20 bytes plus 0x00 character)

PARENT_NETWORK ADDRESS<CR> (2 bytes)

DEVICE_TYPE<CR> (1 byte: 0 = Coordinator, 1 = Router, 2 = End Device)

STATUS<CR> (1 byte: reserved)

PROFILE_ID<CR> (2 bytes)

MANUFACTURER_ID<CR> (2 bytes)

DIGI DEVICE TYPE<CR> (4 bytes. Optionally included based on NO settings.)

RSSI OF LAST HOP<CR> (1 byte. Optionally included based on NO settings.)
After (NT * 100) milliseconds, the command ends by returning a <CR>.

If you send ND through a local API frame, each network node returns a separate Local or Remote
AT Command Response API packet, respectively. The data consists of the previously listed bytes
without the carriage return delimiters. The NI string ends in a “0x00” null character because itis a
variable length.

ND also accepts a NI (Node Identifier) as a parameter (optional). In this case, only a device that
matches the supplied identifier responds after a jittered time delay. If there are no matching
devices, the command returns an “ERROR”.

The radius of the ND command is set by the BH command.

A status code of 1I=ERROR will be returned if the transmit queue is full. That means there are
already four messages queued for transmission. The application is trying to send messages faster
than the device can process the requests. The application may either try again later, be redesigned
to send messages at a slower rate, or wait for a Tx Status response for a prior message before
attempting to send another.

Digi XBee® 3 Zigbee® RF Module 234

AT commands Discovery commands

For more information about the options that affect the behavior of the ND command, see NO
(Network Discovery Options).

The ND command cannot be issued from within MicroPython or over BLE.

Parameter range
20-byte printable ASCII string (optional)

Default
N/A

DN (Discover Node)

Resolves an NI (Node identifier) string to a physical address (case sensitive).
The DN command cannot be issued from within MicroPython or over BLE.
The following events occur after DN discovers the destination node:

When DN is sent in Command mode:

1. The device sets DL and DH to the address of the device with the matching NI string.
2. The receiving device returns OK (or ERROR).

3. The device exits Command mode to allow for immediate communication. If an ERROR is
received, then Command mode does not exit.

When DN is sent as a local Local AT Command Request - 0x08:

1. The receiving device returns the 16-bit network and 64-bit extended addresses in an API
Command Response frame..

2. Ifthere is no response from a module within (NT * 100) milliseconds or you do not specify a
parameter (by leaving it blank), the receiving device returns an ERROR message.

Parameter range
Up to 20-byte printable ASCII string

Default
N/A

AS (Active Scan)

Forces an active scan of the neighborhood for beacon responses. The AS command cannot be
issued remotely.

An Active scan returns a multi-line response with each field separated by a carriage return:
AS_type - unsigned byte = Always returns 2, indicating the protocol is Zigbee
Channel - unsigned byte
PAN - unsigned word in big endian format
Extended PAN - eight unsigned bytes in bit endian format
Allow Join - unsigned byte - 1 indicates join is enabled, 0 that it is disabled
Stack Profile - unsigned byte
LQI - Link Quality Indicator - unsigned byte, higher values are better
RSSI - Relative Signal Strength Indicator - signed byte, lower values are better

Digi XBee® 3 Zigbee® RF Module 235

AT commands Operating Network commands

Each field in the AS response is separated by a carriage return (OxOD character).
An additional carriage return separates multiple beacons.
Two additional carriage returns indicate the end of the Active Scan.

If using APl Mode, no <CR>’s are returned and a separate response frame is generated for each
PanDescriptor. For more information, see Operate in API mode. If no PANs are discovered during
the scan, only one carriage return is printed.

The AS command cannot be issued from within MicroPython or over BLE.

Before a device is associated to a network (Al != 0), it will continuously perform an active scanin
the background, searching for a valid network to join. While this is occurring, you cannot manually
perform an active scan using the AS command. You can bypass this restriction by setting DJ to 1.
This will disable joining and halt the background active scans.

Parameter range
N/A

Default
N/A

Operating Network commands

The following read-only AT commands provide information about the attached Zigbee network.

Al (Association Indication)

Read information regarding last node join request. Query Al during a join attempt to identify the
current state.

You can also enable Verbose Joining (DC=4) to debug a join attempt in real-time.

0x00 Successfully formed or joined a Zigbee network.

0x21 Scan found no PANSs.

0x22 Scan found no valid PANs based on SC and ID settings.

0x23 Valid PAN found, but joining is currently disabled.

0x24 No joinable beacons were found.

0x27 Join attempt failed.

0x2A Failed to start coordinator.

0x2B Checking for existing coordinator.

0x40 Secure Join - Successfully attached to network, waiting for new link key.
0x41 Secure Join - Successfully received new link key from the trust center.
0x44 Secure Join - Failed to receive new link key from the trust center.

Digi XBee® 3 Zigbee® RF Module 236

AT commands Operating Network commands

OxAB Attempted to join a device that did not respond.

OxAD Secure Join - a network security key was not received from the trust center.
OxAF Secure Join - a preconfigured key is required to join the network.

OxFF Initialization time; no association status has been determined yet.

Parameter range
0 - OXFF [read-only]

Default
N/A

OP (Operating Extended PAN ID)

Read the 64-bit extended PAN ID of the attached network. The OP value reflects the operating 64-
bit extended PAN ID where the device is running.

Parameter range
1- OxFFFFFFFFFFFFFFFF

Default
N/A

Ol (Operating 16-bit PAN ID)
Read the 16-bit PAN ID of the attached network. The Ol value reflects the actual 16-bit PAN ID
where the device is running.

Parameter range
0 - OXFFFF [read-only}

Default
N/A

CH (Operating Channel)

Read the channel number of the attached network. Channels are represented as IEEE 802.15.4
channel numbers.

A value of 0 means the device has not joined a PAN and is not operating on any channel.

Parameter range
0, Ox0B - 0x1A (Channels 11 through 26) [read-only]

Default
N/A

Digi XBee® 3 Zigbee® RF Module 237

AT commands Zigbee Addressing commands

NC (Number of Remaining Children)

Read the number of remaining end device children that can join the device. If NC returns 0, the
device is at capacity and cannot allow any more end device children to join.

Parameter range
0 - 0x14 (20 child devices)

Default
N/A

Zigbee Addressing commands

The following AT commands are used for communication with a Zigbee network after association.

SH (Serial Number High)

Displays the upper 32 bits of the unique IEEE 64-bit extended address assigned to the XBee in the
factory.

This value is read-only and it never changes.

Parameter range
0x0013A200 - 0x0013A2FF [read-only]

Default
Setin the factory

SL (Serial Number Low)

Displays the lower 32 bits of the unique IEEE 64-bit RF extended address assigned to the XBee in
the factory.

This value is read-only and it never changes.

Parameter range
0 - OxFFFFFFFF [read-only]

Default
Set in the factory

MY (16-bit Network Address)

Reads the 16-bit network address of the device, which is randomly assigned by the network
manager upon association.

A value of OxXFFFE means the device has not joined a Zigbee network.

Parameter range
0 - OXFFFF [read-only]

Default
0 - OXFFFE

Digi XBee® 3 Zigbee® RF Module 238

AT commands Zigbee Addressing commands

MP (16-bit Parent Network Address)

Read the 16-bit network address of the end device's parent. A value of OXFFFE means the device
does not have a parent or is not configured as an end device.

Parameter range
0 - OXFFFE [read-only]

Default
OxFFFE

DH (Destination Address High)

Set or read the upper 32 bits of the 64-bit destination address.

When you combine DH with DL, it defines the 64-bit destination address that the device uses for
outgoing data transmissions in transparent mode (AP = 0) and I/0O sampling. This destination
address corresponds to the serial number (SH + SL) of the target device.

Reserved Zigbee network addresses:

= 0x000000000000FFFF is a broadcast address (DH = 0, DL = OXFFFF).
= 0x0000000000000000 addresses the network coordinator.

Parameter range
0 - OXFFFFFFFF

Default
0

DL (Destination Address Low)

Set or read the lower 32 bits of the 64-bit destination address.

When you combine DH with DL, it defines the 64-bit destination address the device uses for
outgoing data transmissions in Transparent mode (AP = 0) and I/O sampling. This destination
address corresponds to the serial number (SH + SL) of the target device.

Reserved Zigbee network addresses:

= 0x000000000000FFFF is a broadcast address (DH = 0, DL = OxFFFF).
= 0x0000000000000000 addresses the network coordinator.

Parameter range
0 - OXFFFFFFFF

Default
0

TO (Transmit Options)

A bitfield that configures the advanced options used for outgoing data transmissions from a device
operating in Transparent mode (AP = 0).

When operating in APl mode, if the Transmit Options field in the API frame is 0, the TO parameter
value will be used instead.

Digi XBee® 3 Zigbee® RF Module 239

AT commands Zigbee Addressing commands

Sending a unicast message with MAC ACKs disabled is not intended to be a reliable form of
communication, as no ACKs are produced by recipients.

Parameter range
0 - OxFF

Bit field:
Unused bits must be set to 0. These bits may be logically OR'ed together:

0 Disable MAC acknowledgments (retries) and route repair for unicast traffic.

4 Send data securely—requires secure session be established with destination. Enabling this
bit will reduce maximum payload size by 4 bytes.

5 Enable APS end-to-end encryption (if EE = 1). Enabling this bit will reduce the maximum
payload size by 9 bytes.

6 Use extended timeout.

Default
0

NP (Maximum Packet Payload Bytes)

If operating in Transparent mode (AP = 0), NP reads the maximum number of RF payload bytes
that you can typically send in a transmission based on current parameter settings (DH, DL, TO,
and EE). Transmissions in Transparent mode do not use fragmentation and this value represents
the payload of a single fragment. For other operating modes, NP returns the typical maximum
number of RF payload bytes that can be transmitted with fragmentation enabled (255 bytes).

See Maximum RF payload size for more information.

Some options may impact maximum payload size that are not captured by the NP value: sending a
packet securely across a Secure Session (API transmit option bit 4 enabled) will reduce the
maximum payload size by 4 bytes. Using source routing (AR < OxFF) further reduces the maximum
payload size depending on how many hops are traversed.

Using source routing (AR < 0xFF), further reduces the maximum payload size depending on how
many hops are traversed.

NP returns a hexadecimal value. For example, if NP returns 0x54, this is equivalent to 84
bytes.

Parameter range
0 - OXFF [read-only]

Default
N/A

Digi XBee® 3 Zigbee® RF Module 240

AT commands Zigbee configuration commands

Zigbee configuration commands

The following AT commands adjust the advanced communication settings that affect outgoing data
transmissions in a Zigbee network.

NH (Maximum Unicast Hops)

Sets or displays the maximum number of hops across the network. This limit sets the maximum
broadcast hops value (BH) and determines the unicast timeout.

The timeout is computed as (50 * NH) + 100 ms.

The default unicast timeout of 1.6 seconds (NH = 0x1E) is enough time for data and the
acknowledgment to traverse approximately 8 hops.

If BH (Broadcast Hops) = 0, NH is used to set the maximum number of hops across the network
when sending a broadcast transmission.

Parameter range
0 - OxFF

Default
Ox1E

BH (Broadcast Hops)

The number of hops that broadcast transmissions from the local device traverse. Unlike NH, this
parameter is a fixed number of hops and not used in timeout calculations.

Parameter range
0-0x1E

Default
0

AR (Aggregate Routing Notification)

Set or read the periodic time for broadcasting aggregate route messages. Setting AR enables
many-to-one routing from the broadcasting device using the concentrator mode determined by DO
Bit 6.

Set AR to 0x00 to send only one broadcast.

Set AR to OxFF to stop sending broadcasts (many-to-one routing will still be enabled until a
network reset occurs).

Parameter range
0 - OxFF (x10 sec)

Default
OxFF (disabled)

SE (Source Endpoint)

Sets or displays the application layer source endpoint value used for data transmissions.

Digi XBee® 3 Zigbee® RF Module 241

AT commands Zigbee configuration commands

This command only affects outgoing transmissions in Transparent mode (AP = 0).

Endpoints 0xDC - OXEE are reserved for special use by Digi and should not be used in an
application outside of the listed purpose.

The reserved Digi endpoints are:

= OxES8 - Digi data endpoint

= (OxEB6 - Digi device object endpoint

®m (OxES5 - Secure Session Server endpoint

= (OxE4 - Secure Session Client endpoint

® OxE3 - Secure Session SRP authentication endpoint

Parameter range
0 - OxFF

Default
OxE8

DE (Destination Endpoint)

Sets or displays the application layer destination endpoint used for data transmissions.
This command only affects outgoing transmissions in Transparent mode (AP = 0).

Endpoints OxDC - OXEE are reserved for special use and should not be used in an application
outside of the listed purpose.

The reserved Digi endpoints are:

= OxES8 - Digi data endpoint

= (OxE®6 - Digi device object endpoint

®m (OxES5 - Secure Session Server endpoint

= (OxE4 - Secure Session Client endpoint

® OxE3 - Secure Session SRP authentication endpoint

Parameter range
0 - OxFF

Default
OxE8

CI (Cluster ID)

The application layer cluster ID value. The device uses this value as the cluster ID for all data
transmissions in Transparent mode and for all transmissions performed with the Transmit Request
- 0x10 in API mode. In APl mode, transmissions performed with the Explicit Addressing Command
Request - 0x11 ignore this parameter.

Digi XBee® 3 Zigbee® RF Module 242

AT commands Security commands

= (Ox11 is a transparent data cluster ID.

= 0x12 is a loopback cluster ID. The destination node echoes any transmitted packet back to
the source device.

Parameter range
0 - OxFFFF

Default
0x11 (Transparent data cluster ID)

Security commands

The following AT commands are used to set the initial security parameters.

Configure these parameters prior to forming/joining a network. Changing these parameters
may cause the node to leave any currently attached network.

EE (Encryption Enable)

Set or read the encryption enable setting of the local device.

Parameter range

0-1
0 Encryption Disabled
1 Encryption Enabled
Default
0

EO (Encryption Options)
A bitfield that contains advanced encryption options that do not have dedicated AT commands.
These options are only applicable when encryption is enabled (EE = 1).

Leave unused bits clear so future encryption options are not inadvertently enabled during a
firmware update.

Bit field:
Unused bits must be set to 0.

When changing the EO option on a router or sleeping end device, you need to send an NR
(Network Reset) for the new options to take effect if the device is already joined to a network.

These bits may be logically OR'ed together:

Digi XBee® 3 Zigbee® RF Module 243

AT commands Security commands

Bt oo

0 Send/receive NWK keys in the clear (unsecure).

1 1 = Centralized Trust Center.
0 = Distributed Trust Center.

2 Use EUI64-hashed link keys (used on centralized trust center only).
3 Emit join notification frames (used on centralized trust center only).
4 Allow joining using well-known default link keys (unsecure).

Parameter range
0 - OxFFFF

Default
2

KY (Link Key)

The preconfigured link key used during network formation and joining. When queried, KY returns

zero if the value of the key is zero; for all other values it returns an OK response to indicate that a

key is present.

On a forming node (CE = 1):
KY acts as the preconfigured global link key of the trust center. If you set KY to 0, a random
link key will be generated and used to form the network; this requires joining devices to be
registered to the trust center using a 0x24 registration APl frame.

On a joining node (CE = 0):
KY is the preconfigured link key used during joining; it must either match the KY value set on
the trust center or be registered with the trust center via 0x24 registration frame. If you set
KY to 0 on a joining node, an unsecure well-known default link key will be used. EO bit 4
must be set on the trust center for unsecure devices configured in this way to join.

Parameter range
0 - OXFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF [write-only]

Default
0

NK (Trust Center Network Key)

The network key used by the trust center to encrypt network traffic. If you set NK to 0
(recommended), a random network key is used. NK is not used by joining nodes, as the network
key is securely obtained as part of the join process. When queried, NK returns zero if the value of
the key is zero; for all other values it returns an OK response to indicate that a key is present.

If operating with a centralized trust center (EE = 1, EO = 2), NK can be changed to rotate the
network key, which will be distributed to every device on the network. In a distributed trust center,
every router has a copy of the network key, so it cannot be changed after the network is formed.

When the network key is changed, a Modem Status - Ox8A of 0x45 will be emitted. After a period of
time, a 0x07 modem status will indicate that the network has switched to the new key.

Digi XBee® 3 Zigbee® RF Module 244

AT commands Security commands

Parameter range
0 - OXFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF [write-only]

Default
0

RK (Trust Center Network Key Rotation Interval)

Used by a centralized trust center to automatically rotate the network key. RK determines in the
interval, in days, in which a new random network key is generated and distributed to the network.

Automatic network key rotation can only be performed if NK is set to 0 and the device is acting as a
centralized trust center (CE =1, EE =1, EO | 2). After RK days of runtime, the network key is
rotated and the network is updated with the new key.

Setting RK to 0 performs a one-time network key rotation. This can be used by an external means
to extend the key rotation beyond the maximum of 22 days or to securely rotate keys without
explicitly setting NK.

Devices on the network store the current and previous network keys to ensure devices remain on
the network through long sleep cycles or periods of lost connectivity. Should a device miss a
network key update, it will securely rejoin the network and obtain the new network key from the
trust center.

When a network key rotation is initiated, a Modem Status - 0x8A of 0x45 is emitted. After a period
of time, a 0x07 modem status will indicate that the network has switched to the new key.

Parameter range
0 - 0x16 (days)

Default
0x16

KT (Trust Center Link Key Registration Timeout)

When registering a joining device using a 0x24 registration API frame, this parameter determines
the length of time the key table entry persists before expiring.

This timeout is separate from the NJ join time. The join window opens when a device is
successfully registered to the trust center via the 0x24 Device Registration APl Frame.

Parameter range
0x1E - OXFFFF (seconds)

Default
0x12C (500 Seconds)

I? (Install Code)

The install code is a random key assigned to every Zigbee 3.0 device at the factory. This install
code can be used to securely register a device to a trust center using a 0x24 registration frame and
option bit.

For the install code to be used by the joining device, DC bit 0 must be set on the joiner.

Digi XBee® 3 Zigbee® RF Module 245

AT commands Security commands

Parameter range
0 - OXFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF [read-only]

Default
Set in the factory.

DM (Disable Features)

A bit field mask that you can use to enable or disable features. If disabling device functionality for
security purposes, we recommend that you also enable secure remote configuration to prevent
features from being re-enabled remotely.

Bit field:
Unused bits must be set to 0. These bits may be logically OR'ed together:
A bit field mask that you can use to enable or disable specific features.

If disabling device functionality for security purposes, we recommend that you also enable secure
remote configuration to prevent features from being re-enabled remotely.

Bit | Descrpton

0 Reserved
1 Reserved
2 Disable firmware over-the-air (FOTA) updates. When set to 1, the device cannot act as a

FOTA client. FOTA File System access is protected with FK (File System Public Key).

Serial firmware updates are always possible via the bootloader.

3 Disable SRP authentication on the client side of the connection.

4 Disable SRP authentication on the server side of the connection.

Parameter range
0, 4 - Ox1C (bit field)

Default
0

BK (Centralized Trust Center Backup and Restore)

BK is used to create a backup file in the file system named backup_TC.xbee. This command is
also used to restore a trust center using a backup file stored in the file system.

USAGE:

BKO

Passing a parameter of zero creates a unique backup file using the device's SL and stores it in the
centralized trust center’s file system. To create a backup file, the module must be configured as
coordinator (CE = 1), as a centralized trust center (EO = 2), with security enabled (EE = 1), and
have a KB key set.

Digi XBee® 3 Zigbee® RF Module 246

AT commands Security commands

BK 1 <Backup Filename> <CX Output>
The backup filename is not an optional parameter.

Passing a parameter of 1 causes the device to look for a backup file in the file system and uses it to
set the device’s configuration to match the original coordinator.

Passing a parameter of 1 and <Backup Filename> causes the device to look for a backup file with
the given name in the file system and uses it to set the device’s configuration to match the original
coordinator.

After restoring the backup, if the new coordinator fails to communicate, the CX command may
need to be used to refresh needed network information in the new coordinator. The values returned
by executing the CX command on a router that is part of the existing network can be passed as
optional parameters to the new coordinator using the BK 1 <Backup Filename> command.

CX (Centralized Trust Center Network Information Update)

CX is a read-only, router specific command that returns three hexadecimal numbers that can be
entered as optional parameters to the BK command during the centralized trust center restore
operation. The CX command is only applicable for routers and will return ERROR if executed on a
coordinator.

Example

The CX command when executed on a router will produce similar output to:
ATCX

FE 7D48 2

These numbers can then be used as optional parameters when issuing a BK 1 <Backup
Filename> to a new device that is replacing an inoperable centralized trust center:

ATBK 1 "backup_TC417AD47A.xbee" FE 7D48 2
OK

KB (Centralized Trust Center Backup Key)

KB is used to set the 256-bit centralized trust center backup key for use with the BK command.

Itis highly recommended to set KB prior to any network formation. See Centralized trust center
backup for best practices.

USAGE:

KB
When sent without any parameters, KB returns 0 if no key has been set, otherwise it returns OK.

KB <New Key>

When one parameter is passed, this value is set as the key. As soon as the key is set in this
fashion, KY and NK are cleared and an immediate WR is performed. This action is necessary to
protect against the possibility of an unauthorized user changing this key and generating a backup
in an attempt to glean sensitive information.

Digi XBee® 3 Zigbee® RF Module 247

AT commands Secure Session commands

WARNING! This will invalidate the current network and require all devices reassociate
after the network is reformed.

KB <Old Key> <New Key>

When two parameters are passed, if the first value matches the value set for either KY or KB, then
KB is updated to the second value without clearing KY and NK. This causes no disruption to the
existing network.

To protect against the possibility that an unauthorized user could attempt a brute-force attack, 20
invalid attempts to change KB in this manner will result in KY, NK, and KB being cleared and an
immediate WR performed. These attempts persist across power cycles.

Parameter range
Up to a 256-bit value

Default
0

Secure Session commands

These are the AT commands that enable Secure Session.

SA (Secure Access)

The Secure Access Options bit-field defines the feature set(s) intended to be secure against
unauthorized access. The XBee 3 Zigbee RF Module should establish a secure session in order to
access functionality defined by the feature set(s) on the local device.

A password must be set using the Secure Session Salt and Verifier before access is secured.

Parameter range
0 - Ox1F (up to OXFFFF)

Bit field
Unused bits must be set to 0. These bits may be logically OR'ed together:

i

0 Reserved

1 Remote AT Commands
When set to 1 and if a password has been set, the device will not respond to insecure
Remote AT Command requests (APl Frame 0x17) but still can send insecure Remote AT
Commands.

2 Serial Data
When set to 1, the device will not emit any serial data that was sent insecurely.
This functionality applies to devices that are configured for Transparent mode, but in this
instance, only the SRP server would be AP = 0, the client would still have to send the
Secure Session Control - 0x2E via APl mode. The server will also not emit any 0x90 or
0x91 frames when this bit is set.

Digi XBee® 3 Zigbee® RF Module 248

AT commands RF interfacing commands

Default
0

*S (Secure Session Salt)

The Secure Remote Password (SRP) Salt is a 32-bit number used to create an encrypted
password for the XBee 3 Zigbee RF Module. The *S command contains the salt value in the
salt/verifier pair used for secure session authentication.

Parameter range
0-FFFFFFFF

Default
0

*V, *W, *X, *Y (Secure Session Verifier)

The secure session verifier is a 128-byte value used together with *S (Secure Session Salt) for
secure session authentication. The *V, *W, *X, and *Y commands each contain 32 bytes of the
secure session verifier: *V contains bytes 0 - 31, *W bytes 32 - 63, *X bytes 54 - 95, and *Y bytes
96 - 127.

Parameter range
Each command can be any 32-byte value

Default
0

RF interfacing commands
The following AT commands affect the 2.4 GHz Zigbee RF interface of the device.

PL (TX Power Level)

Sets or displays the power level at which the device transmits conducted power for Zigbee traffic.

If operating on channel 26 (CH = 0x1A), output power will be capped and cannot exceed 8
dBm regardless of the PL setting.

Parameter range

0-4
XBee non-
Parameter PRO XBee 3 PRO
0 -5dBm -5dBm
1 -1dBm +3 dBm

Digi XBee® 3 Zigbee® RF Module 249

AT commands RF interfacing commands

XBee non-
Parameter PRO XBee 3 PRO

2 +2 dBm +8 dBm
3 +5dBm +15dBm
4 +8 dBm +19 dBm
Default

4

PP (Output Power in dBm)

Display the operating output power based on the current configuration (channel and PL setting).
The values returned are in dBm, with negative values represented in two's complement; for
example:

-5 dBm = OxFB.

Parameter range
0 - OxFF [read-only]

Default
N/A

SC (Scan Channels)

The channels used when an active scan is performed by the local device.

An active scan is performed any time a network is formed or prior to a join attempt. You can force
an active scan by issuing an AS command.

Changing SC after network association may cause the device to leave the network if the operating
channel (CH) is excluded from the SC mask.

Parameter range
0 - OXFFFF (bit field)

Bit field mask:
B EEEseisachme FeaenoyGi)
0 11 (0x0B) 2.405
1 12 (0x0C) 2.410
2 13 (0x0D) 2.415
3 14 (0x0E) 2.420
4 15 (OxOF) 2.425
5 16 (0x10) 2.430

Digi XBee® 3 Zigbee® RF Module 250

AT commands MAC diagnostics commands

m IEEE 802.15.4 Channel Frequency (GHz)

6 17 (0x11) 2.435
7 18 (0x12) 2.440
8 19 (0x13) 2.445
9 20 (0x14) 2.450
10 21 (0x15) 2.455
11 22 (0x16) 2.460
12 23 (0x17) 2.465
13 24 (0x18) 2.470
14 25 (0x19) 2.475
15 26 (0x1A) 2.480

Avoid channel 26 if possible, as the output power is capped at +8 dBm on the Pro variant.

Default
0x7FFF (channels 11 through 25)

SD (Scan Duration)

Sets or displays the length of time the device will linger on a channel during an energy scan and
active scan.

Scan Time is measured as:
([# of channels to scan] * (2 *SD) * 15.36 ms) + (38 ms * [# of channels to scan]) + 20 ms
Use the SC (Scan Channels) command to set the number of channels to scan.

SD influences the time the MAC listens for beacons or runs an energy scan on a given
channel. The SD time is not an accurate estimate of the router/end device joining time
requirements. Zigbee joining includes additional overhead comprising beacon processing on each
channel, and sending a join request that extends the actual joining time.

Parameter range
0 -7 (exponent)

Default
3

MAC diagnostics commands

The following commands provide Media Access Control diagnostic information.

Digi XBee® 3 Zigbee® RF Module 251

AT commands Sleep settings commands

EA (MAC ACK Failure Count)

The number of unicast transmissions that time out awaiting a MAC ACK. This can be up to RR +1
timeouts per unicast when RR > 0.

This count increments whenever a MAC ACK timeout occurs on a MAC-level unicast. When the
number reaches OxFFFF, the firmware does not count further events.

To reset the counter to any 16-bit unsigned value, append a hexadecimal parameter to the
command.

This value is volatile (the value does not persist in the device's memory after a power-up
sequence).

Parameter range
0 - OXFFFF

Default
0x0

DB (Last Packet RSSI)

This command reports the received signal strength of the last received RF data packet or APS
acknowledgment. The DB command only indicates the signal strength of the last hop. It does not
provide an accurate quality measurement for a multihop link.

The DB command value is measured in -dBm. For example, if DB returns 0x50, then the RSSI of
the last packet received was -80 dBm. Set DB to 0 to clear the current value.

Parameter range
0 - OxFF

Default
N/A

ED (Energy Detect)

Measures the detected energy on each IEEE 802.15.4 channel.

In Transparent mode (AP = 0), a comma follows each value with the list ending with a carriage
return. The values returned reflect the detected energy level in units of -dBm. Convert an ED
response of 49, 3A, and so on, to decimal to become -73 dBm, -58 dBm, and so on.

ED accepts a parameter value which will increase the duration of the energy detection scan.

Parameter range
0 - OxFF

Default
N/A

Sleep settings commands

The following commands enable and configure the low power sleep modes of the device.

Digi XBee® 3 Zigbee® RF Module 252

AT commands Sleep settings commands

SM (Sleep Mode)

Sets or displays the sleep mode of the device.

When SM > 0, the device operates as an end device. However, CE must be 0 before SM can be
set to a value greater than 0 to change the device to an end device. Changing a device from a
router to an end device (or vice versa) forces the device to leave the network and attempt to join as
the new device type when changes are applied.

Parameter range

0,1,4,5
0 Sleep disabled (router)
1 Pin sleep
2 N/A
3 N/A
4 Cyclic sleep enabled
5 Cyclic sleep, pin wake
6 MicroPython sleep (with optional pin wake). For complete details see the Digi
MicroPython Programming Guide.
Default
0

SP (Cyclic Sleep Period)

Sets the duration of sleep time for the end device, up to 28 seconds. Use the SN command to
extend the sleep time past 28 seconds.

On the parent, this value determines how long the parent buffers a message for the sleeping end
device. Set the value to at least equal to the longest SP time of any child end device.

Parameter range
0x20 - 0xAFO0 x 10 ms (Quarter second resolution)

Default
0x20

ST (Cyclic Sleep Wake Time)

Sets or displays the wake time of a cyclically sleeping end device after receiving serial or RF data.

The wake timer resets each time the device receives serial or RF data. Once the timer expires, an
end device may enter low power operation.

Parameter range
1-0xFFFF (x 1 ms)

Digi XBee® 3 Zigbee® RF Module 253

https://www.digi.com/resources/documentation/Digidocs/90002219/
https://www.digi.com/resources/documentation/Digidocs/90002219/

AT commands Sleep settings commands

Default
0x1388 (5 seconds)

SN (Number of Sleep Periods)

Set or read the number of sleep periods value. This command controls the number of sleep periods
that must elapse between assertions of the ON_SLEEP line during the wake time if no RF data is
waiting for the end device. This command allows a host application to sleep for an extended time if
no RF data is present.

Parameter range
1- OxFFFF

Default
1

SO (Sleep Options)
A bitfield that contains advanced sleep options that do not have dedicated AT commands.

Parameter range
0 - OxFF

Bit field:
Unused bits must be set to 0. These bits may be logically OR'ed together:

0 Reserved.
1 Wake for the entire ST time per wake period.

2 Enable extended cyclic sleep (sleep for the entire SN * SP time, possible data loss).

Default
0

WH (Wake Host Delay)

Sets or displays the wake host timer value. You can use WH to give a sleeping host processor
sufficient time to power up after the device asserts the ON_SLEEP line.

If you set WH to a non-zero value, this timer specifies a time in milliseconds that the device delays
after waking from sleep before sending data out the UART or transmitting an 1/0 sample. If the
device receives serial characters, the WH timer stops immediately.

Parameter range
0 - OXFFFF (x 1 ms)

Default
0

Digi XBee® 3 Zigbee® RF Module 254

AT commands Sleep settings commands

PO (Polling Rate)

Set or read the end device poll rate.

Setting this to 0 (default) enables polling at 100 ms (default rate), advancing in 10 ms increments.
Adaptive polling may allow the end device to poll more rapidly for a short time when receiving RF
data.

Parameter range
0-0x3E8 (x 10 ms)

Default
0

ET (End Device Timeout)

Sets the child table parent timeout. This command is set conditionally on an XBee3 parent or
sleepy end devices as follows:

1. Onan all XBee3 network, set ET command only on the sleepy end device. The sleepy end
device sends the timeout to the parent when joining the network.

2. On a mixed network where the parent is an XBee3 and the sleepy end device is S2B/S2C,
set the ET command only on the parent module, which will be used for the child table
timeout.

Parameter range
0-14

Parameter Child table timeout

10 seconds
2 minutes

4 minutes

8 minutes
16 minutes
32 minutes
64 minutes
128 minutes
256 minutes

512 minutes

E;@O.\ICDU'I-LOOI\)—'-O|

1024 minutes

—_
—

2048 minutes

—_
N

4096 minutes

Digi XBee® 3 Zigbee® RF Module 255

AT commands MicroPython commands

13 8192 minutes
14 16384 minutes
Default

1 (2 minutes)

S| (Sleep Immediately)

Executable command. Causes a cyclic sleep device to sleep immediately rather than wait for the
ST timer to expire.

If you issue this command in Command mode, the module remains in Command mode until
the CT timer expires or you issue a CN command.

Instructs a synchronously sleeping network to go to sleep before before ST expires. It begins with
the node that receives the command and affects every node in the network that can hear the
broadcast that requests the network to sleep immediately.

It is only effective if the network is in sleep compatibility node—SM8 or SM7.

Parameter
N/A

Default
N/A

MicroPython commands

The following commands relate to using MicroPython on the XBee 3 Zigbee RF Module.

PS (Python Startup)
Sets whether or not the XBee 3 Zigbee RF Module runs the stored Python code at startup.
Range
0-1
0 Do not run stored Python code at startup.
1 Run stored Python code at startup.
Default
0

Digi XBee® 3 Zigbee® RF Module 256

AT commands File System commands

PY (MicroPython Command)

Interact with the XBee 3 Zigbee RF Module using MicroPython. PY is a command with sub-
commands. These sub-commands are arguments to PY.

PYB (Bundled Code Report)

You can store compiled code in flash using the os.bundle() function in the MicroPython REPL;
refer to the Digi MicroPython Programming Guide. The PYB sub-command reports details of the
bundled code. In Command mode, it returns two lines of text, for example:

bytecode: 619 bytes (hash=0x0900DBCE)
compiled: 2017-05-09T15:49:44

The messages are:
= bytecode: the size of bytecode stored in flash and its 32-bit hash. A size of 0 indicates that
there is no stored code.
= compiled: a compilation timestamp. A timestamp of 2000-01-01T00:00:00 indicates that
the clock was not set during compilation.
In APl mode, PYB returns three 32-bit big-endian values:

= bytecode size
= pytecode hash
= timestamp as seconds since 2000-01-01T00:00:00

PYE (Erase Bundled Code)

PYE interrupts any running code, erases any bundled code and then does a soft-reboot on the
MicroPython subsystem.

PYV (Version Report)
Report the MicroPython version.

PY* (Interrupt Program)

Sends Keyboardinterrupt to MicroPython. This is useful if there is a runaway MicroPython
program and you have filled the stdin buffer. You can enter Command mode (+++) and send
ATPY* to interrupt the program.

Default
N/A

File System commands

To access the file system, enter Command mode and use the following commands. All commands
block the AT command processor until completed and only work from Command mode; they are
not valid for APl mode or MicroPython's xbee.atcmd() method. Commands are case-insensitive as
are file and directory names. Optional parameters are shown in square brackets ([]).

FS (File System)

FS is a command with sub-commands. These sub-commands are arguments to FS.

Digi XBee® 3 Zigbee® RF Module 257

https://www.digi.com/resources/documentation/Digidocs/90002219/

AT commands File System commands

Error responses

If a command succeeds it returns information such as the name of the current working directory or
a list of files, or OKif there is no information to report. If it fails, you see a detailed error message
instead of the typical ERROR response for a failing AT command. The response is a named error
code and a textual description of the error.

The exact content of error messages may change in the future. All errors start with a upper
case E, followed by one or more uppercase letters and digits, a space, and an description of the
error. If writing your own AT command parsing code, you can determine if an FS command
response is an error by checking if the first letter of the response is upper case E.

FS (File System)
When sent without any parameters, FS prints a list of supported commands.

FS PWD
Prints the current working directory, which always starts with / and defaults to /flash at startup.

FS CD directory

Changes the current working directory to directory. Prints the current working directory or an error
if unable to change to directory.

FS MD directory

Creates the directory directory. Prints OK if successful or an error if unable to create the requested
directory.

FS LS [directory]

Lists files and directories in the specified directory. The directory parameter is optional and
defaults to a period (.), which represents the current directory. The list ends with a blank line.

Entries start with zero or more spaces, followed by file size or the string <DIR> for directories, then
a single space character and the name of the entry. Directory names end with a forward slash (/) to
differentiate them from files.

<DIR> ./

<DIR>../

<DIR> lib/
32 test.txt

FS PUT filename

Starts a YMODEM receive on the XBee 3 Zigbee RF Module, storing the received file to filename
and ignoring the filename that appears in block 0 of the YMODEM transfer. The XBee 3 Zigbee RF
Module sends a prompt (Receiving file with YMODEM...) when it is ready to receive, at which
point you should initiate a YMODEM send in your terminal emulator.

If the command is incorrect, the reply will be an error as described in Error responses.

FS HASH filename

Print a SHA-256 hash of a file to allow for verification against a local copy of the file. On Windows,
you can generate a SHA-256 hash of a file with the command certutil -hashfile test.txt SHA256.
On Mac and Linux use shasum -b -a 256 test.txt.

Digi XBee® 3 Zigbee® RF Module 258

AT commands File System commands

FS GET filename

Starts a YMODEM send of filename on the XBee device. When it is ready to send, the XBee 3
Zigbee RF Module sends a prompt: (Sending file with YMODEM...). When the prompt is sent, you
should initiate a YMODEM receive in your terminal emulator.

If the command is incorrect, the reply will be an error as described in Error responses.

FS RM file_or_directory

Removes the file or empty directory specified by file_or_directory. This command fails with an
error if file_or_directory does not exist, is not empty, refers to the current working directory or one
of its parents.

Removing a file only reclaims space if the file removed is placed last in the file system.
Deleted data that is contiguous with the last deleted file is also reclaimed. Directories are only
reclaimed if all directories in that particular block of memory are deleted and found at the end of the
file system. Use the ATFS INFO FULL command to see where in the file system files and
directories are placed.

FS INFO

Report on the size of the filesystem, showing bytes in use, available, marked bad and total. The
report ends with a blank line, as with most multi-line AT command output. Example output:

204800 used

695296 free
0 bad

900096 total

FS INFO FULL

Reports every file and directory in the order they are placed in the file system along with the
amount of space they take up individually. Also reports deleted space as well as unused directory
slots. Example output:

128 /flash./

128 /flash/lib./

128 /flash/directory./

1664 [unused dir slot(s)]
2048 /flash/file1.txt.

2048 [deleted space]

20438 /flash/directory/file2.txt

FS FORMAT confirm

Formats the file system, leaving it with a default directory structure. Pass the word confirm as the
first parameter to confirm the format. The XBee 3 Zigbee RF Module responds with Formatting...
when the format starts, and will print OK followed by a carriage return when it finishes.

FK (File System Public Key)

Configures the device's File System Public Key.

The 65-byte public key is required to verify that the file system that is downloaded over-the-air is a
valid XBee 3 file system compatible with the Zigbee firmware.

For further information, refer to Set the public key on the XBee device.

Digi XBee® 3 Zigbee® RF Module 259

AT commands Bluetooth Low Energy (BLE) commands

Parameter range
A valid 65-byte ECDSA public key—all 65-bytes must be entered, including any leading zeros.
Other accepted parameters:
0 = Clear the public key
1 = Returns the upper 48 bytes of the public key
2 = Returns the lower 17 bytes of the public key

Default
0

The Default value of 0 indicates that no public key has been set and hence, all file system
updates will be rejected.

Bluetooth Low Energy (BLE) commands

The following AT commands are BLE commands.

BT (Bluetooth Enable)

BT enables or disables the Bluetooth functionality.
When Bluetooth is enabled, the XBee 3 Zigbee RF Module cannot be in Sleep mode. If the

device is configured to allow Sleep mode and you enable Bluetooth, the XBee 3 Zighee RF Module
will not enter sleep.

Parameter range

Parameter Description

0 Bluetooth functionality is disabled.
1 Bluetooth functionality is enabled.
Default
0
BL (Bluetooth Address)

BL reports the EUI-48 Bluetooth device address. Due to standard XBee AT Command processing,
leading zeroes are not included in the response when in Command mode.

Parameter range
N/A

Default
N/A

Digi XBee® 3 Zigbee® RF Module 260

AT commands Bluetooth Low Energy (BLE) commands

Bl (Bluetooth Identifier)

A human-friendly name for the device. This is the name that will appear in bluetooth advertisement
messages.

If set to default (ASCII space character), the bluetooth indicator will display as XBee 3 Zigbee.
If using XBee Mobile, adjustments to the filter options will be needed if this value is populated.

Parameter range
A string of case-sensitive ASCII printable characters from 1 to 22 bytes in length.

Default
0x20 (an ASCII space character)

BP (Bluetooth Power)

Sets the power level for Bluetooth Advertisements. All other BLE transmissions are sent at 8 dBm.

Parameter range

Parameter Description

0 -20 dBm
1 -10 dBm
2 0dBm
3 8 dBm
Default
3=8dBm
$S (SRP Salt)

You should only use this command if you have already configured a password on the XBee
device and the salt corresponds to the password.

The Secure Remote Password (SRP) Salt is a 32-bit number used to create an encrypted
password for the XBee 3 Zigbee RF Module. Use the $S command in conjunction with the $V, $W,
$X, and $Y verifiers. Together, the command and the verifiers authenticate the client for the BLE
API Service without storing the XBee password on the XBee 3 Zigbee RF Module.

Configure the salt in the $S command. In the $V, $W, $X, and $Y verifiers, you specify the 128-
byte verifier value, where each command represents 32 bytes of the total 128-byte verifier value.

The XBee 3 Zigbee RF Module does not allow for 0 to be valid salt. If the value is 0, SRP is
disabled and you are not able to authenticate using Bluetooth.

Parameter range
0 - FFFFFFFF

Digi XBee® 3 Zigbee® RF Module 261

AT commands API configuration commmands

Default
0

$V, $W, $X, $Y commands (SRP Salt verifier)

Use the $V, $W, $X, and $Y verifiers in conjunction with $S (SRP Salt) to create an encrypted
password for the XBee 3 Zigbee RF Module. Together, $S and the verifiers authenticate the client
for the BLE API Service without storing the XBee password on the XBee device.

Configure the salt with the $S command. In the $V, $W, $X, and $Y verifiers, you specify the 128-
byte verifier value, where each command represents 32 bytes of the total 128-byte verifier value.

Parameter range
0 - FFFFFFFF

Default
0

API configuration commmands

The following commands affect how APl mode operates.

AP (API Enable)

Determines the APl mode for the UART interface.

Parameter range

0-4
0 API disabled (operate in Transparent mode)
1 API enabled
2 API enabled (with escaped control characters)
4 API enabled (operate in Micropython mode)
Default
0
AO (API Options)

Configure the serial output options for received API frames. This parameter is only applicable when
the device is operating in APl mode (AP =1 or 2). For more information about ZDO packet
handling, see Receiving ZDO commands and responses.

= When AO is set to 0, a basic 0x90 receive frame type will be emitted when data packets are
received by the device. No ZDO messages are emitted when configured this way.

= When AO is non-zero, received data packets will be emitted as explicit 0x91 frames.

Digi XBee® 3 Zigbee® RF Module 262

#concepts/c_zb_receiving_zdo_command_responses.htm

AT commands API configuration commmands

= AO bits 1, 2, and 3 determine the routing of received ZDO messages. By default, the XBee
application will handle all received messages, but for supporting external Zigbee
applications, the received messages can instead be passed through to the serial port by
setting these bits.

= AO bit 4 will allow supported ZDO message that are handled by the XBee application to be
echoed to the serial port.

Leave unused bits clear so future API options are not inadvertently enabled during a firmware
update.

Bit field
Unused bits must be set to 0. These bits may be logically OR'ed together:

B e

0 0 = Native API output (0x90 frame type)
1 = Explicit API output (0x91 frame type)

1 0 = XBee handles Supported ZDO requests
1 = Supported ZDO request pass-through

2 0 = XBee handles UnsupportedZDOrequests (responds with ZDO not supported)
1 = Unsupported ZDO request pass-through

3 0 = XBee handles Binding requests (responds with ZDO not supported)
1 = Binding request pass-through

4 This bit is only applicable when AO bit 1 = 0 (XBee handles incoming ZDO)
1 = Echo supported ZDO requests to the serial port

5 1 =Prevent any ZDO messages from going out the serial port. This will also disable any
pass-through set by other AO bits.

Parameter range
0 - OxFF

Default
0

AZ (Extended API Options)

Optionally output additional ZCL messages that would normally be masked by the XBee
application.

Use this when debugging FOTA updates by enabling client-side messages to be sent out of the
serial port.

Parameter range
0x00 - 0x0A (bitfield)
Unused bits must be set to 0. These bits may be logically OR'ed together:

Digi XBee® 3 Zigbee® RF Module 263

AT commands UART interface commands

B e

0 Suppress ZCL output
1 Output receive frames for FOTA update commands
2 Output supported ZCL packets

3 Output Extended Modem Status (0x98) frames instead of Modem Status (Ox8A) frames
when a Secure Session status change occurs

Default
0

UART interface commands

The following commands affect the UART serial interface.

BD (UART Baud Rate)

This command configures the serial interface baud rate for communication between the UART port
of the device and the host.

The device interprets any value between 0x12C and OxOEC400 as a custom baud rate. Custom
baud rates are not guaranteed and the device attempts to find the closest achievable baud rate.
After setting a non-standard baud rate, query BD to find the actual operating baud rate before
applying changes.

Parameter range
Standard baud rates: 0x0 - 0x0A
Non-standard baud rates: 0x12C - 0xXOEC400

0x0 1200 b/s
0x1 2400 b/s
0x2 4800 b/s
0x3 9600 b/s
0x4 19200 b/s
0x5 38400 b/s
0x6 57600 b/s
0x7 115200 b/s
0x8 230,400 b/s
0x9 460,800 b/s
OxA 921,600 b/s

Digi XBee® 3 Zigbee® RF Module 264

AT commands UART interface commands

Default
0x03 (9600 baud)

NB (Parity)

Set or read the serial parity settings for UART communications.

The device does not actually calculate and check the parity. It only interfaces with devices at the
configured parity and stop bit settings for serial error detection.

Parameter range

0-2
0 No parity
1 Even parity
2 Odd parity
Default
0
SB (Stop Bits)

Sets or displays the number of stop bits for UART communications.

Parameter range

0-1
Parameter Description
0 One stop bit
1 Two stop bits
Default
0

RO (Packetization Timeout)

Set or read the number of character times of inter-character silence required before transmission
begins when operating in Transparent mode. A “character time” is the amount of time it takes to
send a single ASCII character at the operating baud rate (BD).

Set RO to 0 to transmit characters as they arrive instead of buffering them into one RF packet.
The RO command only applies to Transparent mode, it does not apply to APl mode.

Parameter range
0 - OXFF (x character times)

Digi XBee® 3 Zigbee® RF Module 265

AT commands AT Command options

Default
3

AT Command options

The following commands affect how Command mode operates.

CC (Command Character)

Sets or displays the character value used to break from data mode to Command mode. The
command character must be sent three times in succession while observing the minimum guard
time (GT) of silence before and after this sequence.

The default value (0x2B) is the ASCII code for the plus (+) character. You must enter it three times
within the guard time to enter Command mode. To enter Command mode, there is also a required
period of silence before and after the command sequence characters of the Command mode
sequence (GT + CC + GT). The period of silence prevents inadvertently entering Command mode.
For more information, see Enter Command mode.

Parameter range
0 - OxFF
Recommended: 0x20 - 0x7F (ASCII)

Default
0x2B (the ASCII plus character: +)

CT (Command Mode Timeout)

Sets or displays the Command mode timeout parameter. If the local device enters Command mode
and does not receive any valid AT commands within this time period, Command mode silently
exits.

Parameter range
2 - Ox28F

Default
0x64 (10 seconds)

GT (Guard Times)

Set the required period of silence before and after the command sequence characters of the
Command mode sequence, GT + CC + GT. The period of silence prevents inadvertently entering
Command mode if a data stream in Transparent mode includes the CC character. For more
information, see Enter Command mode.

Parameter range
0x2 - OXCE4 (x 1 ms)

Default
0x3E8 (one second)

Digi XBee® 3 Zigbee® RF Module 266

AT commands UART pin configuration commands

CN (Exit Command mode)

Executable command. CN immediately exits Command mode and applies pending changes.

Parameter range
N/A

Default
N/A

UART pin configuration commands

The following commands are related to pin configuration for the UART interface.

D6 (DIO6/RTS)

Sets or displays the DIO6/RTS configuration.

Parameter range

0,1,3-5
0 Disabled
1 RTS flow control
3 Digital input
4 Digital output, low
5 Digital output, high
Default
0
D7 (DIO7/CTS)

Sets or displays the DIO7/CTS configuration.

Parameter range

0,1,3-7
0 Disabled
1 CTS flow control
3 Digital input

Digi XBee® 3 Zigbee® RF Module 267

AT commands UART pin configuration commands

4 Digital output, low

5 Digital output, high

6 RS-485 enable, low Tx
7 RS-485 enable, high Tx

Default
1

P3 (DIO13/DOUT Configuration)

Sets or displays the DIO13/DOUT configuration.

Parameter range

0,1,3-5

0 Disabled

1 UART DOUT

2 N/A

3 Digital input

4 Digital output, low

5 Digital output, high
Default

P4 (DIO14/DIN Configuration)
Sets or displays the DIO14/DIN configuration.

Parameter range

0,1,3-5
0 Disabled
1 UART DIN
2 N/A
3 Digital input

Digi XBee® 3 Zigbee® RF Module 268

AT commands SMT/MMT SPI interface commands

4 Digital output, low
5 Digital output, high
Default

1

SMT/MMT SPI interface commands

The following commands affect the SPI serial interface on SMT and MMT variants. These
commands are not applicable to the through-hole variant of the XBee 3; see D1 through D4 and P2
for through-hole SPI support.

P5 (DIO15/SPI_MISO Configuration)

Sets or displays the DIO15 configuration.

Note The DIO15 configuration is not available with the XBee 3 Zigbee RF Module through-hole
module.

Parameter range

0,1,4,5
0 Disabled
1 SPI_MISO
4 Digital output, low
5 Digital output, high
Default

1

P6 (D1016/SPI_MOSI Configuration)

Sets or displays the DIO16 configuration.

Note The DIO16 configuration is not available with the XBee 3 Zigbee RF Module through-hole
module.

Parameter range
0,1,4,5

Digi XBee® 3 Zigbee® RF Module 269

AT commands SMT/MMT SPI interface commands

0
1
4
5

Disabled
SPI_MOSI
Digital output, low

Digital output, high

Default
1

P7 (DIO17/SPI_SSEL Configuration)

Sets or displays the DIO17 configuration.

Note The DIO17 configuration is not available with the XBee 3 Zigbee RF Module through-hole
module.

Parameter range

0,1,4,5
Parameter | Description
0 Disabled
1 SPI_SSEL
4 Digital output, low
5 Digital output, high
Default

P8 (DIO18/SPI_CLK Configuration)

Sets or displays the DIO18 configuration.

Note The DIO18 configuration is not available with the XBee 3 Zigbee RF Module through-hole
module.

Parameter range

0,1,4,5
0 Disabled
1 SPI_CLK

Digi XBee® 3 Zigbee® RF Module 270

AT commands I/O settings commands

4 Digital output, low
5 Digital output, high
Default

1

P9 (DIO19/SPI_ATTN Configuration)

Sets or displays the DIO19 configuration.

Note The DIO19 configuration is not available with the XBee 3 Zigbee RF Module through-hole
module.

Parameter range

0,1,4,5
0 Disabled
1 SPI_ATTN
4 Digital output, low
5 Digital output, high
Default

1

I/0 settings commands

The following commands configure the various 1/O lines available on the XBee 3 Zigbee RF
Module.

Note See Digital I/O support for physical I/0O pin mapping for the supported module form factors.

DO (DIO0/AD0O/Commissioning Button Configuration)
Sets or displays the DIO0/ADO/CB configuration.

Parameter range

0-5
0 Disabled

Digi XBee® 3 Zigbee® RF Module 271

../../../../../Content/Reference/r_io_dig_rrdm.htm

AT commands I/O settings commands

1
2
3
4
5

Commissioning Pushbutton
ADC

Digital input
Digital output, low

Digital output, high

Default
1

CB (Commissioning Pushbutton)
Use CB to simulate Commissioning Pushbutton presses in software.
You can issue CB even if the Commissioning Button functionality is disabled (DO is not set to 1).

Set the parameter value to the number of button presses that you want to simulate. For example,
send CB1 to perform the action of pressing the Commissioning Pushbutton once.

Parameter range

1,2,4
1 If disassociated:
= Join Network.
If associated:
= Wake device for 30 seconds, if sleeping.
= Send Node Identification broadcast.
2 Enable joining for 1 minute (or NJ seconds if NJ is not 0 or OxFF).
4 Restore device configuration to default and leave the network.
Default
N/A

D1 (AD1/DIO1/TH_SPI_ATTN Configuration)
Sets or displays the DIO1/AD1 configuration.

Parameter range
SMT/MMT:0,2-5
TH:0-5

Digi XBee® 3 Zigbee® RF Module 272

AT commands I/O settings commands

0
1
2
3
4
5

Disabled

SPI_ATTN for the through-hole
device
N/A for the surface-mount device

ADC
Digital input
Digital output, low

Digital output, high

Default

D2 (DIO2/AD2/TH_SPI_CLK Configuration)

Sets or displays the DIO2/AD2 configuration.

Parameter range
SMT/MMT:0,2-5

TH:0-5
0 Disabled
1 SPI_CLK for through-hole devices
N/A for surface-mount devices
2 ADC
3 Digital input
4 Digital output, low
5 Digital output, high
Default
0

D3 (DIO3/AD3/TH_SPI_SSEL Configuration)
Sets or displays the DIO3/AD3 configuration.

Parameter range
SMT/MMT:0,2-5
TH:0-5

Digi XBee® 3 Zigbee® RF Module 273

AT commands I/O settings commands

0
1
2
3
4
5

Disabled

SPI_SSEL for the through-hole device
N/A for surface-mount device

ADC
Digital input
Digital output, low

Digital output, high

Default
0

D4 (DIO4/TH_SPI_MOSI Configuration)

Sets or displays the DIO4 configuration.

Parameter range
SMT/MMT:0,3-5

TH:0,1,3-5
0 Disabled
1 SPI_MOSI for the through-hole device
N/A for the surface-mount device
3 Digital input
4 Digital output, low
5 Digital output, high
Default
0

D5 (DIO5/Associate Configuration)

Sets or displays the DIO5 configuration.

Parameter range

0,1,3-5
0 Disabled

Digi XBee® 3 Zigbee® RF Module 274

AT commands I/O settings commands

1 Associate LED indicator - blinks when associated
3 Digital input
4 Digital output, default low
5 Digital output, default high
Default

1

D8 (DIOS/DTR/SLP_RQ)

Sets or displays the DIO8/DTR/SLP_RQ configuration.

Note If D8 is configured as DTR/Sleep_Request (1), the line will be left floating while the device
sleeps. Leaving D8 set to 1 and the corresponding pin not connected to anything external to the
device may result in higher sleep current draw.

Parameter range

0,1,3-5
0 Disabled
1 DTR/Sleep Request (used with pin sleep and cyclic sleep with pin wake)
3 Digital input
4 Digital output, low
5 Digital output, high
Default

1

D9 (DIO9/ON_SLEEP)
Sets or displays the DIO9/ON_SLEEP configuration.

Parameter range

0,1,3-5
0 Disabled
1 Awake/SLEEP indicator

Digi XBee® 3 Zigbee® RF Module 275

AT commands I/O settings commands

3 Digital input

4 Digital output, low

5 Digital output, high
Default

1

PO (DIO10/RSSI Configuration)
Sets or displays the DIO10/RSSI configuration (Micro pin 7/SMT pin 7/TH pin 6).

Parameter range

0-5
Parameter Description
0 Disabled
1 RSSI PWM output
2 PWMO output. MO (PWMO Duty Cycle) controls the value.
3 Digital input
4 Digital output, low
5 Digital output, high
Default

1

P1 (D1011 Configuration)
Sets or displays the DIO11 configuration (Micro pin 8/SMT pin 8/TH pin 7).

Parameter range

0,2-5
0 Disabled
1 N/A
2 PWM1 output. M1 (PWM1 Duty Cycle) controls the value.
3 Digital input
4 Digital output, low
5 Digital output, high

Digi XBee® 3 Zigbee® RF Module 276

AT commands I/O settings commands

Default
0

P2 (DIO12/TH_SPI_MISO Configuration)

Sets or displays the DIO12 configuration.

Parameter range
SMT/MMT:0,3-5

TH:0,1,3-5
0 Disabled
1 SPI_MISO for the through-hole device

N/A for the surface-mount and micro device
3 Digital input
4 Digital output, low
5 Digital output, high
Default
0

PR (Pull-up/Down Resistor Enable)

The bit field that configures the internal pull-up resistor status for the 1/0O lines.

= |fyou seta PR bitto 1, it enables the pull-up/down resistor
= [fyou seta PR bit to 0, it specifies no internal pull-up/down resistor.

PR and PD only affect lines that are configured as digital inputs (3) or disabled (0).
The following table defines the bit-field map for PR and PD commands.

I/O line Micro pin Surface-mount pin Through-hole pin

0 DIO4 23 24 11
1 DIO3 28 30 17
2 DIO2 29 31 18
3 DIO1 30 32 19
4 DIOO 31 33 20
5 DIO6 27 29 16
6 DIO8 9 10 9

Digi XBee® 3 Zigbee® RF Module 277

AT commands I/O settings commands

7 4 3

DIO14 4

8 DIO5 26 28 15
9 DIO9 25 26 13
10 DIO12 5 5 4
11 DIO10 7 7 6
12 DIO11 8 8 7
13 DIO7 24 25 12
14 DIO13 3 3 2
15 DIO15 16 17 N/A
16 DIO16 15 16 N/A
17 DIO17 14 15 N/A
18 DIO18 13 14 N/A
19 DIO19 11 12 N/A

Parameter range
Through-hole: 0 - OxFFFF
SMT/MMT: 0 - OXFFFFF

Default
OxFFFF

PD (Pull Up/Down Direction)

The resistor pull direction bit field (1 = pull-up, 0 = pull-down) for corresponding I/O lines that are
set by the PR command.

If the bit is set, the device uses an internal pull-up resistor. If it is clear, the device uses an internal
pull-down resistor. See the PR command for the bit order.

See PR (Pull-up/Down Resistor Enable) for the bit mappings.

Parameter range
Through-hole: 0 - OxFFFF
SMT/MMT: 0 - OXFFFFF

Default
OxFFFF

MO (PWMO Duty Cycle)
The duty cycle of the PWMO line.

If PO (DIO10/RSSI Configuration) is configured as PWMO output, you can configure the duty cycle
of PWMO:

Digi XBee® 3 Zigbee® RF Module 278

AT commands I/O settings commands

1. Enable PWMO output (PO = 2).
2. Change MO to the desired value.
3. Apply settings (use CN or AC).

The PWM period is 64 ps and there are 0x03FF (1023 decimal) steps within this period. When MO
=0 (0% PWM), 0x01FF (50% PWM), Ox03FF (100% PWM), and so forth.

Parameter range
0 - Ox3FF

Default
0

M1 (PWM1 Duty Cycle)
The duty cycle of the PWM1 line (Micro pin 8/SMT pin 8/TH pin 7).
If P1 (DIO11 Configuration) is configured as PWM1 output, you can configure the duty cycle of
PWM1:
1. Enable PWM1 output (P1 = 2).
2. Change M1 to the desired value.
3. Apply settings (use CN or AC).

The PWM period is 64 ps and there are 0x03FF (1023 decimal) steps within this period. When MO
=0 (0% PWM), 0x01FF (50% PWM), 0x03FF (100% PWM), and so forth.

Parameter range
0 - Ox3FF

Default
0

RP (RSSI PWM Timer)

The PWM timer expiration in 0.1 seconds. RP sets the duration of pulse width modulation (PWM)
signal output on the RSSI pin. The signal duty cycle updates with each received packet and shuts
off when the timer expires.

When RP = OxFF, the output is always on.

Parameter range
0 - OxFF (x 100 ms), OxFF

Default
0x28 (four seconds)

LT (Associate LED Blink Time)

Set or read the Associate LED blink time. If you use D5 (DIO5/Associate Configuration) to enable
the Associate LED functionality (DIO5/Associate pin), this value determines the on and off blink
times for the LED when the device has joined the network.

Digi XBee® 3 Zigbee® RF Module 279

AT commands I/O sampling commands

If LT = 0, the device uses the default blink rate: 500 ms for a sleep coordinator, 250 ms for all other
nodes.

If LT =0, the device uses the default blink rate of 250 ms.
For all other LT values, the firmware measures LT in 10 ms increments.

Parameter range
0, OXA - OXFF (x 10 ms)

Default
0

I/O sampling commands

The following commands configure 1/0 sampling on an originating device. Any I/O sample
generated by this device is sent to the address specified by DH and DL. You must configure at
least one I/O line as an input or output for a sample to be generated.

IR (/0O Sample Rate)

Determines the 1/0 sample rate used to generate outgoing I/O sample data. When the IR value is
greater than 0, the device samples and transmits all enabled digital I/O and ADCs every IR
milliseconds. I/O Samples transmit to the address specified by DH +DL.

At least one I/O line must be configured as an input or explicit output for samples to be generated.

Parameter range
0, 0x32 - OXFFFF (ms)

Default
0

IC (Digital Change Detection)

The bit field that configures which digital I/O pins should be monitored for digital change detection.
If the device detects a change on an enabled digital I/0O pin, it immediately transmits a digital I/0
sample to the address specified by DH +DL.

Change Detect is edge-triggered and must occur while the device is awake. If the level transition
occurs during a sleep period, the device will not see a change.

Bit field
Bt i0ine hieopn Suracomounipn — Thoughhoepn
0 DIO0 31 33 20
1 DIO1 30 32 19
2 DIO2 29 31 18
3 DIO3 28 30 17

Digi XBee® 3 Zigbee® RF Module 280

AT commands I/O sampling commands

24 11

4 DIO4 23

5 DIO5 26 28 15
6 DIO6 27 29 16
7 DIO7 24 25 12
8 DIO8 9 10 9
9 DIO9 25 26 13
10 DIO10 7 7 6
11 DIO11 8 8 7
12 DIO12 5 5 4
13 DIO13 3 3 2
14 DIO14 4 4 3

Parameter range
0- Ox7FFF

Default
0

AV (Analog Voltage Reference)

The analog voltage reference used for A/D sampling.

Parameter range

0-2
0 1.25V reference
1 2.5V reference
2 VDD reference
Default
0
IS (Force Sample)

Immediately forces an I/0O sample to be generated. If you issue the command to the local device,
the sample data is sent out the local serial interface. If sent remotely, the sample data is returned
as a Local AT Command Response - 0x88.

If the device receives ERROR as a response to an IS query, there are no valid I/O lines to sample.
The IS command cannot be issued from within MicroPython or over BLE.

Digi XBee® 3 Zigbee® RF Module 281

AT commands Location commands

Parameter range
N/A

Default
N/A

V+ (Supply Voltage Threshold)

Define the supply voltage threshold that appends the supply voltage to outgoing I/O sample
frames.

If the measured supply voltage falls below or equal to this threshold, the supply voltage will be
appended to outgoing I/O sample frames and set bit 7 of the Analog Channel Mask.

Set V+ to 0 to not include the supply voltage.
Set V+ to 1 to always include the supply voltage.

Example
To include a measurement of the supply voltage when it falls below 2.7 V, set V+ to 2700 = OxA8A.

Parameter range
0 - OXFFFF (in mV)

Default
0

Location commands

The following commands are user-defined parameters used to store the physical location of the
deployed device.

LX (Location X—Latitude)

User-defined GPS latitude coordinates of the node that is displayed on Digi Remote Manager and
Network Assistant.

Parameter range
0 - 15 ASCII characters

Default
One ASCII space character (0x20)

LY (Location Y—Longitude)

User-defined GPS longitude coordinates of the node that is displayed on Digi Remote Manager
and Network Assistant.

Parameter range
0 - 15 ASCII characters

Default
One ASCII space character (0x20)

Digi XBee® 3 Zigbee® RF Module 282

AT commands Diagnostic commands - firmware/hardware information

LZ (Location Z—Elevation)

User-defined GPS elevation of the node that is displayed on Digi Remote Manager and Network
Assistant.

Parameter range
0 - 15 ASCII characters

Default
One ASCII space character (0x20)

Diagnostic commands - firmware/hardware information

The following read-only commands are diagnostics that provide more information about the device.

VR (Firmware Version)

Reads the firmware version on a device.

Parameter range
0x1000 - OxFFFF [read-only]

Default
Set in the firmware

VL (Version Long)

Shows detailed version information including the application build date and time.

Parameter range
Multi-line string [read-only]

Default
N/A

VH (Bootloader Version)

Reads the bootloader version of the device.

Parameter range
N/A

Default
N/A

HV (Hardware Version)

Display the hardware version number and revision number of the device. The upper byte is the
Hardware version and the lower byte is the hardware revision.

The hardware version distinguishes one radio type from another.

Digi XBee® 3 Zigbee® RF Module 283

AT commands Diagnostic commands - firmware/hardware information

The hardware revision for a particular module can change for a variety of reasons and should not
be used as the sole determination that a module’s functionality has changed from previous
revisions. The revision may change for various reasons including a new software version, a minor
hardware modification, or even due to a label update. Furthermore, the firmware on a module may
be upgraded or downgraded by a user thus making it different from the firmware version it was
manufactured with. Thus the revision number is not a reliable indicator of the firmware version on
the module. If an explanation for the revision number is not found in the release notes and itis a
concern, contact Digi Support. In most cases the revision number does not relay any useful
information to the consumer and it can be ignored.

Parameter range
0 - OXFFFF [read-only]
Pre-defined HV values for XBee 3 devices:

= (Ox41 = XBee 3 Micro (MMT) and Surface Mount (SMT)
= (0x42 = XBee 3 Through Hole (TH)

Default
Set in the factory

%C (Hardware/Software Compatibility)

Specifies what firmware is compatible with this device's hardware. %C is compared to the to the
"compatibility_number" field of the firmware configuration xml file. Firmware with a compatibility
number lower than the value returned by %C cannot be loaded onto the board. If an invalid
firmware is loaded, the device will not boot until a valid firmware is reloaded.

Parameter range
[read-only]

Default
N/A

R? (Power Variant)
Specifies whether the device is a PRO or Non-PRO variant.

= 0 =PRO (+19 dBm output power)
= 1 =Non-PRO (+8 dBm output power)

Parameter range
0, 1 [read-only]

Default
N/A

%V (Voltage Supply Monitoring)

Reads the voltage on the Vcc pin in mV.

Digi XBee® 3 Zigbee® RF Module 284

AT commands Diagnostic commands - firmware/hardware information

Parameter range
0 - OXFFFF (in mV) [read only]

Default
N/A

TP (Temperature)

The current module temperature in degrees Celsius. The temperature is represented in two’s
complement, as shown in the following example:

1°C =0x0001 and -1°C = OxFFFF

Parameter range
0 - OXFFFF (Celsius) [read-only]

Default
N/A

CK (Configuration Checksum)

Reads the cyclic redundancy check (CRC) of the current AT command configuration settings to
determine if the configuration has changed.

After a firmware update this command may return a different value.

Parameter range
0 - OXFFFF [read-only]

Default
N/A

%P (Invoke Bootloader)

Forces the device to reset into the bootloader menu.
This command can only be issued locally.

Parameter range
N/A

Default
N/A

D% (Manufacturing Date)
Reads the manufacturing date of the module.

The format of the value given for ATD% is 16 hex characters, i.e. ATD%DDDDDDHHO00FFFFF,
where DDDDDD represents the manufacturing date as the number of days since 1/1/1900:
1/1/2000=0x008EAC, etc. HH represents the hour based on a 24-hour clock. 000 is three empty
hex digits. FFFFF represents the test fixture serial number as a decimal (this number is not
converted to hex).

Digi XBee® 3 Zigbee® RF Module 285

AT commands Memory access commands

Parameter range
0 - OXFFFFFFFFFFFFFFFF [read-only]

Default
N/A

Memory access commands

This section details the executable commands that provide memory access to the device.

FR (Software Reset)

Resets the device. The device responds immediately with an OK and performs a reset 100 ms
later.

If you issue FR while the device is in Command mode, the reset effectively exits Command mode.

Parameter range
N/A

Default
N/A

AC (Apply Changes)

This command applies changes to all command parameters configured in Command mode and
also applies queued command parameter values set with 0x09 APl queued command frames.
Any of the following also applies changes the same as issuing an AC command:

= Exiting Command mode with a CN command.
= Exiting Command mode via timeout.
= Receiving a 0x08 APl command frame.
= |ssuing a 0x08 Local AT Command API frame.
® |ssuing a remote Ox17 AT Command API frame with option bit 1 set.
Example: Altering the UART baud rate with the BD command does not change the operating baud

rate until after an AC command is received; at this point, the interface immediately changes baud
rates.

Parameter range
N/A

Default
N/A

WR (Write)

Immediately writes parameter values to non-volatile flash memory so they persist through a power
cycle. Operating network parameters are persistent and do not require a WR command for the
device to reattach to the network.

Digi XBee® 3 Zigbee® RF Module 286

AT commands Custom Default commands

Once you issue a WR command, do not send any additional characters to the device until
after you receive the OK response. Use the WR command sparingly; the device’s flash only
supports 10,000 erase/write cycles.

Parameter range
N/A

Default
N/A

RE (Restore Defaults)

Restore all device parameters—except ZS, C8, and KB—to factory defaults but do not apply the
parameters.

Parameter range
N/A

Default
N/A

Custom Default commands

The following commands are used to assign custom defaults to the device. Send RE (Restore
Defaults) to restore custom defaults. You must send these commands as local AT commands, they
cannot be set using Remote AT Command Request - 0x17.

%F (Set Custom Default)

When %F is received, the XBee 3 Zighee RF Module takes the next command received and
applies it to both the current configuration and the custom defaults, so that when defaults are
restored with RE (Restore Defaults) the custom value is used.

Parameter range
N/A

Default
N/A

IC (Clear Custom Defaults)

Clears all custom defaults. This command does not change the current settings, but only changes
the defaults so that RE (Restore Defaults) restores settings to the factory values.

Parameter range
N/A

Default
N/A

Digi XBee® 3 Zigbee® RF Module 287

AT commands Custom Default commands

R1 (Restore Factory Defaults)

Restores factory defaults, ignoring any custom defaults set using %F (Set Custom Default).

Parameter range
N/A

Default
N/A

Digi XBee® 3 Zigbee® RF Module 288

Operate in APl mode

An alternative to Transparent Operation are Application Programming Interface (API) Operations.
API operation requires that the device communicate through a structured interface (that is, data is
communicated in frames in a defined order). The API specifies how the device sends and receives
commands, command responses, and module status messages using a serial port Data Frame.

API serial exchanges
APl frame format ...
Send ZDO commands withthe APl ...
Send Zigbee cluster library (ZCL) commands with the API

Send Public Profile Commands with the API

Digi XBee® 3 Zigbee® RF Module 289

Operate in APl mode APl serial exchanges

API serial exchanges

You can use the Frame ID field to correlate between the outgoing frames and associated
responses.

AT commands

The following image shows the API frame exchange that takes place at the serial interface when

sending an AT command request to read or set a device parameter. You can disable the response
by setting the frame ID to 0 in the request.

AT command request
(0x08 or 0x09)

AT command response
(0x88)

Digi XBee® 3 Zigbee® RF Module 290

Operate in APl mode APl serial exchanges

Transmit and Receive RF data

The following image shows the API frames exchange that take place at the UART interface when
sending RF data to another device. The transmit status frame is always sent at the end of a data
transmission unless the frame ID is set to 0 in the TX request. If the packet cannot be delivered to
the destination, the transmit status frame indicates the cause of failure.

The received data frame type (0x90 or 0x91) is determined by the AO command.

Transmit request RF data and ACK

(0x10 or Ox11)
—————— Received data
Transmit Status (0x90 or 0x91)
(0x8B) el 4
Remote AT commands

The following image shows the API frame exchanges that take place at the serial interface when
sending a remote AT command. The device does not send out a remote command response frame
through the serial interface if the remote device does not receive the remote command.

Remote AT
command (0x17)

Remote AT command
response (0x97)

Source routing

The following image shows the API frame exchanges that take place at the serial port when
sending a source routed transmission.

Create Source Route
(0x21)

Transmit Request
(0x10 or 0x11)

Transmit Status
(0x88)

Digi XBee® 3 Zigbee® RF Module 291

Operate in APl mode API frame format

Device Registration

The following image shows the API frame exchanges that take place at the serial interface when
registering a joining device to a trust center.

Register Joining Device
(0x24)

Register Joining Device
Status (0xA4)

API frame format

An API frame consists of the following:

Start delimeter
Length

Frame data
® Checksum

API operation (AP parameter = 1)

This is the recommended APl mode for most applications. The following table shows the data
frame structure when you enable this mode:

Frame fields Byte Description

Start delimiter 1 Ox7E

Length 2-3 Most Significant Byte, Least Significant Byte
Frame data 4 - number (n) API-specific structure

Checksum n+1 1 byte

Any data received prior to the start delimiter is silently discarded. If the frame is not received
correctly or if the checksum fails, the XBee replies with a radio status frame indicating the nature of
the failure.

API operation with escaped characters (AP parameter = 2)

Setting API to 2 allows escaped control characters in the API frame. Due to its increased
complexity, we only recommend this APl mode in specific circumstances. APl 2 may help improve
reliability if the serial interface to the device is unstable or malformed frames are frequently being
generated.

Digi XBee® 3 Zigbee® RF Module 292

Operate in APl mode API frame format

When operating in API 2, if an unescaped Ox7E byte is observed, it is treated as the start of a new
API frame and all data received prior to this delimiter is silently discarded. For more information on
using this API mode, see the Escaped Characters and AP| Mode 2 in the Digi Knowledge base.

API escaped operating mode works similarly to APl mode. The only difference is that when working
in APl escaped mode, the software must escape any payload bytes that match API frame specific
data, such as the start-of-frame byte (Ox7E). The following table shows the structure of an API
frame with escaped characters:

Start 1 0x7E

delimiter

Length 2-3 Most Significant Byte, Least Significant Characters escaped if
Byte needed

Framedata 4-n | API-specific structure

Checksum n+1 | 1byte

Start delimiter field

This field indicates the beginning of a frame. It is always 0x7E. This allows the device to easily
detect a new incoming frame.

Escaped characters in API frames

If operating in APl mode with escaped characters (AP parameter = 2), when sending or receiving a
serial data frame, specific data values must be escaped (flagged) so they do not interfere with the
data frame sequencing. To escape an interfering data byte, insert 0x7D and follow it with the byte
to be escaped (XORed with 0x20).

The following data bytes need to be escaped:
® Ox7E: start delimiter
= (Ox7D: escape character
= (0x11: XON
= 0x13: XOFF

To escape a character:

1. Insert 0x7D (escape character).

2. Append it with the byte you want to escape, XORed with 0x20.
In API mode with escaped characters, the length field does not include any escape characters in
the frame and the firmware calculates the checksum with non-escaped data.

Example: escape an API frame
To express the following API non-escaped frame in AP| operating mode with escaped characters:

F D
Sta_rt_ Length LIt rame Data Checksum
delimiter type Data
7E 00 OF 17 01 00 13 A2 00 40 AD 14 2E FF FE 02 4E 49 6D

You must escape the 0x13 byte:

Digi XBee® 3 Zigbee® RF Module 293

http://knowledge.digi.com/articles/Knowledge_Base_Article/Escaped-Characters-and-API-Mode-2

Operate in APl mode API frame format

1. Inserta Ox7D.
2. XOR byte 0x13 with 0x20: 13 @20 = 33

The following figure shows the resulting frame. Note that the length and checksum are the same as
the non-escaped frame.

F D
Sta_rt_ Length Feluls rame Data Checksum
delimiter type Data
7E 00 OF 17 01 00 7D 33 A2 00 40 AD 14 2E FF FE 02 4E 49 6D

The length field has a two-byte value that specifies the number of bytes in the frame data field. It
does not include the checksum field.

Length field

The length field is a two-byte value that specifies the number of bytes contained in the frame data
field. It does not include the checksum field.

Frame data

This field contains the information that a device receives or will transmit. The structure of frame
data depends on the purpose of the API frame:

Frame data
Start
delimiter Data Checksum
1 2 3 4 5 6 7/8 9 .. n n+1
0x7E MSB @ LSB API frame Data Single byte
type

= Frame type is the API frame type identifier. It determines the type of API frame and
indicates how the Data field organizes the information.

= Data contains the data itself. This information and its order depend on the what type of
frame that the Frame type field defines.

Multi-byte values are sent big-endian.

Calculate and verify checksums
To test data integrity, the device calculates and verifies a checksum on non-escaped data.
To calculate the checksum of an API frame:

1. Add all bytes of the packet, except the start delimiter Ox7E and the length (the second and
third bytes).

2. Keep only the lowest 8 bits from the result.
3. Subtract this quantity from OxFF.

To verify the checksum of an API frame:

1. Add all bytes including the checksum; do not include the delimiter and length.
2. Ifthe checksum is correct, the last two digits on the far right of the sum equal OxFF.

Digi XBee® 3 Zigbee® RF Module 294

Operate in APl mode Send ZDO commands with the API

Example
Consider the following sample data packet: 7E 00 08 08 01 4E 49 58 42 45 45 3B

-

7E Start delimiter
0008 Length bytes

08 API identifier

01 API frame ID

4E 49 AT Command
58424545 Parameter value
3B Checksum

To calculate the check sum you add all bytes of the packet, excluding the frame delimiter 7E and
the length (the second and third bytes):

7E000808014E 49 58 42 45 45 3B

Add these hex bytes:

0x08 + 0x01 + Ox4E + 0x49 + 0x58 + 0x42 + 0x45 + 0x45 = 0x01C4

Now take the result of 0x01C4 and keep only the lowest 8 bits which in this example is 0xC4 (the
two far right digits). Subtract 0xC4 from OxFF and you get 0x3B (OxFF - 0xC4 = 0x3B). 0x3B is the
checksum for this data packet.

If an API data packet is composed with an incorrect checksum, the XBee 3 Zigbee RF Module will
consider the packet invalid and will ignore the data.

To verify the check sum of an API packet add all bytes including the checksum (do not include the
delimiter and length) and if correct, the last two far right digits of the sum will equal FF.

0x08 + 0x01 + Ox4E + 0x49 + 0x58 + 0x42 + 0x45 + 0x45 + 0x3B = 0x01FF

Send ZDO commands with the API

Zigbee specifications define Zigbee device objects (ZDOs) as part of the Zigbee device profile.
These objects provide functionality to manage and map out the Zigbee network and to discover
services on Zigbee devices. ZDOs are typically required when developing a Zigbee product that
interoperates in a public profile such as home automation or smart energy, or when communicating
with Zigbee devices from other vendors. You can also use the ZDO to perform several
management functions such as frequency agility (energy detect and channel changes - Mgmt
Network Update Request), discovering routes (Mgmt Routing Request) and neighbors (Mgmt LQI
Request), and managing device connectivity (Mgmt Leave and Permit Join Request).

The following table shows some of the more prominent ZDOs with their respective cluster identifier.
Each ZDO command has a defined payload. See the Zigbee device profile section of the Zigbee
specification for details.

ZDO command Cluster ID

Network Address Request 0x0000

Digi XBee® 3 Zigbee® RF Module 295

Operate in APl mode Send ZDO commands with the API

ZDO command Cluster ID

IEEE Address Request 0x0001
Node Descriptor Request 0x0002
Simple Descriptor Request 0x0004
Active Endpoints Request 0x0005
Match Descriptor Request 0x0006
Mgmt LQI Request 0x0031
Mgmt Routing Request 0x0032
Mgmt Leave Request 0x0034
Mgmt Permit Joining Request 0x0036
Mgmt Network Update Request 0x0038

Use the Explicit Addressing Command Request - 0x11 to send Zigbee device objects commands
to devices in the network. Sending ZDO commands with the Explicit Transmit API frame requires
some formatting of the data payload field.

When sending a ZDO command with the API, all multiple byte values in the ZDO command (API
payload), for example, u16, u32, and 64-bit addresses, must be sent in little endian byte order for
the command to be executed correctly on a remote device.

For an API XBee to receive ZDO responses, set AO (AP Options) to 1 to enable the explicit
receive API frame.

The following table shows how you can use the Explicit API frame to send an “Active Endpoints”
request to discover the active endpoints on a device with a 16-bit address of 0x1234.

Frame type 3 0x11

Frame ID 4 Identifies the data frame for the host to correlate with a
subsequent transmit status. If set to 0, the device does not
send a response out the serial port.

64-bit destination 5-12 MSB first, LSB last. The 64-bit address of the destination

address device (big endian byte order). For unicast transmissions, set to
the 64-bit address of the destination device, or to
0x0000000000000000 to send a unicast to the coordinator. Set
to 0x000000000000FFFF for broadcast.

16-bit destination 13 MSB first, LSB last. The 16-bit address of the destination
network address device (big endian byte order). Set to OxFFFE for broadcast, or
14 if the 16-bit address is unknown.
Source endpoint 15 Set to 0x00 for ZDO transmissions (endpoint 0 is the ZDO
endpoint).
Destination endpoint | 16 Set to 0x00 for ZDO transmissions (endpoint 0 is the ZDO

Digi XBee® 3 Zigbee® RF Module 296

Operate in APl mode

Send ZDO commands with the API

Cluster ID 17

18
Profile ID 19-20
Broadcast radius 21
Transmission 22
options
Data payload 23

24

25

Example

endpoint).

Set to the cluster ID that corresponds to the ZDO command
being sent.
0x0005 = Active Endpoints Request

Set to 0x0000 for ZDO transmissions (Profile ID 0x0000 is the
Zigbee device profile that supports ZDOs).

Sets the maximum number of hops a broadcast transmission
can traverse. If set to 0, the device sets the transmission radius
to the network maximum hops value.

All bits must be set to 0.

The required payload for a ZDO command. All multi-byte ZDO
parameter values (u16, u32, 64- bit address) must be sent in
little endian byte order.

The Active Endpoints Request includes the following payload:
[16-bit NwkAddrOfinterest]

Note The 16-bit address in the APl example (0x1234) is sentin
little endian byte order (0x3412).

The following example shows how you can use the Explicit API frame to send an “Active
Endpoints” request to discover the active endpoints on a device with a 16-bit address of 0x1234.

Frame data fields
Start delimiter

Length

Frame type

Frame ID

Digi XBee® 3 Zigbee® RF Module

Offset Example
0 Ox7E
MSB 1 0x00
LSB2 0x17
3 0x11
4 0x01
297

Operate in APl mode Send Zigbee cluster library (ZCL) commands with the API

64-bit destination address MSB 5 0x00
6 0x00
7 0x00
8 0x00
9 0x00
10 0x00
11 OxFF
LSB12 OxFF
16-bit Destination MSB 13 OxFF
Network Address LSB 14 OXFE
Source endpoint 15 0x00
Destination endpoint 16 0x00
Cluster ID 17 0x00
18 0x05
Profile ID 19 0x00
20 0x00
Broadcast radius 21 0x00
Transmit options 22 0x00
Data payload - transaction sequence number 23 0x01
Data payload - ZDO payload 24 0x34
25 0x12
Checksum 29 OxA6

Send Zigbee cluster library (ZCL) commands with the API

The Zigbee cluster library defines a set of attributes and commands (clusters) that can be
supported in multiple Zigbee profiles. The ZCL commands are typically required when developing a
Zigbee product that will interoperate in a public profile such as home automation or smart energy,
or when communicating with Zigbee devices from other vendors. Applications that are not
designed for a public profile or for interoperability applications can skip this section.

The following table shows some prominent clusters with their respective attributes and commands.

Cluster (Cluster ID) Attributes (Attribute ID) Cluster ID
Basic (0x0000) Application Version (0x0001) Reset to defaults (0x00)

Digi XBee® 3 Zigbee® RF Module 298

Operate in APl mode Send Zigbee cluster library (ZCL) commands with the API

Cluster (Cluster ID) Attributes (Attribute ID) Cluster ID

Hardware Version (0x0003)
Model Identifier (0x0005)

Identify (0x0003) Identify Time (0x0000) Identify (0x00)
Identify Query (0x01)
Time (0x000A) Time (0x0000)
Time Status (0x0001)
Time Zone (0x0002)
Thermostat (0x0201) Local Temperature (0x0000) Setpoint raise / lower (0x00)
Occupancy (0x0002)

The ZCL defines a number of profile-wide commands that can be supported on any profile, also
known as general commands. These commands include the following.

Command (Command

ID) Description

Read Attributes (0x00) Used to read one or more attributes on a remote device.

Read Attributes Response | Generated in response to a read attributes command.

(0x01)

Write Attributes (0x02) Used to change one or more attributes on a remote device.

Write Attributes Response | Sent in response to a write attributes command.

(0x04)

Configure Reporting Used to configure a device to automatically report on the values of
(0x06) one or more of its attributes.

Report Attributes (0x0A) Used to report attributes when report conditions have been satisfied.
Discover Attributes (Ox0C) | Used to discover the attribute identifiers on a remote device.

Discover Attributes Sent in response to a discover attributes command.
Response (0x0D)

Use the Explicit Addressing Command Request - 0x11 to send ZCL commands to devices in the
network. Sending ZCL commands with the Explicit Transmit API frame requires some formatting of
the data payload field.

When sending a ZCL command with the API, all multiple byte values in the ZCL command (API
Payload) (for example, u16, u32, 64-bit addresses) must be sent in little endian byte order for the
command to be executed correctly on a remote device.

When sending ZCL commands, set the AO command to 1 to enable the explicit receive API
frame. This provides indication of the source 64- and 16-bit addresses, cluster ID, profile ID, and
endpoint information for each received packet. This information is required to properly decode
received data.

The following table shows how the Explicit API frame can be used to read the hardware version

attribute from a device with a 64-bit address of 0x0013A200 40401234 (unknown 16-bit address).
This example uses arbitrary source and destination endpoints. The hardware version attribute

Digi XBee® 3 Zigbee® RF Module 299

Operate in APl mode

Send Zigbee cluster library (ZCL) commands with the API

(attribute ID 0x0003) is part of the basic cluster (cluster ID 0x0000). The Read Attribute general

command ID is 0x00.

Frame type

Frame ID

64-bit
destination
address

16-bit
destination
network
address

Source
endpoint

Destination
endpoint

Cluster ID

Profile ID

Broadcast
radius

Transmit
options

Data ZCL
payload frame
header

Digi XBee® 3 Zigbee® RF Module

3

10
11
LSB 12
MSB 13

LSB 14

15

16

MSB 17
LSB 18

MSB 19
LSB 20
21

22

23

Identifies the serial port data frame for the
host to correlate with a subsequent transmit
status. If set to 0, no transmit status frame
will be sent out the serial port.

The 64-bit address of the destination device
(big endian byte order). For unicast
transmissions, set to the 64-bit address of
the destination device, or to
0x0000000000000000 to send a unicast to
the coordinator. Set to
0x000000000000FFFF for broadcast.

The 16-bit address of the destination device
(big endian byte order). Set to OxFFFE for
broadcast, or if the 16-bit address is
unknown.

Set to the source endpoint on the sending
device (0x41 arbitrarily selected).

Set to the destination endpoint on the
remote device (0x42 arbitrarily selected).

Set to the cluster ID that corresponds to the
ZCL command being sent. 0x0000 = Basic
Cluster.

Set to the profile ID supported on the device
(0xD123 arbitrarily selected).

Sets the maximum number of hops a
broadcast transmission can traverse. If set
to 0, the transmission radius will be set to
the network maximum hops value.

All bits must be set to 0.

Bitfield that defines the command type and
other relevant information in the ZCL
command. For more information, see the

300

Operate in APl mode Send Zigbee cluster library (ZCL) commands with the API

ZCL specification.
Transaction | 24 A sequence number used to correlate a ZCL
sequence command with a ZCL response. (The
number hardware version response will include this

byte as a sequence number in the
response.) The value 0x01 was arbitrarily
selected.

Command ID 25 Since the frame control “frame type” bits are
00, this byte specifies a general command.
Command ID 0x00 is a Read Attributes

command.
ZCL Attribute ID 26 The payload for a “Read Attributes”
payload command is a list of Attribute Identifiers that

are being read.

Note The 16-bit Attribute ID (0x0003) is sent
in little endian byte order (0x0300). All multi-
byte ZCL header and payload values must
be sent in little endian byte order.

27 0xFF minus the 8 bit sum of bytes from
offset 3 to this byte.

Example
In this example, the Frame Control field (offset 23) is constructed as follows:

Name Bits | Example Value Description

Frame Type 0-1 00 - Command acts across the entire profile.

Manufacturer Specific | 2 0 - The manufacturer code field is omitted from the ZCL Frame
Header.

Direction 3 0 - The command is being sent from the client side to the server
side.

Disable Default 4 0 - Default response not disabled.

Response

Reserved 5-7 Setto 0.

For more information, see the Zigbee Cluster Library specification.

Fram cata feids CZRCTT

Start delimiter 0x7E

Digi XBee® 3 Zigbee® RF Module 301

Operate in APl mode Send Zigbee cluster library (ZCL) commands with the API

Framegsofgs oo e

Length MSB1 | 0x00
LsB2 0x19
Frame type 3 0x11
Frame ID 4 0x01
64-bit destination MSB5 | 0x00
address 5 0x13
7 0xA2
8 0x00
9 0x40
10 0x40
11 0x12
LSB12 | 0x34
16-bit destination MSB 13 | OxFF
network address LSB 14 | OXFE
Source endpoint 15 0x41
Destination endpoint 16 0x42
Cluster ID MSB 17 | 0x00
LSB 18 | 0x00
Profile ID MSB 19 | 0xD1
LSB20 | 0x23
Broadcast radius 21 0x00
Transmit options 22 0x00
Data payload ZCL frame Frame control 23 0x00
header Transaction sequence 24 0x01
number
Command ID 25 0x00
ZCL payload Attribute ID 26 0x03
27 0x00
Checksum 28 OxFA

Digi XBee® 3 Zigbee® RF Module 302

Operate in APl mode Send Public Profile Commands with the API

Send Public Profile Commands with the API

You can use the XBee API using the Explicit Transmit API frame (0x11) to send commands in
public profiles such as Smart Energy and Home Automation. Sending public profile commands with
the Explicit Transmit API frame requires some formatting of the data payload field. Most of the
public profile commands fit into the Zigbee cluster library (ZCL) architecture as described in Send
Zigbee cluster library (ZCL) commands with the API.

The following table shows how you can use the Explicit API frame to send a demand response and
load control message (cluster ID 0x701) in the smart energy profile (profile ID 0x0109) in the
revision 14 Smart Energy specification. The device sends a “Load Control Event’'message
(command ID 0x00) and to a device with 64- bit address of 0x0013A200 40401234 with a 16-bit
address of 0x5678. The event starts a load control event for water heaters and smart appliances for
a duration of 1 minute, starting immediately.

When sending public profile commands, set the AO command to 1 to enable the explicit
receive APl frame. This provides indication of the source 64- and 16-bit addresses, cluster ID,
profile ID, and endpoint information for each received packet. This information is required to
properly decode received data.

Frame specific data
Frame type 3
Frame ID 4 Identifies the serial port data frame for the
host to correlate with a subsequent transmit
status. If set to 0, no transmit status frame
will be sent out the serial port.
64-bit MSB 5 | The 64-bit address of the destination device
destination (big endian byte order). For unicast
address 6 transmissions, set to the 64-bit address of
7 the destination device, or to
0x0000000000000000 to send a unicast to
8 the coordinator. Set to
9 0x000000000000FFFF for broadcast.
10
11
LSB 12
16-bit MSB 13 | The 16-bit address of the destination device
destination (big endian byte order). Set to OXFFFE for
network LSB 14 broadcast, or if the 16-bit address is
address unknown.
Source 15 Set to the source endpoint on the sending
endpoint device. (0x41 arbitrarily selected).

Digi XBee® 3 Zigbee® RF Module 303

Operate in APl mode Send Public Profile Commands with the API

Destination 16 Set to the destination endpoint on the
endpoint remote device. (0x42 arbitrarily selected).
Cluster ID MSB 17 | Set to the cluster ID that corresponds to the

ZCL command being sent. 0x0701 =
LSB 18 :%emand response and load control cluster

Profile ID MSB 19 | Set to the profile ID supported on the
LSB 20 device. 0x0109 = Smart Energy profile ID.

Broadcast 21 Sets the maximum number of hops a

radius broadcast transmission can traverse. If set
to 0, the transmission radius will be set to
the network maximum hops value.

Transmit 22 All bits must be set to 0.
options

Data ZCL Frame control | 23 Bitfield that defines the command type and
payload frame other relevant information in the ZCL
header command. For more information, see the
ZCL specification.

Transaction 24 A sequence number used to correlate a

sequence ZCL command with a ZCL response. (The

number hardware version response will include this
byte as a sequence number in the
response.) The value 0x01 was arbitrarily
selected.

25 Since the frame control “frame type” bits are
01, this byte specifies a cluster-specific
command. Command ID 0x00 in the
Demand Response and Load Control
cluster is a Load Control Event command.
For more information, see the Smart Energy
specification.

ZCL Issuerevent | 26 The 4-byte unique identifier.

payload - | ID

load The 4-byte ID is sent in little endian
control byte order (0x78563412).

event
data The event ID in this example (0x12345678)

is arbitrarily selected.
27
28

Digi XBee® 3 Zigbee® RF Module 304

Operate in APl mode

Send Public Profile Commands with the AP/

Digi XBee® 3 Zigbee® RF Module

Device class

Utility
enrollment
group

Start time

Duration in
minutes

Criticality
level

Cooling
temperature

Heating
temperature
offset

Cooling
temperature
set point

Heating
temperature

29
30

31
32

33
34
35
36
37

38
39

41

42

43

44

This bit encoded field represents the Device
Class associated with the Load Control
Event. A bit value of 0x0014 enables smart
appliances and water heaters.

The 2-byte bit field value is sent in little
endian byte order.

Used to identify sub-groups of devices in
the device-class. 0x00 addresses all
groups.

This 2-byte value must be sent in little
endian byte order.

Indicates the criticality level of the event. In
this example, the level is “voluntary”.

Requested offset to apply to the normal
cooling set point.

A value of OxFF indicates the temperature
offset value is not used.

Requested offset to apply to the normal
heating set point.

A value of OxFF indicates the temperature
offset value is not used.

Requested cooling set pointin 0.01 degrees
Celsius. A value of 0x8000 means the set
point field is not used in this event.

The 0x80000 is sent in little endian
byte order.

Requested heating set point in 0.01
degrees Celsius. A value of 0x8000 means

305

Operate in APl mode Send Public Profile Commands with the API

set point the set point field is not used in this event.
45 Note The 0x80000 is sent in little endian

byte order.

Average load | 46 Maximum energy usage limit. A value of

adjustment 0x80 indicates the field is not used.

percentage

Duty cycle 47 Defines the maximum “On” duty cycle. A
value of OxFF indicates the duty cycle is not
used in this event.

Duty cycle 48 A bitmap describing event options.

event control

Example
In this example, the Frame Control field (offset 23) is constructed as follows:

_m Example Value Description

Frame Type 0-1 01 - Command is specific to a cluster

Manufacturer Specific | 2 0 - The manufacturer code field is omitted from the ZCL Frame
Header.

Direction 3 1- The command is being sent from the server side to the client
side.

Disable Default 4 0 - Default response not disabled

Response

Reserved 5-7 Setto 0.

For more information, see the Zigbee cluster library specification.

Frame fields Offset | Example
Start delimiter 0 Ox7E
Length MSB 1 | 0x00
LSB2 | 0x19
Frame type 3 0x11
Frame ID 4 0x01

Digi XBee® 3 Zigbee® RF Module 306

Operate in APl mode Send Public Profile Commands with the API

Frameos o ol

64-bit destination MSBS | 0x00
address 5 0x13
7 O0xA2
8 0x00
9 0x40
10 0x40
11 0x12
LSB 12 | 0x34
16-bit destination MSB 13 | 0x56
network address LSB 14 | 0x78
Source endpoint 15 0x41
Destination endpoint 16 0x42
Cluster ID MSB 17 | 0x07
LSB 18 | 0x01
Profile ID MSB 19 | 0x01
LSB20 0x09
Broadcast radius 21 0x00
Transmit options 22 0x00

Digi XBee® 3 Zigbee® RF Module 307

Operate in APl mode Send Public Profile Commands with the API

N

Data payload ZCL frame header Frame control 0x09
Transaction sequence |24 0x01
number

25 0x00
ZCL payload - load Issuer event ID 26 0x78
control event data 97 0x56
28 0x34
29 0x12
Device class 30 0x14
31 0x00
Utility enrollment group | 32 0x00
Start time 33 0x00
34 0x00
35 0x00
36 0x00
Duration in Minutes 37 0x01
38 0x00
Criticality level 39 0x04
Cooling temperature 40 OxFF
Heating temperature 41 OxFF
offset
Cooling temperature 42 0x00
set point
43 0x80
Heating temperature 44 0x00
set point
45 0x80
Average load 46 0x80
adjustment percentage
Duty cycle 47 OxFF
Duty cycle event 48 0x00
control
Checksum 49 0x5B

Digi XBee® 3 Zigbee® RF Module 308

Frame descriptions

The following sections describe the API frames.

Local AT Command Request - OX08
Queue Local AT Command Request - 0X09
Transmit Request - OX 10 .
Explicit Addressing Command Request- Ox171 ...
Remote AT Command Request - OX17
Create Source Route - OX21 . .
Register Joining Device - OX24 .
BLE Unlock Request - OX2C
User Data Relay Input - OX2D ...
Secure Session Control - OX2E
Local AT Command Response - OX88
Modem Status - OX8A .

Explicit Receive Indicator - OXO1 .
/O Sample Indicator - OXO2 .. .
Node Identification Indicator - OX95
Remote AT Command Response- 0X97
Extended Modem Status - OXO8
Route Record Indicator - OXAT ..
Many-to-One Route Request Indicator - OXA3
Registration Status - OXAG .
BLE Unlock Response - OXAC ..
User Data Relay Output - OXAD .
Secure Session Response - OXAE

Digi XBee® 3 Zigbee® RF Module 309

Frame descriptions Local AT Command Request - 0x08

Local AT Command Request - 0x08

Response frame: Local AT Command Response - 0x88

Description

This frame type is used to query or set command parameters on the local device. Any parameter
that is set with this frame type will apply the change immediately. If you wish to queue multiple
parameter changes and apply them later, use the Queue Local AT Command Request - 0x09
instead.

When querying parameter values, this frame behaves identically to Queue Local AT Command
Request - 0x09: You can query parameter values by sending this frame with a command but no
parameter value field—the two-byte AT command is immediately followed by the frame checksum.
When an AT command is queried, a Local AT Command Response - 0x88 frame is populated with
the parameter value that is currently set on the device. The Frame ID of the 0x88 response is the
same one set by the command in the 0x08 request frame.

Format

The following table provides the contents of the frame. For details on frame structure, see AP|
frame format.

8-bit Start Delimiter | Indicates the start of an API frame.
1 16-bit Length Number of bytes between the length and checksum.
3 8-bit Frame type Local AT Command Request - 0x08
4 8-bit Frame ID Identifies the data frame for the host to correlate with a

subsequent response.
If set to0, the device will not emit a response frame.

5 16-bit AT command | The two ASCII characters that identify the AT Command.
7-n variable | Parameter If present, indicates the requested parameter value to set
value the given register.
(optional) If no characters are present, it queries the current

parameter value and returns the result in the response.

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

Examples

Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

Set the local command parameter
Set the NI string of the radio to "End Device".

The corresponding Local AT Command Response - 0x88 with a matching Frame ID will indicate
whether the parameter change succeeded.

Digi XBee® 3 Zigbee® RF Module 310

Frame descriptions Local AT Command Request - 0x08

7E 00 OE 08 A1 4E 49 45 6E 64 20 44 65 76 69 63 65 38

Frame type Frame ID AT command Parameter value
0x08 OxA1 0x4E49 0x456E6420446576696365
Request Matches response “NI" "End Device"

Query local command parameter
Query the temperature of the module—TP command.

The corresponding Local AT Command Response - 0x88 with a matching Frame 1D will return the
temperature value.

7E 0004 08 17 54 50 3C

Frame type Frame ID AT command Parameter value
0x08 0x17 0x5450 (omitted)
Request Matches response "TP" Query the parameter

Digi XBee® 3 Zigbee® RF Module 311

Frame descriptions Queue Local AT Command Request - 0x09

Queue Local AT Command Request - 0x09

Response frame: Local AT Command Response - 0x88

Description

This frame type is used to query or set queued command parameters on the local device. In
contrast to Local AT Command Request - 0x08, this frame queues new parameter values and does
not apply them until you either:

= |ssue a Local AT Command using the 0x08 frame

= |ssue an AC command—queued or otherwise
When querying parameter values, this frame behaves identically to Local AT Command Request -
0x08: You can query parameter values by sending this frame with a command but no parameter
value field—the two-byte AT command is immediately followed by the frame checksum. When an
AT command is queried, a Local AT Command Response - 0x88 frame is populated with the

parameter value that is currently set on the device. The Frame ID of the 0x88 response is the same
one set by the command in the 0x09 request frame.

Format

The following table provides the contents of the frame. For details on frame structure, see AP|
frame format.

8-bit Start Delimiter | Indicates the start of an API frame.
1 16-bit Length Number of bytes between the length and checksum.
3 8-bit Frame type Queue Local AT Command Request - 0x09
4 8-bit Frame ID Identifies the data frame for the host to correlate with a

subsequent response.
If set to0, the device will not emit a response frame.

5 16-bit AT command The two ASCII characters that identify the AT Command.
7-n variable | Parameter If present, indicates the requested parameter value to set
value the given register at a later time.
(optional) If no characters are present, it queries the current

parameter value and returns the result in the response.

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

Examples

Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

Digi XBee® 3 Zigbee® RF Module 312

Frame descriptions Queue Local AT Command Request - 0x09

Queue setting local command parameter

Set the UART baud rate to 115200, but do not apply changes immediately.

The device will continue to operate at the current baud rate until the change is applied with a
subsequent AC command.

The corresponding Local AT Command Response - 0x88 with a matching Frame ID will indicate
whether the parameter change succeeded.

7E 000509534244 07 16

Frame type Frame ID AT command Parameter value
0x09 0x53 0x4244 0x07

Request Matches response "BD" 7 =115200 baud

Query local command parameter
Query the temperature of the module (TP command).

The corresponding 0x88 - Local AT Command Response frame with a matching Frame 1D will
return the temperature value.

7E 0004 09 17 54 50 3B

Frame type Frame ID AT command Parameter value
0x09 0x17 0x5450 (omitted)
Request Matches response "TP" Query the parameter

Digi XBee® 3 Zigbee® RF Module 313

Frame descriptions Transmit Request - 0x10

Transmit Request - 0x10

Response frame: Extended Transmit Status - O0x8B

Description

This frame type is used to send payload data as an RF packet to a specific destination. This frame
type is typically used for transmitting serial data to one or more remote devices.

The endpoints used for these data transmissions are defined by the SE and DE commands and the
cluster ID defined by the Cl command—excluding 802.15.4. To define the application-layer
addressing fields on a per-packet basis, use the Explicit Addressing Command Request -

0x11 instead.

Query the NP command to read the maximum number of payload bytes that can be sent.
See Maximum RF payload size for additional information on payload size restrictions.

64-bit addressing

® For broadcast transmissions, set the 64-bit destination address to 0x000000000000FFFF

® For unicast transmissions, set the 64-bit address field to the address of the desired
destination node

= |f transmitting to a 64-bit destination, set the 16-bit address field to OXFFFE

16-bit addressing

= DigiMesh does not support 16-bit addressing. The 16-bit address field is considered
reserved and should be set to OXFFFE

® For unicast transmissions, set the 16-bit address field to the address of the desired
destination node

= To use 16-bit addressing, set the 64-bit address field toOXFFFFFFFFFFFFFFFF

Zigbee-specific addressing information

= A Zigbee coordinator can be addressed in one of two ways:
» Set the 64-bit address to all 0x00s and the 16-bit address toOXFFFE

+ Set the 64-bit address to the coordinator's 64-bit address and the 16-bit address
to0x0000

= When using 64-bit addressing, populating the correct 16-bit address of the destination helps
improve performance when transmitting to multiple devices. If you do not know a 16-bit
address, set this field toOXFFFE(unknown). If the transmission is successful, the Exiended
Transmit Status - Ox8B indicates the discovered 16-bit address.

= When using 16-bit addressing, the following addresses are reserved:
» OXxFFFC = Broadcast to all routers
» OxFFFD = Broadcast to all non-sleepy devices
* OxFFFF = Broadcast to all devices, including sleepy end devices

Digi XBee® 3 Zigbee® RF Module 314

Frame descriptions

Format

Transmit Request - 0x10

The following table provides the contents of the frame. For details on frame structure, see AP|
frame format.

13

15

16

17-n

EOF

Transmit options bit field

8-bit

16-bit
8-bit
8-bit

64-bit

16-bit

8-bit

8-bit

variable

8-bit

Start
Delimiter

Length
Frame type

Frame ID

64-bit
destination
address

16-bit
destination
address

Broadcast
radius

Transmit
options

Payload
data

Checksum

Indicates the start of an APl frame.

Number of bytes between the length and checksum.
Transmit Request - 0x10

Identifies the data frame for the host to correlate with a
subsequent response frame.
If set to 0, the device will not emit a response frame.

Set to the 64-bit IEEE address of the destination device.
Broadcast address is 0x000000000000FFFF.

Zigbee coordinator address is 0x0000000000000000.
When using 16-bit addressing, set this field

to OXFFFFFFFFFFFFFFFF.

Set to the 16-bit network address of the destination device,
if known.

If transmitting to a 64-bit address, sending a broadcast, or
the 16-bit address is unknown, set this field to OXFFFE.

Sets the maximum number of hops a broadcast
transmission can traverse. This parameter is only used for
broadcast transmissions.

If set to 0—recommended—the value of NHspecifies the
broadcast radius.

See TO (Transmit Options) for available options.
If set to 0, the value of TO specifies the transmit options.

Data to be sent to the destination device. Up to NP bytes
per packet.

0xFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

The available transmit options vary depending on the protocol being used. Bitfield options can be
combined. Set all unused bits to 0.

Sending a unicast message with MAC ACKs disabled is not intended to be a reliable form of
communication, as no ACKs are produced by recipients.

Digi XBee® 3 Zigbee® RF Module

315

Frame descriptions

Zigbee

Transmit Request - 0x10

B g omepn

0 Disable ACK [0x01]

1 Reserved

2 Indirect Transmission [0x04]
3 Multicast [0x08]

4 Secure Session Encryption

[0x10]
5 Enable APS encryption [0x20]

6 Use extended timeout [0x40]

Examples

Disable retries and route repair

<set this bit to 0>

Used for Binding transmissions.

See Muliicast transmissions for more information.

Encrypt payload for transmission across a Secure
Session
Reduces maximum payload size by 4 bytes.

APS encrypt the payload using the link key set by KY
Reduces maximum payload size by 4 bytes.

See Extended timeout for more information.

Each example is written without escapes (AP=1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

64-bit unicast

Sending a unicast transmission to a device with the 64-bit address of 0013A20012345678 with the
serial data "TxData". Transmit options are set to 0, which means the transmission will send using

the options set by the TO command.

The corresponding Transmit Status - 0x89 response with a matching Frame ID will indicate

whether the transmission succeeded.

7E 0014105200 13 A200 12 34 56 78 FF FE 00 00 54 78 44 61 74 61 91

Frame
type Frame ID | 64-bit dest
0x10 0x52 0x0013A200
12345678
Request | Matches Destination
response
64-bit broadcast

Bcast
16-bit dest | radius | Options | RF data
OxFFFE 0x00 0x00 0x547844617461
Unknown | N/A Will use "TxData"

TO

Sending a broadcast transmission of the serial data "Broadcast" to neighboring devices and
suppressing the corresponding response by setting Frame ID to 0.

7E 00171000 00 00 00 00 00 00 FF FF FF FE 01 00 42 72 6F 61 64 63 61 73 74 60

Digi XBee® 3 Zigbee® RF Module

316

Frame descriptions Transmit Request - 0x10

Frame 16-bit Bcast Tx
type Frame ID | 64-bit dest | dest radius Options | RF data

0x10 0x00 0x00000000 | OXFFFE | 0x01 0x00 0x42726F61646361737
0000FFFF 4
Request = Suppress | Broadcast Reserved | Single Will use | "Broadcast"
response @ address hop TO
broadcast

16-bit unicast

Sending a unicast transmission to a device with the 16-bit address of 1234 with the serial data
"TxData". Disable retries and acknowledgments to prioritize performance over reliability. The
corresponding Transmit Status - 0x89 response with a matching Frame ID can be used to verify
that the transmission was sent.

7E 001410 8D FF FF FF FF FF FF FF FF 12 34 00 01 54 78 44 61 74 61 DD

Bcast |Tx
Frame ID | 64-bit dest 16-bit dest | radius | Options |RF data
0x10 0x8D OxFFFFFFFF | 0x1234 0x00 0x01 0x547844617461
FFFFFFFF
Request | Matches Use 16-bit Destination ' N/A Disable | "TxData"
response | addressing retries

Digi XBee® 3 Zigbee® RF Module 317

Frame descriptions Explicit Addressing Command Request - Ox11

Explicit Addressing Command Request - 0x11

Response frame: Extended Transmit Status - O0x8B

Description

This frame type is used to send payload data as an RF packet to a specific destination
using application-layer addressing fields. The behavior of this frame is similar to Transmit Request
- 0x10, but with additional fields available for user-defined endpoints, cluster ID, and profile ID.

This frame type is typically used for OTA updates, serial data transmissions, ZDO command
execution, third-party Zigbee interfacing, and advanced Zigbee operations.

Query NP (Maximum Packet Payload Bytes) to read the maximum number of payload bytes that
can be sent.

See Maximum RF payload size for additional information on payload size restrictions.

64-bit addressing

® For broadcast transmissions, set the 64-bit destination address to 0xX000000000000FFFF

® For unicast transmissions, set the 64-bit address field to the address of the desired
destination node

= |f transmitting to a 64-bit destination, set the 16-bit address field to OXFFFE

16-bit addressing

= DigiMesh does not support 16-bit addressing. The 16-bit address field is considered
reserved and should be set to OXFFFE

® For unicast transmissions, set the 16-bit address field to the address of the desired
destination node

= To use 16-bit addressing, set the 64-bit address field to OXFFFFFFFFFFFFFFFF

Zigbee-specific addressing information

= A Zigbee coordinator can be addressed in one of two ways:
» Set the 64-bit address to all 0x00s and the 16-bit address to OXFFFE

+ Set the 64-bit address to the coordinator's 64-bit address and the 16-bit address
to 0x0000

= When using 64-bit addressing, populating the correct 16-bit address of the destination helps
improve performance when transmitting to multiple devices. If you do not know a 16-bit
address, set this field to OXFFFE (unknown). If the transmission is successful, the Extended
Transmit Status - Ox8B indicates the discovered 16-bit address.

= When using 16-bit addressing, the following addresses are reserved:
» OXxFFFC = Broadcast to all routers
» OxFFFD = Broadcast to all non-sleepy devices
* OxFFFF = Broadcast to all devices, including sleepy end devices

Digi XBee® 3 Zigbee® RF Module 318

Frame descriptions Explicit Addressing Command Request - Ox11

® Tosend aZDO command (ZCL/ZDP):
e Enter the ZDO command in the command data field (payload).
» Each field in the ZDO command frame is represented in little endian format.
» For information on the command formatting, refer to the ZCL and ZDP specifications.

Reserved endpoints

For serial data transmissions, the OXE8 endpoint should be used for both source and destination
endpoints.

The active Digi endpoints are:

= OxES8 - Digi Data endpoint

= OxES6 - Digi Device Object (DDO) endpoint

= OxE5 - XBee 3 - Secure Session Server endpoint

= OxE4 - XBee 3 - Secure Session Client endpoint

= OxE3 - XBee 3 - Secure Session SRP authentication endpoint

Reserved cluster IDs
For serial data transmissions, the 0x0011 cluster ID should be used.
The following cluster IDs can be used on the OXE8 data endpoint:

= 0x0011- Transparent data cluster ID

= (0x0012 - Loopback cluster ID: The destination node echoes any transmitted packet back to
the source device.

Reserved profile IDs
The Digi profile ID of 0xC105 should be used when sending serial data between XBee devices.

The following profile IDs are handled by the XBee natively, all others—such as Smart Energy and
Home Automation—can be passed through to a host:

= 0xC105 - Digi profile ID
= 0x0000 - Zigbee device profile ID (ZDP)

Format

The following table provides the contents of the frame. For details on frame structure, see AP|
frame format.

8-bit Start Indicates the start of an API frame.
Delimiter
1 16-bit Length Number of bytes between the length and checksum.
3 8-bit Frame type Explicit Addressing Command Request - 0x11

Digi XBee® 3 Zigbee® RF Module 319

Frame descriptions

Explicit Addressing Command Request - Ox11

13

15

16

17

19

21

EOF

Transmit options bit field

8-bit

64-bit

16-bit

8-bit

8-bit

16-bit

16-bit

8-bit

8-bit

variable

8-bit

Frame ID

64-bit
destination
address

16-bit
destination
address

Source
Endpoint

Destination
Endpoint

Cluster ID

Profile ID

Broadcast
radius

Transmit
options

Command
data

Checksum

Identifies the data frame for the host to correlate with a
subsequent response.
If set to0, the device will not emit a response frame.

Set to the 64-bit IEEE address of the destination device.
Broadcast address is 0xX000000000000FFFF.

Zigbee coordinator address is 0x0000000000000000.
When using 16-bit addressing, set this field

to OXFFFFFFFFFFFFFFFF.

Set to the 16-bit network address of the destination device if
known.

If transmitting to a 64-bit address, sending a broadcast, or
the 16-bit address is unknown, set this field to OXFFFE.

Source endpoint for the transmission.
Serial data transmissions should use OxE8.

Destination endpoint for the transmission.
Serial data transmissions should use OxE8.

The Cluster ID that the host uses in the transmission.
Serial data transmissions should use 0x11.

The Profile ID that the host uses in the transmission.
Serial data transmissions between XBee devices should
use 0xC105.

Sets the maximum number of hops a broadcast
transmission can traverse. This parameter is only used for
broadcast transmissions.

If set to 0 (recommended), the value of NH specifies the
broadcast radius.

See TO (Transmit Options) for available options.
If set to 0, the value of TO specifies the transmit options.

Data to be sent to the destination device. Up to NP bytes
per packet.

For ZDO and ZCL commands, the command frame is
inserted here. The fields in this nested command frame are
represented in little-endian.

OxFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

The available transmit options vary depending on the protocol being used. Bitfield options can be
combined. Set all unused bits to 0.

Sending a unicast message with MAC ACKs disabled is not intended to be a reliable form of
communication, as no ACKs are produced by recipients.

Digi XBee® 3 Zigbee® RF Module

320

Frame descriptions Explicit Addressing Command Request - Ox11

Zigbee
i Meim Despion |
0 Disable ACK [0x01] Disable retries and route repair
1 Reserved <set this bit to 0>
2 Indirect Transmission [0x04] Used for Binding transmissions.
3 Multicast [0x08] See Multicast transmissions for more information.
4 Secure Session Encryption Encrypt payload for transmission across a Secure
[0x10] Session

Reduces maximum payload size by 4 bytes.

5 Enable APS encryption [0x20] = APS encrypt the payload using the link key set by KY
Reduces maximum payload size by 4 bytes.

6 Use extended timeout [0x40] See Extended timeout for more information.

Examples

Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

64-bit unicast

Sending a unicast transmission to an XBee device with the 64-bit address

of 0013A20012345678 with the serial data "TxData". Transmit options are set to 0, which means
the transmission will send using the options set by the TO command. This transmission is identical
to a Transmit Request - 0x10 using default settings.

The corresponding Extended Transmit Status - 0x8B response with a matching Frame ID will
indicate whether the transmission succeeded.

7E001A 11870013 A200123456 78 FF FEE8 E8 00 11 C1 0500 00 54 78 44 6174 61 B4

Bca
st
64-bit 16-bit Profil | radi Command
dest dest e us data
0x11 | Ox87 0x0013A | OxFFF | OxE8 ' OxE H 0x00 | OxC1 ' 0x00 0x00 | 0x54784461
200 E 8 11 05 7461
1234567
8
Expli = Match | Destinati = Unkno | Digi | Digi Data | Digi | N/A | Use | "TxData"
cit es on wn data | dat profile TO
reque | respon a
st se

Digi XBee® 3 Zigbee® RF Module 321

Frame descriptions Explicit Addressing Command Request - Ox11

Loopback Packet

Sending a loopback transmission to an device with the 64-bit address of 0013A20012345678
using Cluster ID 0x0012. To better understand the raw performance, retries and
acknowledgements are disabled.

The corresponding Extended Transmit Status - 0x8B response with a matching Frame ID can be
used to verify that the transmission was sent.

The destination will not emit a receive frame, instead it will return the transmission back to the

sender. The source device will emit the receive frame—the frame type is determined by the value
of AO—if the packet looped back successfully.

7E001A11F80013 A200 123456 78 FF FEE8 E8 00 12 C1 05 00 01 54 78 44 61 74 61 41

Frame | 64-bit Profil Command
e data
0x11 | OxF8 0x0013A OxFFF | OxE8 ' OxE | 0x00 ' O0xC1 | 0x00 0x01 | 0x54784461
200 E 8 12 05 7461
1234567
8
Expli = Match | Destinati A Unkno | Digi | Digi Data | Digi | N/A | Disab | "TxData"
cit es on wn data | dat profile le
reque | respon a retrie
st se s

ZDO command - ZDP Management Leave Request

Request a Zigbee device with the 64-bit address of 0013A20012345678 leave the network via a
ZDO command. The ZDP request is sent as a broadcast with the destination defined in the ZDO
command frame. Each field in the ZDO frame is in little-endian, the rest of the Digi APl frame is big-
endian.

In order to output the response to the ZDO command request, the sender must be configured to
emit explicit receive frames by setting bit 0 of AO (API Options)—AO = 1. See Receiving ZDO
command and responses for more information.

The corresponding Extended Transmit Status - 0x8B response with a matching Frame ID will
indicate whether the transmission succeeded. The destination will handle the request and return a
response to the sender, which will be emitted as a Explicit Receive Indicator - 0x91 if enabled.

7E00 1E 11 01 00 00 00 00 00 00 FF FF FF FE 00 00 00 34 00 00 00 00A7 78 56 34 21 00 A2 13 00 00
45

Frame | 64-bit optio | Command
EP | Cluster

11 DE 000000 | FFFE 00 00 0000 0000 00 00 Al

Digi XBee® 3 Zigbee® RF Module 322

Frame descriptions Explicit Addressing Command Request - Ox11

Bca
Sour st Tx
64-bit 16-bit | ce radi | optio | Command
dest dest EP Cluster us ns data

00 78563421
0000FF 00A21300
FF 00
0x11 | OxDE | 0x00000 OxFFF 0x00 O0x0 0x0034 @ 0x00 0x00 0x00 = OxA1
ooch;FF 3A200
12345
678
= 0x00
Expli | Match | ZDO Reser | ZDO ZD @ Manage @Zigb Use Use = Seque
cit es comman ved (0] ment ee BH TO nce
requ @ respo ds Leave Devi num
est nse should Request = ce .
be Cluster | Profil - 24-1:”
broadca e es'
sted (ZD = Option
P) s

Digi XBee® 3 Zigbee® RF Module 323

Frame descriptions Remote AT Command Request - Ox17

Remote AT Command Request - 0x17

Response frame: 0x97 - Remote AT Command Response

Description

This frame type is used to query or set AT command parameters on a remote device.

For parameter changes on the remote device to take effect, you must apply changes, either by
setting the Apply Changes options bit, or by sending an AC command to the remote.

When querying parameter values you can query parameter values by sending this framewith a
command but no parameter value field—the two-byte AT command is immediately followed by the
frame checksum. When an AT command is queried, a Remote AT Command Response-

0x97 frame is populated with the parameter value that is currently set on the device. The Frame ID
of the 0x97 response is the same one set by the command in the 0x17 request frame.

XBee 3 Zigbee RF Module firmwares support secured remote configuration through a Secure
Session. Refer to Secured remote AT commands for information on how to secure your devices
against unauthorized remote configuration.

Remote AT Command Requests should only be issued as unicast transmissions to avoid
potential network disruption. Broadcasts are not acknowledged, so there is no guarantee all
devices will receive the request. Responses are returned immediately by all receiving devices,
which can cause congestion on a large network.

Format

The following table provides the contents of the frame. For details on frame structure, see AP|
frame format.

8-bit Start Indicates the start of an API frame.
Delimiter
1 16-bit Length Number of bytes between the length and checksum.
3 8-bit Frame type Remote AT Command Request - 0x17.
4 8-bit Frame ID Identifies the data frame for the host to correlate with a

subsequent response.
If set to 0, the device will not emit a response frame.

5 64-bit 64-bit Set to the 64-bit IEEE address of the destination device.
destination | When using 16-bit addressing, set this field
address to OXFFFFFFFFFFFFFFFF.

13 16-bit 16-bit Set to the 16-bit network address of the destination device if
destination | known.
address If transmitting to a 64-bit address or the 16-bit address is

unknown, set this field to OXFFFE.

15 8-bit Remote Bit field of options that apply to the remote AT command

Digi XBee® 3 Zigbee® RF Module 324

Frame descriptions Remote AT Command Request - 0x17

command request:

t
opflons = Bit 0: Disable ACK [0X01]
Bit 1: Apply changes on remote [0x02]

« If not set, changes will not applied until the device
receives an AC command or a subsequent
command change is received with this bit set

= Bijt 2: Reserved (setto 0)
= Bit 3: Reserved (setto 0)
Bit 4: Send the remote command securely [0x10]

* Requires a secure session be established with
the destination

Option values may be combined. Set all unused bits to

0.
16 16-bit AT The two ASCII characters that identify the AT Command.
command
18-n variable | Parameter | If present, indicates the requested parameter value to set
value the given register.
(optional) If no characters are present, it queries the current
parameter value and returns the result in the response.
EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte

(between length and checksum).

Examples

Each example is written without escapes—AP = 1—and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

Set remote command parameter

Set the NI string of a device with the 64-bit address of 0013A20012345678 to "Remote" and apply
the change immediately.

The corresponding Remote AT Command Response- 0x97 with a matching Frame ID will indicate
success.

7E00151727 00 13 A200 12 34 56 78 FF FE 02 4E 49 52 65 6D 6F 74 65 F6

Frame 16-bit Command | AT
type Frame ID | 64-bit dest dest options command | Parameter value
0x17 0x27 0x0013A200 OxFFFE | 0x02 0x4E49 0x52656D6F7465
12345678
Request |« Matches Unknown | Apply "NI" "Remote"
response Change

Digi XBee® 3 Zigbee® RF Module 325

Frame descriptions Remote AT Command Request - 0x17

Queue remote command parameter change

Change the PAN ID of a remote device so it can migrate to a new PAN, since this change would
cause network disruption, the change is queued so that it can be made active later with a
subsequent AC command or written to flash with a queued WR command so the change will be
active after a power cycle.

The corresponding Remote AT Command Response- 0x97 with a matching Frame ID will indicate
success.

7E0011176800 13 A200 12 34 56 78 FF FE 00 49 44 04 51 D8

Frame Command | AT Parameter
type Frame ID | 64-bit dest 16-bit dest | options command | value

0x17 0x68 0x0013A200 | OxFFFE 0x00 0x4944 0x0451
12345678
Request | Matches Unknown | Queue "ID"
response Change

Query remote command parameter
Query the temperature of a remote device—TP command.

The corresponding Remote AT Command Response- 0x97 with a matching Frame ID will return
the temperature value.

7E000F 17 FA 00 13 A2 00 12 34 56 78 FF FE 00 54 50 84

Frame Command | AT Parameter
type Frame ID | 64-bit dest 16-bit dest | options command | value

0x17 OxFA 0x0013A200 | OxFFFE 0x00 0x5450 (omitted)
12345678
Request = Matches Unknown | N/A “TP" Query the
response parameter

Digi XBee® 3 Zigbee® RF Module 326

Frame descriptions Create Source Route - 0x21

Create Source Route - 0x21

Description

This frame type is used to create an entry in the source route table of a local device. A source route
specifies the complete route a packet traverses to get from source to destination. For best results,
use source routing with many-to-one routing. See Source routing for more information.

In most cases, this frametype is used in combination with routing information received from a
corresponding Route Record Indicator - 0xA1 frame. Route indicators are generated when a
network device sends data to a concentrator. The order in which addresses are entered into the
0x21 frame are the same as provided by the 0xA1 frame—destination to source.

There is no response frame for this frame type. Take care when generating source routes as an
incorrectly formatted frame will be silently rejected or may cause unexpected results. For example,
if sending a source route to the coordinator and one of the hops is 0x0000, then it is rejected
because the coordinator has that short address.

Both the 64-bit and 16-bit destination addresses are required when creating a source route.

Format

The following table provides the contents of the frame. For details on frame structure, seeAP!|
frame format.

8-bit Start Indicates the start of an API frame.
Delimiter
1 16-bit Length Number of bytes between the length and checksum.
3 8-bit Frame type Create Source Route - 0x21
4 8-bit Frame ID This frame type generates no response, so the Frame ID
(reserved) field is not used.
Set this field to 0.
5 64-bit 64-bit Set to the 64-bit IEEE address of the destination device
destination (required).
address
13 16-bit 16-bit Set to the 16-bit network address of the destination device
destination | (required).
address
15 8-bit Options Source routing options are not available yet. This bit field is
(reserved) reserved for future functionality.
Set this field to 0.
16 8-bit Number of | The number of addresses in the source route (excluding
addresses source and destination).

Digi XBee® 3 Zigbee® RF Module

A route can only traverse across a maximum of 30 hops. If

327

Frame descriptions Register Joining Device - 0x24

this number is 0 or exceeds the maximum hop count, the
frame is silently discarded and a route will not be created.

17-n 16-bit Address The 16-bit network address(es) of the devices along the
variable source route, excluding the source and destination.
The addresses should be entered in reverse order (from
destination to source) to match the order provided in Route
Record Indicator - OxA1.

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

Examples

Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

4-hop route

A concentrator needs to send data to a device with a 64-bit address of 0013A20012345678 that is
4-hops away. Due to the size of the network, route discoveries need to be be minimized. The
concentrator had previously received a Route Record Indicator - 0xA1 with the source route to this
device and had stored this information.

The route looks like this:
Source (concentrator) <> Router A <> Router B <> Router C <> Destination (remote)
In this example, the network addresses are simplified.

7E 001421000013 A200 1234 56 78 DD DD 00 03 CC CC BB BB AAAAF6

addresse | Addres Addres
64-bit dest | dest Address2 |s3
0x21 0x00 | 0x0013A2 0xDDDD | 0x00 0x03 0xCCC | 0xBBBB OxAAAA
00 C
12345678
Route | Not Destination = Destinatio = Not Neighb | Intermedia @ Neighbo
reques used | IEEE n NWK used orof te hop rof
t address address dest source

Register Joining Device - 0x24

Response frame: Registration Status - OxA4

Description

This frame type is used to securely register a joining device to a trust center. Registration is the
process by which a node is authorized to join the network using a pre-configured or installation
code-derived link key that is conveyed to the trust center out-of-band—using an interface that is not
the Zigbee network.

Digi XBee® 3 Zigbee® RF Module 328

Frame descriptions Register Joining Device - 0x24

If registering a device with a centralized trust center—EO = 2—then the key entry will only persist for
KT seconds before expiring, or until the device joins the network whereby the key is cleared.

Registering devices in a distributed trust center—EO = 0—is persistent and the key entry will never
expire unless explicitly removed. To remove a key entry on a distributed trust center, a 0x24 frame
should be issued with a null key—key field is absent from the frame. In a centralized trust center you
cannot use this method to explicitly remove the key entries before the KT timeout.

The registration frame will accept all 0xFF's for the device address (EUI) as a wild card. You can
only register one entry at a time with the trust center in this manner. Only after the KT period
expires can you enter an additional wildcard entry. We do not recommend this method. A best
practice is to specifically set the EUI for every device individually.

Format

The following table provides the contents of the frame. For details on frame structure, see AP|
frame format.

8-bit Start Indicates the start of an API frame.
Delimiter
1 16-bit Length Number of bytes between the length and checksum.
3 8-bit Frame type | Register Joining Device - 0x24
4 8-bit Frame ID Identifies the data frame for the host to correlate with a

subsequent response.
If set to 0, the device will not emit a response frame.

5 64-bit 64-bit Set to the 64-bit IEEE address of the joining device.
registrant Set to OXFFFFFFFFFFFFFFFF to act as a one-time use
address wildcard.

13 16-bit Reserved Not used. Set to OXFFFE.

15 8-bit Options Bit field of options that apply to device registration:

= Bijt 0: Key type
» [0x00] = Pre-configured Link Key - Register
device using a pre-configured link key
o Key field is the link key—KY command—of the
joining device.
» [0x01] = Install Code - Register device using an
installation code-derived link key.

o Key field is the install code—I? command—of the
joining device.

Option values may be combined. Set all unused bits to

0.
16-n variable | Key/Install = When registering using a pre-configured link key, field
Code accepts up to 16-bytes.

Digi XBee® 3 Zigbee® RF Module 329

Frame descriptions Register Joining Device - 0x24

When registering using an install code, enter the installation
code + CRC—I? command—of the joining device. Up to 18-
bytes, the CRC can be any endianness.

EOF 8-bit Checksum | OxFF minus the 8-bit sum of bytes from offset 3 to this byte—
between length and checksum.

Examples

Each example is written without escapes—AP = 1—and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

Pre-configured link key registration

A device with the address of 0013A20012345678 needs to join a secured network using a pre-
configured link key of 12345. This link key is unknown to the trust center—KY does not match—thus
it must be conveyed out-of-band via a registration frame.

The corresponding Registration Status - 0xA4 response with a matching Frame ID will indicate
whether the registration succeeded.

7E001024 5D 0013 A2 00 1234 56 78 FF FE 00 01 23 45 4F

64-bit reg
Frame type |Frame ID address Reserved Key/Install Code

0x24 0x5D 0x0013A200 | OxFFFE 0x00 0x012345
12345678
Registration | Matches N/A Keyis a Pre-configured Link
response link key Key (KY)

Installation code-derived link key registration

A device with the address of 0013A20012345678 needs to join a secured network using an install
code of 620D28BDAF2A569B54E7377E33C504A099F 1. The install code read by the 1?
command includes the 2-byte CRC, the install code can be read from a device and entered into the
frame as-is.

The corresponding Registration Status - 0xA4 response with a matching Frame ID will indicate
whether the registration succeeded.

7E001F 24 1C 00 13 A2 00 12 34 56 78 FF FE 01 62 0D 28 BD AF 2A 56 9B 54 E7 37 7E 33 C5 04 A0

99 F1C4
64-bit reg

Frame type |FrameID |address Reserved |Options | Key/Install Code

0x24 0x1C 0x0013A200 @ OxFFFE 0x01 0x620D28BDAF2A569B
12345678 54E7377E33C504A0

99F1

Digi XBee® 3 Zigbee® RF Module 330

Frame descriptions BLE Unlock Request - 0x2C

64-bit reg
Frame type | FrameID |address Reserved Key/Install Code

Registration | Matches Keyis an | Install code (1?)
response install
code

Distributed trust center: link key de-registration

A previously registered device with the 64-bit address of 0013A20012345678 needs to have its
registration information removed from a trust center so that the device remains on the network, but
can no longer securely join. After de-registration, a remote NRO command can be issued to remove
the device from the network. This example only applies to a distributed trust center network—EQO =
0—a centralized trust center will automatically expire the entry after KT seconds.

The corresponding Registration Status - 0xA4 response with a matching Frame ID will indicate
whether the de-registration succeeded.

7E 000D 24 D500 13 A2 00 12 34 56 78 FF FE 00 40

64-bit reg Key/Install
Frame type | Frame ID address Reserved Code

0x24 0xD5 0x0013A200 OxFFFE 0x00 (omitted)
12345678
Registration | Matches device to de- N/A N/A Remove entry
response register

BLE Unlock Request - 0x2C

Response frame: BLE Unlock Response - OxAC

Description

This frame type is used to authenticate a connection on the Bluetooth interface and unlock the
processing of AT command frames across this interface. The frame format for the BLE Unlock
Request - 0x2C and BLE Unlock Response - 0xAC are identical.

The unlock process is an implementation of the SRP (Secure Remote Password) algorithm using
the RFC5054 1024-bit group and the SHA-256 hash algorithm . The SRP identifying user name,
commonly referred to as /, is fixed to the username apiservice.

Upon completion, each side will have derived a shared session key which is used to communicate
in an encrypted fashion with the peer. Additionally, a Modem Status - 0x8A with the status code
0x32 (Bluetooth Connected) is emitted. When an unlocked connection is terminated, a Modem
Status frame with the status code 0x33 (Bluetooth Disconnected) is emitted.

The following implementations are known to work with the BLE SRP implementation:
® github.com/cncfanatics/SRP

You need to modify the hashing algorithm to SAH256 and the values ofNandgto use the RFC5054
1024-bit group.

Digi XBee® 3 Zigbee® RF Module 331

https://en.wikipedia.org/wiki/Secure_Remote_Password_protocol
https://tools.ietf.org/html/rfc5054#appendix-A
https://github.com/cncfanatics/SRP

Frame descriptions BLE Unlock Request - 0x2C

® github.com/cocagne/csrp
®m github.com/cocagne/pysrp

Format

The following table provides the contents of the frame. For details on frame structure, see AP|
frame format.

Frame
Offset | Size Field Description

0 8-bit Start Indicates the start of an APl frame.
Delimiter

1 16-bit | Length Number of bytes between the length and checksum.

3 8-bit Frame type BLE Unlock Request - 0x2C
BLE Unlock Response - OXAC

4 8-bit Step Indicates the phase of authentication and interpretation of
payload data:

1. Client presents A value

2. Server presents Band salt

3. Client present M1 session key validation value
4

. Server presents M2 session key validation value and
two 12-byte nonces

See the phase tables below for more information.

Step values greater than 0x80 indicate error conditions:
0x80 = Unable to offer B—cryptographic error with
content, usually due to A mod N ==
0x81 = Incorrect payload length
0x82 = Bad proof of key
0x83 = Resource allocation error
0x84 = Request contained a step not in the correct
sequence

5-n varies | Payload Payload structure varies by Step value. Refer to the phase
tables below for the structure of this field.

EOF 8-bit Checksum | 0xFF minus the 8-bit sum of bytes from offset 3 to this byte—
between length and checksum.

Phase tables

The following fields are inserted as the payload data depending on the phase of the authentication
process

Digi XBee® 3 Zigbee® RF Module 332

https://github.com/cocagne/csrp
https://github.com/cocagne/pysrp

Frame descriptions BLE Unlock Request - 0x2C

Phase 1 (Client presents A)

Frame
Field Description

1024-bit A One-time ephemeral client public key.
(128 If the A value is zero, the server will terminate the
bytes) connection.

Phase 2 (Server presentsBand salt)

Offset Size Frame Field Description

5 32-bit Salt The SRP Salt value from the $S command.
(4 bytes)

9 1024-bit B One-time ephemeral host public key.
(128 bytes)

Phase 3 (Client presentsM1)

Offset Size Frame Field Description
5 256-bit M1 SHA256 hash algorithm digest.
(32 bytes)

Phase 4 (Server presents M2)

Frame

Offset | Size Field Description

5 256-bit | M2 SHA256 hash algorithm digest .
(32
bytes)

37 96-bit | Tx Random nonce used as the constant prefix of the counter block for
(12 nonce | encryption/decryption of data transmitted to the API service by the
bytes) client.

49 96-bit | Rx Random nonce used as the constant prefix of the counter block for
(12 nonce | encryption/decryption of data received by the client from the API
bytes) service.

Upon completion of M2 verification, the session key has been determined to be correct and the API
service is unlocked and will allow additional API frames to be used. Content from this point will be
encrypted using AES-256-CTR with the following parameters:

= Key: The entire 32-byte session key.

= Counter: 128 bits total, prefixed with the appropriate nonce shared during authentication.
Initial remaining counter value is 1.

Digi XBee® 3 Zigbee® RF Module 333

Frame descriptions User Data Relay Input - 0x2D

The counter for data sent into the XBee API Service is prefixed with the TX nonce value—see
the Phase 4 table, above—and the counter for data sent by the XBee to the client is prefixed
with the RX nonce value.

Examples

Example sequence to perform AT Command XBee API frames over BLE

Discover the XBee 3 Zigbee RF Module through scanning for advertisements.
Create a connection to the GATT Server.

Optional, but recommended: request a larger MTU for the GATT connection.
Turn on indications for the API Response characteristic.

Perform unlock procedure using BLE Unlock Request - 0x2C unlock frames.

Once unlocked, you may send Local AT Command Request - 0x08 frames and receive AT
Command Response frames received.

o0k wbd =

a. Foreach frame to send, form the APl Frame, and encrypt through the stream cipher as
described in the unlock procedure.

b. Write the frame using one or more write operations.

c. When successful, the response arrives in one or more indications. If your stack does not
do it for you, remember to acknowledge each indication as it is received. Note that you
are expected to process these indications and the response data is not available if you
attempt to perform a read operation to the characteristic.

d. Decrypt the stream of content provided through the indications, using the stream cipher
as described in the unlock procedure.

User Data Relay Input - 0x2D

Response frame: Transmit Status - 0x89
Output frame: User Data Relay Output - OxAD

Description

This frame type is used to relay user data between local interfaces: MicroPython (internal
interface), BLE, or the serial port. Data relayed to the serial port—while in APl mode—will be output
as a User Data Relay Output - 0xAD frame.

For information and examples on how to relay user data using MicroPython, see Send and receive
User Data Relay frames in the MicroPython Programming Guide.

For information and examples on how to relay user data using BLE, see Communicate with a
Micropython application in the XBee Mobile SDK user guide.

Use cases

® You can use this frame to send data to an external processor through the XBee UART/SPI
via the BLE connection. Use a cellphone to send the frame with UART interface as a target.
Data contained within the frame is sent out the UART contained within an Output Frame.
The external processor then receives and acts on the frame.

Digi XBee® 3 Zigbee® RF Module 334

https://www.digi.com/resources/documentation/digidocs/90002219/#container/cont_send_receive_user_data.htm
https://www.digi.com/resources/documentation/digidocs/90002219/#container/cont_send_receive_user_data.htm
http://cms.digi.com/resources/documentation/digidocs/90002361/#task/t_communicate_mp.htm
http://cms.digi.com/resources/documentation/digidocs/90002361/#task/t_communicate_mp.htm

Frame descriptions User Data Relay Input - 0x2D

= Use an external processor to output the frame over the UART with the BLE interface as a
target. This outputs the data contained in the frame as the Output Frame over the active
BLE connection via indication.

= An external processor outputs the Frame over the UART with the Micropython interface as a
target. Micropython operates over the data and publishes the data to mqtt topic.

Format

The following table provides the contents of the frame. For details on frame structure, see AP|
frame format.

Offset | Size Frame Field | Description
0 8-bit Start Indicates the start of an API frame.
Delimiter
1 16-bit Length Number of bytes between the length and checksum.
3 8-bit Frame type | User Data Relay Input - 0x2D
4 8-bit Frame ID Identifies the data frame for the host to correlate with a

subsequent response.
If set to 0, the device will not emit a response frame.

5 8-bit Destination The intended interface for the payload data:
Interface 0 = Serial port—SPI, or UART when in APl mode
1=BLE
2 = MicroPython
6-n variable | Data The user data to be relayed
EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte

(between length and checksum).

Error cases

Errors are reported in a Transmit Status - 0x89 frame that corresponds with the Frame ID of the
Relay Data frame:

Error
code |Error Description

0x7C | Invalid Interface The user specified a destination interface that does not exist or is
unsupported.

0x7D Interface not The destination interface is a valid interface, but is not in a state
accepting frames | that can accept data.
For example: UART not in APl mode, BLE does not have a GATT
client connected, or buffer queues are full.

If the message was relayed successfully, no status will be generated.

Digi XBee® 3 Zigbee® RF Module 335

Frame descriptions Secure Session Control - Ox2E

Examples

Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

Relay to MicroPython

A host device needs to pass the message "Relay Data" to a MicroPython application running on a
local XBee device via the serial port.

A corresponding Transmit Status - 0x89 response with a matching Frame ID will indicate if there
was a problem with relaying the data.

If successful, the XBee micropython application can call relay.receive() to retrieve the data.

7E 000D 2D 3D 02 52 656C 61792044 617461FC

Frameypo | ramo1D——— Dstnaton oo bma

0x2D 0x3D 0x02 0x52656C61792044617461

Input Matches response | MicroPython "Relay Data"

Secure Session Control - 0x2E

Response frame: OxAE - Secure Session Response

Description

This frame type is used to control a secure session between a client and a server. If the remote
node has a password set and you set the frame to login, this will establish a secure session that will
allow secured messages to be passed between the server and client.

This frame is also used for clients to log out of an existing secure session.

Secure Sessions are end-to-end connections. If a login attempt is addressed to a broadcast
address, the attempt will fail with an invalid value—status OxA—error.

Format

The following table provides the contents of the frame. For details on frame structure, see AP|
frame format.

Offset | Size Frame Field | Description

0 8-bit Start Indicates the start of an API frame.
Delimiter

1 16-bit Length Number of bytes between the length and checksum.

3 8-bit Frame type | Secure Session Control - 0x2E

4 64-bit 64-bit Set to the 64-bit IEEE address of the destination device.
destination Setto a broadcast address (0x000000000000FFFF) to
address affect all active incoming sessions.

Digi XBee® 3 Zigbee® RF Module 336

Frame descriptions Secure Session Control - Ox2E

8-bit Secure Bit field of options that alter the session behavior:
Session
options = Bit 0: Client-side control:
¢ [0x00] = Login - Log in to a server as a client.

o |f this bit is clear, the local device will act as a
client and initiate SRP authentication with the
target server.

¢ [0x01] = Logout - Log out of an existing session
as a client.

o If this bit is set, the local device will attempt to
end an existing client-side session with the
target server.

° When set, all other options, the timeout field,
and password will be ignored.

= Bijt 1: Server-side control:

¢ [0x02] = Terminate Session - If this bit is set, the
server will end active incoming session(s).

° The address field can be set to a specific node
or the broadcast address can be used to end
all incoming sessions.

°o Use Extended Modem Status - 0x98 frames to
manage multiple incoming sessions.

= Bit 2: Timeout type:

¢ [0x00] = Fixed timeout - The session terminates
after the timeout period has elapsed.

¢ [0x04] = Inter-packet timeout - The timeout is
refreshed every time a secure transmission
occurs between client and server.

Option values may be combined. Set all unused bits to
0.

13 16-bit Timeout Timeout value for the secure session in units of Yith
second. Accepts up to 0x4650 (30 minutes).
A session with a timeout of 0x0000 is considered a yielding
session. Yielding sessions will never time out, but if a server
receives a request to start a session when it has the
maximum incoming sessions, the oldest yielding session
will be ended by the server to make room for the new
session. Sessions with non-zero timeouts will never be
ended in this way.

15-n variable | Password The password set on the remote node—up to 64 ASCII
characters. Will be ignored if this frame is a logout or server

Digi XBee® 3 Zigbee® RF Module 337

Frame descriptions Secure Session Control - Ox2E

termination frame.

EOF 8-bit Checksum OxFF minus the 8-bit sum of bytes from offset 3 to this byte—
between length and checksum.

Examples

Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

Secure Session Client - Login with fixed timeout

A change is needed to be made on a device that is secured against unauthorized configuration
changes. A gateway that is authorized to make the change logs into the remote node for 5 minutes
as a client using the following frame:

The corresponding Secure Session Response - OxAE will indicate whether the login attempt
succeeded.

7E 0014 2E 00 13 A2 0012 34 56 78 00 OB B8 50 41 53 53 57 4F 52 44 D2

0x2E 0x0013A200 0x00 0x02B8 0x50415353574F5244D2
12345678
Request Login 5 minutes = "PASSWORD"
Fixed

Secure Session Client - Login for streaming data

A large stream of data needs to be sent to a gateway that is secured against receiving
unauthorized data. Because the data stream, and the gateway's ability to process the data is
unknown, a Secure Session using a 60 second inter-packet timeout is established. The sending
device logs into the gateway as a client using the following frame:

The corresponding Secure Session Response - OxAE will indicate whether the login attempt
succeeded.

7E 00 13 2E 00 00 00 00 00 00 00 00 04 02 58 52 6F 73 33 62 75 64 D1

0x2E 0x00000000 0x04 0x0258 0x526F7333627564
00000000
Request Zigbee coordinator | Login 60 seconds @ "Ros3bud"
Inter-packet

Digi XBee® 3 Zigbee® RF Module 338

Frame descriptions Local AT Command Response - 0x88

Local AT Command Response - 0x88
Request frames:

® | ocal AT Command Request - 0x08
® Queue Local AT Command Request - 0x09

Description

This frame type is emitted in response to a local AT Command request. Some commands send
back multiple response frames; for example, ND (Network Discovery). Refer to individual AT
command descriptions for details on API response behavior.

This frame is only emitted if the Frame ID in the request is non-zero.

Format

The following table provides the contents of the frame. For details on frame structure, see AP|
frame format.

8-bit Start Indicates the start of an API frame.
Delimiter
1 16-bit Length Number of bytes between the length and checksum.
3 8-bit Frame type Local AT Command Response - 0x88
4 8-bit Frame ID Identifies the data frame for the host to correlate with a prior
request.
5 16-bit AT The two ASCII characters that identify the AT Command.
command
7 8-bit Command | Status code for the host's request:
status 0=0K
1=ERROR

2 = Invalid command
3 = Invalid parameter

8-n variable | Command | If the host requested a command parameter change, this
data field will be omitted.
(optional) If the host queried a command by omitting the parameter
value in the request, this field will return the value currently
set on the device.

EOF 8-bit Checksum | OxFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

Examples

Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

Digi XBee® 3 Zigbee® RF Module 339

Frame descriptions Local AT Command Response - 0x88

Set local command parameter
Host set the NI string of the local device to "End Device" using a 0x08 request frame.

The corresponding Local AT Command Response - 0x88 with a matching Frame ID is emitted as a
response:

7E 000588 014E 49 00 DF

Command
Frame type | Frame ID command Status Command data

0x88 0x4E49 0x00 (omitted)
Response | Matches "NI" Success Parameter changes return no
request data

Query local command parameter
Host queries the temperature of the local device—TP command—using a 0x08 request frame.

The corresponding Local AT Command Response - 0x88 with a matching Frame ID is emitted with
the temperature value as a response:

7E 0007 88 0154 50 00 FF FE D5

Frame type Command Status Command data

0x88 0x17 0x5450 0x00 OxFFFE

Response Matches request "TP" Success 2°C

Digi XBee® 3 Zigbee® RF Module 340

Frame descriptions Modem Status - Ox8A

Modem Status - Ox8A

Description

This frame type is emitted in response to specific conditions. The status field of this frame indicates
the device behavior.

Format

The following table provides the contents of the frame. For details on frame structure, see AP|
frame format.

Frame
Field Description

8-bit | Start Indicates the start of an API frame.
Delimiter
1 16-bit | Length Number of bytes between the length and checksum.
3 8-bit | Frame type = Modem Status - 0x8A
4 8-bit | Modem Complete list of modem statuses:
status 0x00 = Hardware reset or power up

0x01 = Watchdog timer reset

0x02 = Joined network (routers and end devices)

0x03 = Disassociated

0x06 = Coordinator started

0x07 = Network security key was updated

0x0D = Voltage supply limit exceeded—see Over-voltage
detection in the XBee 3 RF Module Hardware Reference
Manual.

0x11 = Modem configuration changed while join in progress
0x3B = Secure session successfully established

0x3C = Secure session ended

0x3D =Secure session authentication failed

0x3E = Coordinator detected a PAN ID conflict but because CR
=0, no action will be taken.

0x3F = Coordinator changed PAN ID due to a conflict

0x32 = BLE Connect

0x33 = BLE Disconnect

0x34 = No Secure Session Connection

0x40 = Router PAN ID was changed by coordinator due to a
conflict

0x42 = Network Watchdog timeout expired three times
0x80 - OxFF = Stack error

EOF 8-bit | Checksum | OxFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

Modem status codes

Statuses for specific modem types are listed here.

Digi XBee® 3 Zigbee® RF Module 341

https://www.digi.com/resources/documentation/digidocs/90001543/default.htm
https://www.digi.com/resources/documentation/digidocs/90001543/default.htm

Frame descriptions Modem status codes

Examples

Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

Boot status
When a device powers up, it returns the following API frame:

7E 0002 8A 00 75
Ox8A 0x00
Status Hardware Reset

Digi XBee® 3 Zigbee® RF Module 342

Frame descriptions Extended Transmit Status - 0x8B

Extended Transmit Status - 0x8B

Request frames:

® Transmit Request - 0x10
= Explicit Addressing Command Request - 0x11

Description

This frame type is emitted when a network transmission request completes. The status field of this
frame indicates whether the request succeeded or failed and the reason. This frame type provides
additional networking details about the transmission.

This frame is only emitted if the Frame ID in the request is non-zero.

Zigbee transmissions to an unknown network address of OXFFFE will return the discovered 16-bit
network address in this response frame. This network address should be used in subsequent
transmissions to the specific destination.

Broadcast transmissions are not acknowledged and always return a status of 0x00, even if
the delivery failed.

Format

The following table provides the contents of the frame. For details on frame structure, see AP|
frame format.

8-bit | Start Indicates the start of an API frame.
Delimiter

1 16-bit | Length Number of bytes between the length and checksum.

3 8-bit | Frametype | Transmit Status - 0x8B

4 8-bit | Frame ID Identifies the data frame for the host to correlate with a prior

request.

5 16-bit | 16-bit The 16-bit network address where the packet was delivered (if
destination | successful). If not successful, this address is OXFFFD
address (destination address unknown). OxFFFE indicates 16-bit

addressing was not used.

7 8-bit | Transmit The number of application transmission retries that occur.
retry count

8 8-bit | Delivery Complete list of delivery statuses:
status 0x00 = Success

0x01 = MAC ACK failure

0x02 = CCA/LBT failure

0x03 = Indirect message unrequested / no spectrum
available

Digi XBee® 3 Zigbee® RF Module 343

Frame descriptions Extended Transmit Status - 0x8B

0x15 = Invalid destination endpoint
0x21 = Network ACK failure
0x22 = Not joined to network
0x23 = Self-addressed
0x24 = Address not found
0x25 = Route not found
0x26 = Broadcast source failed to hear a neighbor relay
the message
0x2B = Invalid binding table index
0x2C = Resource error - lack of free buffers, timers, etc.
0x2D = Attempted broadcast with APS transmission
0x2E = Attempted unicast with APS transmission, but
EE=0
0x31 = Internal resource error
0x32 = Resource error lack of free buffers, timers, etc.
0x34 = No Secure Session connection
0x35 = Encryption failure
0x74 = Data payload too large
0x75 = Indirect message unrequested
Refer to the tables below for a filtered list of status codes that
are appropriate for specific devices.

9 8-bit | Discovery Complete list of delivery statuses:
status 0x00 = No discovery overhead
0x01 = Zigbee address discovery
0x02 = Route discovery
0x03 = Zigbee address and route discovery
0x40 = Zigbee end device extended timeout

EOF 8-bit | Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

Delivery status codes
Protocol-specific status codes follow

Zigbee

0x00 = Success

0x01 = MAC ACK Failure

0x02 = CCA Failure

0x15 = Invalid destination endpoint

0x21 = Network ACK Failure

0x22 = Not Joined to Network

0x23 = Self-addressed

0x24 = Address Not Found

0x25 = Route Not Found

0x26 = Broadcast source failed to hear a neighbor relay the message
0x2B = Invalid binding table index

0x2C = Resource error lack of free buffers, timers, etc.

Digi XBee® 3 Zigbee® RF Module 344

Frame descriptions Transmit Status - 0x89

0x2D = Attempted broadcast with APS transmission

0x2E = Attempted unicast with APS transmission, but EE =0
0x32 = Resource error lack of free buffers, timers, etc.

0x34 = XBee 3 - No Secure Session Connection

0x35 = Encryption Failure

0x74 = Data payload too large

0x75 = Indirect message unrequested

Examples

Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

Successful transmission

Host sent a unicast transmission to a remote Zigbee device using a Transmit Request - 0x10frame.
The transmission was sent using the destination's IEEE 64-bit address with a 16-bit network
address of OXFFFE (unknown).

The corresponding Extended Transmit Status - 0x8B with a matching Frame ID is emitted as a
response to the request:

7E 0007 8B 521234 020001 D9

Tx Delivery Discovery
Frame type | Frame ID 16-bit dest address retries | status status
0x8B 0x52 0x1234 0x02 0x00 0x01
Response | Matches Discovered NWK 2 retries = Success Address
request address discovery

To reduce discovery overhead, the host can retrieve the discovered 16-bit network address from
this response frame to use in subsequent transmissions.

Transmit Status - 0x89

Request frames:

® User Data Relay Input - 0x2D

Description

This frame type is emitted when a transmit request completes. The status field of this frame
indicates whether the request succeeded or failed and the reason.

This frame is only emitted if the Frame ID in the request is non-zero.

This frame format is deprecated and should only be used by customers who require
compatibility with legacy Digi RF products.

Digi XBee® 3 Zigbee® RF Module 345

Frame descriptions Transmit Status - 0x89

Broadcast transmissions are not acknowledged and always return a status of 0x00, even if
the delivery failed.

Format

The following table provides the contents of the frame. For details on frame structure, see AP|
frame format.

Frame
Field Description

8-bit | Start Indicates the start of an API frame.

Delimiter
1 16-bit | Length Number of bytes between the length and checksum.
3 8-bit | Frame type @ Transmit Status - 0x89
4 8-bit | Frame ID Identifies the data frame for the host to correlate with a prior

request.

5 8-bit | Delivery Complete list of delivery statuses:

status 0x00 = Success

0x01 = No ACK received

0x02 = CCA failure

0x03 = Indirect message unrequested

0x04 = Transceiver was unable to complete the
transmission

0x21 = Network ACK failure

0x22 = Not joined to network

0x2C = Invalid frame values (check the phone number)
0x31 = Internal error

0x32 = Resource error - lack of free buffers, timers, etc.
0x34 = No Secure Session Connection

0x35 = Encryption Failure

0x74 = Message too long

0x76 = Socket closed unexpectedly

0x78 = Invalid UDP port

0x79 = Invalid TCP port

0x7A = Invalid host address

0x7B = Invalid data mode

0x7C = Invalid interface. See User Data Relay Input -
0x2D.

0x7D = Interface not accepting frames. See User Data
Relay Input - 0x2D.

0x7E = A modem update is in progress. Try again after
the update is complete.

0x80 = Connection refused

0x81 = Socket connection lost

0x82 = No server

0x83 = Socket closed

0x84 = Unknown server

0x85 = Unknown error

Digi XBee® 3 Zigbee® RF Module 346

Frame descriptions Transmit Status - 0x89

Frame
Field Description

0x86 = Invalid TLS configuration (missing file, and so

forth)
0x87 = Socket not connected
0x88 = Socket not bound
Refer to the tables below for a filtered list of status codes that

are appropriate for specific devices.

EOF 8-bit | Checksum | OxFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

Delivery status codes
Protocol-specific status codes follow

Zigbee

This frame type is only used for indicating errors in sending a User Data Relay request
0x7C = Invalid interface. See User Data Relay Input - 0x2D.

0x7D = Interface not accepting frames. See User Data Relay Input - 0x2D.

Digi XBee® 3 Zigbee® RF Module 347

Frame descriptions

Receive Packet - 0x90

Receive Packet - 0x90

Request frames:

Description

This frame type is emitted when a device configured with standard APl output—AO (API Options) =
O—receives an RF data packet.

Typically this frame is emitted as a result of a device on the network sending serial data using

the Transmit Request - 0x10 or Explicit Addressing Command Request - Ox11 addressed either as
a broadcast or unicast transmission.

Format

® Transmit Request - 0x10
= Explicit Addressing Command Request - 0x11

The following table provides the contents of the frame. For details on frame structure, see AP|
frame format.

12

14

15-n

8-bit

16-bit
8-bit
64-bit

16-bit

8-bit

variable

Start Indicates the start of an API frame.
Delimiter
Length Number of bytes between the length and checksum.

Frametype | Receive Packet- 0x90

64-bit source The sender's 64-bit address.

address
16-bit source ' The sender's 16-bit network address.
address
Receive Bit field of options that apply to the received message:
options = Bit 0: Retries disabled

= Bit 1: Broadcast packet

= Bit 2: Reserved

= Bit 3: Reserved

= Bit 4: Encrypted over secure session

= Bit 5: Encrypted over APS

= Bit 6: Reserved

= Bit 7: Reserved

Option values may be combined.

Received The RF payload data that the device receives.

Digi XBee® 3 Zigbee® RF Module 348

Frame descriptions Receive Packet - 0x90

data

EOF 8-bit Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

Examples

Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

64-bit unicast

A device with the 64-bit address of 0013A20087654321 sent a unicast transmission to a specific
device with the payload of "TxData". The following frame is emitted if the destination is configured
with AO = 0.

7E 00129000 13 A2 008765432156 14 0154 78 44 61 74 61 B9

Frame type | 64-bit source 16-bit source Rx options Received data

0x90 0x0013A200 0x5614 0x01 0x547844617461
87654321

Output Network address ACK was sent "TxData"

Digi XBee® 3 Zigbee® RF Module 349

Frame descriptions Explicit Receive Indicator - 0x91

Explicit Receive Indicator - 0x91

Request frames:

® Transmit Request - 0x10
= Explicit Addressing Command Request - 0x11

Description

This frame type is emitted when a device configured with explicit APl output—AO (API Options)

bit1 set—receives a packet.

Typically this frame is emitted as a result of a device on the network sending serial data using

the Transmit Request - 0x10 or Explicit Addressing Command Request - Ox11 addressed either as
a broadcast or unicast transmission.

This frame is also emitted as a response to ZDO command requests, see Receiving ZDO
command and responsesfor more information. The Cluster ID and endpoints are used to identify
the type of transaction that occurred.

Format

The following table provides the contents of the frame. For details on frame structure, see AP|
frame format.

Offset | Size Frame Field | Description

0 8-bit Start Indicates the start of an API frame.
Delimiter

1 16-bit Length Number of bytes between the length and checksum.

3 8-bit Frametype | Explicit Receive Indicator - 0x91

4 64-bit 64-bit source | The sender's 64-bit address.
address

12 16-bit 16-bit source The sender's 16-bit network address.
address

14 8-bit Source Endpoint of the source that initiated transmission.
endpoint

15 8-bit Destination Endpoint of the destination that the message is addressed
endpoint to.

16 16-bit Cluster ID The Cluster ID that the frame is addressed to.

18 16-bit Profile ID The Profile ID that the fame is addressed to.

20 8-bit Receive Bit field of options that apply to the received message:
options

= Bit 0: Retries disabled
= Bit 1: Broadcast packet

Digi XBee® 3 Zigbee® RF Module 350

Frame descriptions Explicit Receive Indicator - 0x91

n

Bit 2: Reserved
= Bit 3: Reserved
= Bit 4: Encrypted over secure session
= Bit 5: Encrypted over APS
= Bit6: Reserved
= Bit 7: Reserved

Option values may be combined.

21-n variable | Received The RF payload data that the device receives.
data
EOF 8-bit Checksum OxFF minus the 8-bit sum of bytes from offset 3 to this byte

(between length and checksum).

Examples

Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

64-bit unicast

A device with the 64-bit address of 0013A20087654321 sent a unicast transmission to a specific
device with the payload of "TxData". The following frame is emitted if the destination is configured
with AO > 1.

7E 0018910013 A2008765432187BDES8E80011C1050154 784461746137

Frame | 64-bit 16-bit Source | Dest Rx
type source source |EP EP Cluster | Profile | options | Received data
0x91 0x0013A20 0x87BD | OxES8 OxE8 ' 0x0011 | 0xC105 | 0x01 0x5478446174

0 61

87654321
Explicit Network | Digi Digi | Data Digi ACK "TxData"
output address data data profile | was

sent

ZDO command - ZDP IEEE Address Response

A ZDP IEEE address request is issued in order to identify the 64-bit address of a Zigbee device
with the 16-bit network address of 0x046D. The following response is emitted out of the device that
issued the request if configured to do so. In order to output the response to the ZDO command
request, the sender must be configured to emit explicit receive frames by setting bit 0 of AO (API
Options) (AO =1). See Receiving ZDO command and responses for more information.

Each field in the ZDO frame is in little-endian, the rest of the Digi API frame is big-endian.

Digi XBee® 3 Zigbee® RF Module 351

Frame descriptions Explicit Receive Indicator - 0x91

7E001E9100 13 A2 00 1234 56 78 04 6D 00 00 80 01 00 00 01 B5 00 78 56 34 12 00 A2 13 00 6D 04

C3
Rx
Frame | 64-bit 16-bit option
source source S Received data
91 0013A200 046D 00 00 8001 0000 01 B5
12345678 00
78563412
00A21300
6D04
0x91 0x0013A20 0x046D ' 0x00 0x00 ' 0x8001 0xC10 | Ox01 = OxB5
0 5 = 0x00
87654321
= 0x0013A2
00
12345678
= 0x046D
Explici Networ @ ZDO ZDO IEEE ZDO ACK ® Sequence
t k Address was Num
output addres Respons sent = Status
S e
m |FFF
Address
= NWK
Address

Digi XBee® 3 Zigbee® RF Module 352

Frame descriptions I/O Sample Indicator - 0x92

I/O Sample Indicator - 0x92

Description

This frame type is emitted when a device configured with standard API output—AO (AP| Options) =
O—receives an I/0 sample frame from a remote device. Only devices running in APl mode will send
I/O samples out the serial port.

Format

The following table provides the contents of the frame. For details on frame structure, see AP|
frame format.

Frame
Field Description

8-bit Start Indicates the start of an API frame.
Delimiter
1 16-bit Length Number of bytes between the length and checksum.
3 8-bit Frame type | 1I/O Sample Indicator - 0x92
4 64-bit 64-bit The sender's 64-bit IEEE address.
source
address
12 16-bit 16-bit The sender's 16-bit network address.
source
address
14 8-bit Receive Bit field of options that apply to the received message:
options

= Bit 0: Retries disabled

= Bit 1: Broadcast packet

= Bit 2: Reserved

= Bit 3: Reserved

= Bit 4: Encrypted over secure session
= Bit 5: Encrypted over APS

= Bit 6: Reserved

= Bit 7: Reserved

Option values may be combined.

15 8-bit Number of | The number of sample sets included in the payload. This
samples field typically reports 1 sample.

16 16-bit Digital Bit field that indicates which I/O lines on the remote are
sample configured as digital inputs or outputs, if any:

Digi XBee® 3 Zigbee® RF Module 353

Frame descriptions I/O Sample Indicator - 0x92

Frame
Field Description

mask bit 0: DIO0O
bit 1: DIO1
bit 2: DIO2
bit 3: DIO3
bit 4: DIO4
bit 5: DIO5
bit 6: DIO6
bit 7: DIO7
bit 8: DIO8
bit 9: DIO9
bit 10: DIO10
bit 11: DIO11
bit 12: DIO12
bit 13: DIO13
bit 14: DIO14
bit 15: N/A
For example, a digital channel mask of 0x002F means
DIO 0, 1, 2, 3, and 5 are enabled as digital 1/0.

18 8-bit Analog Bit field that indicates which 1/O lines on the remote are
sample configured as analog input, if any:
mask bit 0: ADO
bit 1: AD1
bit 2: AD2
bit 3: AD3

bit 7: Supply Voltage (enabled with V+ command)

19 16-bit Digital If the sample set includes any digital I/O lines (Digital
samples (if = channel mask > 0), this field contain samples for all enabled
included) digital /0 lines. If no digital lines are configured as inputs or

outputs, this field will be omitted.

DIO lines that do not have sampling enabled return 0. Bits in
this field are arranged the same as they are in the Digital
channel mask field.

22 16-bit Analog If the sample set includes any analog I/O lines (Analog
variable | samples (if = channel mask > 0), each enabled analog input returns a 16-
included) bit value indicating the ADC measurement of that input.
Analog samples are ordered sequentially from ADO to AD3.

EOF 8-bit Checksum | 0xFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

Examples

Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

I/O sample

A device with the 64-bit address of 0013A20012345678 is configured to periodically send 1/0
sample data to a particular device. The device is configured with DIO3, DIO4, and DIOS configured
as digital /0, and AD1 and AD2 configured as an analog input.

Digi XBee® 3 Zigbee® RF Module 354

Frame descriptions I/O Sample Indicator - 0x92

The destination will emit the following frame:

7E 00169200 13 A2 00 1234 56 78 87 AC 01 01 00 38 06 00 28 02 25 00 F8 EA

Digital
Rx chann Digital
64-bit 16-bit | option el sample
source source |s mask s
0x92 | 0x0013A2 | 0x87A | 0x01 0x01 0x0038 | 0x06 0x0028 | 0x022 | OxO0F
00 C 5 8
12345678
Sampl Networ | ACK | Single | b'00 b'0110 b'00 AD1 AD2
e k was sample 111000 AD1 101000 data data
addres | sent (typical) DIO3, and DIiOo3
s DIO4, @ AD2 and
and enable | DIO5
DIOS | d are
enable HIGH;
d DI04 is
Low

Digi XBee® 3 Zigbee® RF Module 355

Frame descriptions Node Identification Indicator - 0x95

Node ldentification Indicator - 0x95

Description

This frame type is emitted when a node identification broadcast is received. The node identification
indicator contains information about the identifying device, such as address, identifier string (NI),
and other relevant data.

A node identifies itself to the network under these conditions:

= The commissioning button is pressed once.
= ACB 1 command is issued.
= A device with JN (Join Notification) enabled successfully associates with a Zigbee network.
= A device that is associated with a Zigbee network that has JN (Join Notification) enabled is
power cycled.
See ND (Network Discovery) for information on the payload formatting.
See NO (Network Discovery Options) for configuration options that modify the output of this frame.

Format

The following table provides the contents of the frame. For details on frame structure, see AP|
frame format.

Offset | Size Frame Field Description
0 8-bit Start Delimiter | Indicates the start of an API frame.
1 16-bit Length Number of bytes between the length and checksum.
3 8-bit Frame type Node Identification Indicator - 0x95
4 64-bit 64-bit source | The sender's 64-bit address.
address
12 16-bit 16-bit source | The sender's 16-bit network address.
address
14 8-bit Options Bit field of options that apply to the received message:

= Bit 0: Retries disabled

= Bit 1: Broadcast packet

= Bijt 2: Reserved

= Bit 3: Reserved

= Bit 4: Encrypted over secure session
= Bit 5: Encrypted over APS

= Bijt 6: Reserved

® Bit 7: Reserved

Digi XBee® 3 Zigbee® RF Module 356

https://www.digi.com/resources/documentation/DigiDocs/90002002/Reference/r_cmd_JN.htm

Frame descriptions

15

17

25

27+NI

29+NI

30+NI

31+NI
33+NI

35+NI

EOF-1

EOF

16-bit

64-bit

variable
(2-byte
minimum)

16-bit

8-bit

8-bit

16-bit
16-bit

32-bit

8-bit

8-bit

16-bit remote
address

64-bit remote
address

Node
identification
string

Zigbee 16-bit
parent address

Network
device type

Source event

Digi Profile ID

Digi
Manufacturer
ID

Device type
identifier
(optional)

RSSI
(optional)

Checksum

Digi XBee® 3 Zigbee® RF Module

Node Identification Indicator - 0x95

Option values may be combined.

The 16-bit network address of the device that sent the
Node Identification.

The 64-bit address of the device that sent the Node
Identification.

Node identification string on the remote device set by
NI (Node Identifier). The identification string is
terminated with a NULL byte (0x00).

Indicates the 16-bit address of the remote's parent or
OxFFFE if the remote has no parent. Equivalent to VP
(16-bit Parent Network Address).

What type of network device the remote identifies as:
0 = Coordinator
1 =Router
2 =End Device

The event that caused the node identification broadcast
to be sent.
0 = Reserved
1 = Frame sent by node identification
pushbutton event—see D0
(DIO0/ADO/Commissioning Button
Configuration).
2 = Frame sent after joining a Zigbee network—
see JN (Join Notification).
3 = Frame sent after a power cycle event
occurred while associated with a Zigbee
network—see JN (Join Notification).

The Digi application Profile ID-0xC105.
The Digi Manufacturer ID-0x101E.

The user-defined device type on the remote device set
by DD (Device Type ldentifier).

Only included if the receiving device has the
appropriate NO (Network Discovery Options) bit set.

The RSSI of the last hop that relayed the message.
Only included if the receiving device has the
appropriate NO (Network Discovery Options) bit set.

0xFF minus the 8-bit sum of bytes from offset 3 to this
byte—between length and checksum.

357

Frame descriptions Node Identification Indicator - 0x95

Examples

Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

Identify remote device

A technician is replacing a ZigBee device in the field and needs to have the its entry removed from
a cloud server's database. The technician pushes the commissioning button on the old device once
to send an identification broadcast. The server can use the broadcast to identify which device is
being replaced and perform the necessary action.

When the node identification broadcast is sent, every device that receives the message will flash
the association LED and emit the following information frame:

7E 0027950013 A20012 3456 78 FF FE C2 FF FE 00 13 A2 00 12 34 56 78 4C 48 37 35 00 FF FE 01
01C105101E00 14 00 08 OD

64-bit 64-bit
source remote | NI String
0x95 0x0013 | OxFF | 0xC2 | OxFF 0x0013 0x4C483 |OxFF 0x0O | 0x0 | OxC | 0x10
A200 FE FE A200 73500 FE 1 1 105 1E
123456 123456
78 78
Identifi Unkn | DigiM | Unkn "LH75"+ Unkn Rou | Butt Digi @ Digi
cation own | esh own null own | ter |on
broad pre
cast Ss
Identify joining device

A Zigbee end device has join notification enabled by setting JN to 1. When the joining device
successfully associates with a Zigbee network, it will broadcast a node identification message.

The network has a variety of devices that are assigned identifier strings after association; a unique
DD value is set to identify this type of device. The gateway that manages the network has
the NO command set to 1 to display this information.

When the node identification broadcast is sent, every device that receives the message will flash
the association LED and emit the following information frame:

7E 00249500 13 A2 00 87 6543 217792027792 00 13 A2 00 87 6543 21 20 00 45 A3 02 02 C1 05
10 1E 00 12 00 27 13

Digi XBee® 3 Zigbee® RF Module 358

Frame descriptions Node Identification Indicator - 0x95

64-
bit
Frame 16-bit | rem DD
type remote | ote value
0x95 0x0013 | 0x7 0x02 ' 0x77 0x0013 0x2 O0x4 0x0O Ox0 0xC |0Ox1 | 0x0012
A200 792 92 A200 000 | 5A3 2 2 105 | 01E 0027
87654 12345
321 678
Identifi Broad No End | Join | Digi | Digi @ Zigbee
cation cast NI devi ed + User-
strin ce defined
g
set

Digi XBee® 3 Zigbee® RF Module 359

Frame descriptions

Remote AT Command Response- 0x97

Remote AT Command Response- 0x97

Request frame: Remote AT Command Request - 0x17

Description

This frame type is emitted in response to a Remote AT Command Request - 0x17. Some
commands send back multiple response frames; for example, the ND command. Refer to
individual AT command descriptions for details on APl response behavior.

This frame is only emitted if the Frame ID in the request is non-zero.

Format

The following table provides the contents of the frame. For details on frame structure, see AP|
frame format.

13

15

17

8-bit

16-bit
8-bit
8-bit

64-bit

16-bit

16-bit

8-bit

Start
Delimiter

Length
Frame type

Frame ID

64-bit
source
address

16-bit
source
address

AT
command

Command
status

Digi XBee® 3 Zigbee® RF Module

Indicates the start of an APl frame.

Number of bytes between the length and checksum.
Remote AT Command Response - 0x97

Identifies the data frame for the host to correlate with a prior
request.

The sender's 64-bit address.

The sender's 16-bit network address.

The two ASCII characters that identify the AT Command.

Status code for the host's request:
0x00 = OK
0x01 = ERROR
0x02 = Invalid command
0x03 = Invalid parameter
0x04 = Transmission failure

Statuses for Secured remote AT commands:
0x0B = No Secure Session - Remote command
access requires a secure session be established first
0x0C = Encryption error
0x0D = Command was sent insecurely - A Secure
Session exists, but the request needs to have the
appropriate command option set (bit 4).

360

Frame descriptions Remote AT Command Response- 0x97

variable | Parameter | If the host requested a command parameter change, this
value field will be omitted.
(optional) If the host queried a command by omitting the parameter
value in the request, this field will return the value currently
set on the device.

EOF 8-bit Checksum | OxFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

Examples

Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

Set remote command parameter

Host set the NI string of a remote device to "Remote" using a Remote AT Command Request -
0x17.

The corresponding 0x97 Remote AT Command Response with a matching Frame ID is emitted as
a response:

7E 00 0F 97 27 00 13 A2 00 12 34 56 78 12 7E 4E 49 00 51

16-bit Command |Command
Frame type | Frame ID | 64-bit source | source command Status data

0x97 0x27 0x0013A200 | O0x127E 0x4E49 0x00 (omitted)
12345678
Response | Matches Network | "NI" Success Parameter
request address changes
return no
data

Transmission failure

Host queued the the PAN ID change of a remote device using a Remote AT Command Request -
0x17. Due to existing network congestion, the host will retry any failed attempts.

The corresponding 0x97 Remote AT Command Response with a matching Frame ID is emitted as
a response:

7E 00 0F 97 27 00 13 A2 00 12 34 56 78 FF FE 49 44 04 EA

Frame 16-bit Command Command
type Frame ID | 64-bit source | source command Status data

0x97 0x27 0x0013A200 OxFFFE 0x4944 0x04 (omitted)
12345678

Response | Matches Unknown | "ID" Transmission | Parameter

Digi XBee® 3 Zigbee® RF Module 361

Frame descriptions Remote AT Command Response- 0x97

Frame 16-bit AT Command Command
type Frame ID | 64-bit source | source command | Status data

request failure changes
return no
data

Query remote command parameter

Query the temperature of a remote device—TP (Temperature).

The corresponding 0x97 Remote AT Command Response with a matching Frame ID is emitted
with the temperature value as a response:

7E0011972700 13 A200 12 34 56 78 FF FE 54 50 00 00 2F A8

16-bit AT Command | Command
Frame type | Frame ID | 64-bit source | source command | Status data
0x97 0x27 0x0013A200 | 0x127E 0x4944 0x00 0x002F
12345678
Response | Matches Network | "TP" Success +47 °C
request address

Digi XBee® 3 Zigbee® RF Module 362

Frame descriptions Extended Modem Status - 0x98

Extended Modem Status - 0x98

Description

This frame type can be used to troubleshoot Zigbee network association. To enable verbose join
information, use DC (Joining Device Controls).

Format

The following table provides the contents of the frame. For details on frame structure, see AP|
frame format.

8-bit Start Indicates the start of an API frame.

Delimiter

1 16-bit Length Number of bytes between the length and checksum.

3 8-bit Frametype | Extended Modem Status - 0x98

4 8-bit Status code @ Refer to the tables below for appropriate status codes

n variable | Status data = Additional fields that provide information about the status
(optional)

EOF 8-bit Checksum OxFF minus the 8-bit sum of bytes from offset 3 to this byte

(between length and checksum).

Secure Session status codes

When AZ (Extended API Options) is configured to output extended secure session statuses,
whenever Secure Session APl Frames are emitted, the extended modem status will provide
additional details about the event.

Status Status
code Description data Size | Description

0x3B A Secure Session Address | 64-bit = The address of the client in the session.
was established with

this node Options | 8-bit | Session options set by the client.
Timeout | 16-bit | Session timeout set by the client.

0x3C A Secure Session Address | 64-bit = The address of the other node in this
ended session.

Reason 8-bit | The reason the session was ended:
0x00 - Session was terminated by
the other node
0x01 - Session Timed out
0x02 - Received a transmission with

Digi XBee® 3 Zigbee® RF Module 363

Frame descriptions Extended Modem Status - 0x98

Status Status
code Description data Description

an invalid encryption counter

0x03 - Encryption counter overflow -
the maximum number of
transmissions for a single session
has been reached

0x04 - Remote node out of memory

0x3D A Secure Session Address | 64-bit = Address of the client node.
authentication

attempt failed Error 8-bit | Error that caused the authentication to fail.

See Secure Session Response - OxAE for a
list of error statuses.

Examples

Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

Secure Session established

A device has established a secure session with the local node that has AZ (Extended API
Options) configured to output extended secure session information. The following frame is emitted
that announces the secure session establishment.

7E 000D 98 3B 00 13 A2 00 12 34 56 78 00 46 50 CD

Frame type Status code Status data

0x98 0x3B = 0x0013A20012345678
= (0x00
= (0x4650

Extended status Secure Session established = Address
= QOptions

= Timeout (30 min)

Zigbee Verbose join messages

The following example shows a successful association of a device that has DC (Joining Device
Controls) configured to enable Verbose Join messages. The device is operating in Transparent
mode—AP = 0—to allow a human-friendly way to troubleshoot association issues, if set for API
mode—AP = 1—equivalent 0x98 Extended Modem Status frames would be emitted.

Message Description

V Al -SearchingforParent:FF ...search has started

V Scanning:03FFF800 ...channels 11 through 25 are enabled
by the SC setting for the Active Search.

Digi XBee® 3 Zigbee® RF Module 364

Frame descriptions Extended Modem Status - 0x98

V BeaconRsp:0000000000000042A6010B949ACS8FF m ZS =0x00

m extendedPanld =
00000000000042A6

= allowingJoin 0x01 (yes)
® radiochannel 0x0B
= panid 0x949A
= rssiOxC8
= |gi = OxFF
V Reject ID ...beacon response's extendedPanld

does not match this radio's ID setting of
3151

\Y, m 7S =0x02
BeaconRsp:0200000000000002AB010C55D2B2DB » extendedPanld =
0x00000000000002AB

= allowingJoin = 0x01 (yes)

® radiochannel = 0x0C

® panid = 0x55D2

= rssi=0xB2

= |gi=0xDB
V Reject ZS ...beacon response's ZS does not match

this radio's ZS setting

V BeaconRsp:000000000000003151010EE29FDFFF

V BeaconSaved:0E05E29F0000000000003151 ...this beacon response is acceptable as
a candidate for association

V Joining:0EO05E29F0000000000003151 ...sending association request

V StackStatus: joined, network up 0290 ...we are joined, the network is up, we

can send and transmit
V Joined unsecured network:

V Al -AssociationSucceeded:00

Digi XBee® 3 Zigbee® RF Module 365

8Inpoy\ 44 @98qbiz ¢ @9agx 16Iq

99¢

Zigbee Verbose Join status codes

The following table describes the various Verbose Join trace messages in Status Code order. The Transparent mode string column shows the string
which appears if you run Verbose Join in Command mode. The Description column gives a more detailed explanation of each particular message.

When a message accompanies Status Data, the Status Data column shows how to parse the hexadecimal string into fields. The Size column shows
the number of bytes per field.

Status | Transparent
code maode string Description Status data Description

0x00
0x01

Rejoin

Stack Status

A join attempt is being started.

Shows status and state.

rejoinState

Status

NetworkState

8-bit
8-bit

8-bit

The rejoinState is a count of join attempts.

0x00 - no network

0x01 - joining

0x02 - joined

0x03 - joined (no parent)
0x04 - leaving

0x90 - Network is up and ready to
receive/transmit.

0x91 - Network is down and cannot
receive/transmit.

0x94 - Join attempt failed.

0x96 - A node's attempt to re-establish contact
with the network after moving failed.

0x98 - A join attempt as a router failed due to a
Zigbee 2006 versus Zigbee PRO 2007
incompatibility. Try to join as an end device.
0x99 - The network ID has changed.

0x9A - The PAN ID has changed.

0x9B - The channel has changed.

0xAB - No beacons were received in response
to a beacon request.

OXAC - Received key in the clear.

OxAD - No network key received.

OXAE - No link key received.

OXAF - Preconfigured key required—Settings

suonduosep awel

86X0 - SN1eIS Wapoy papusixy

8Inpoy\ 44 @98qbiz ¢ @9agx 16Iq

L9€

Status | Transparent
code mode string Description Status data Description

0x02

0x03

0x04

0x05

Joining An association request is being made.

Joined Coordinator “Formed”, Router/End Device
“Joined” and whether the network formed
or joined is a "secure network" or an
"unsecured network."

Beacon Data received from a neighboring node in

Response response to a beacon request

Reject ZS Not an association candidate because ZS

does not match that given in the beacon

radioChannel

radioTxPower

panid

extendedPanld

ZS[stackProfile]
extendedPanld

allowingJoin

radioChannel

panid

rssi

8-bit

8-bit

16-bit
64-bit

8-bit
64-bit
8-bit

8-bit

16-bit

8-bit

8-bit

for KY may not match.

Channel number ranging from 11 to 26 (0x0B
to Ox1A)

Low level signed byte value for transmit
power, values range from 0xC9 to 0x05
inclusive

16-bit PAN Identifier for the network
64-bit extended PAN Identifier for network

See ZS (Zigbee Stack Profile).
64-bit Extended PAN ldentifier for network

0x00 - not permitting joins to its network
0x01 - permitting joins to its network

Channel number ranging from 11 to 26—0x0B
to Ox1A

16-bit PAN Identifier for network

Maximum relative signal strength indicator
value measured in units of dBm (applies to last
hop only)

Link quality indicator

suonduosep awel

86X0 - SN1eIS Wapoy papusixy

8Inpoy\ 44 @98qbiz ¢ @9agx 16Iq

89¢

Status | Transparent
code mode string Description Status data Description

0x06

0x07

0x08

0x09

0x0A

0x0B

0x0C

0x0D

RejectID

Reject NJ

panlID Match

Reject
LQIRSSI

Beacon Saved

Al

Permit Join

Scanning

response.

Not an association candidate because
configured pan ID does not match that
given in the beacon response.

Not an association candidate because it is
not allowing joins.

JV/NW with search option (DO80) has
found a matching network.

JV/NWwith search option (DO80)
candidate rejected because this beacon
response is weaker than an earlier beacon
response.

This beacon response is a suitable
candidate for an association request.

Al value has changed.

NJ setting (Permit Join Duration) has
changed

Active scanning has begun.

panld

radioChannel

radioTxPower

panid

extendedPanld

AlStatusCode

value

ChannelMask

16-bit

8-bit

8-bit

16-bit

64-bit
8-bit

8-bit

32-bit

16-bit PAN Identifier for network

Channel number ranging from 11 to 26 (0x0B
to Ox1A)

Low level signed byte value for transmit
power, values range from 0xC9 to 0x05
inclusive

16-bit PAN Identifier for network
64-bit Extended PAN Identifier for network

See a description of Al (Association Indication)

See a description of the NJ (Node Join Time)
command.

A 32-bit value driven by the SC setting where
bit positions 11 through 26 show which
channels are enabled for the upcoming Active

suonduosep awel

86X0 - SN1eIS Wapoy papusixy

8Inpoy\ 44 @98qbiz ¢ @9agx 16Iq

69¢

Status | Transparent
code mode string Description Status data Description

0x0E
0xO0F
0x10

0x11

0x12

0x13

0x14

0x16

0x18

0x19

Ox1A

Scan Error
Join Request

Reject LQI
Reject RSSI
Rejected

(cmdLast)

Rejected
(cmdSave)

Reject strength

Reset for
DC80

ScanCh

Scan Mode

Scan Init

An error occurred during active scan. StatusCode 8-bit
High level request for a form/join.

Reject because LQl is worse than an Iqi 8-bit
already saved beacon

Rejected because RSSI is worse thanan | rssi 8-bit

already saved beacon

Rejected because it matches the last
associated network.

Rejected because it matches an already
saved beacon response.

During first/best phase, response is
weaker than an already saved beacon
response.

With DC80 enabled, reset if no joinable
beacon responses are received within 60s
of joining.

Scanning on Channel radioChannel 8-bit

Shows phase of Ordered Association. mode 8-bit

Starting a scan channel 8-bit

TxPower 8-bit

Scan. See a description of SC (Scan
Channels).

Link quality indicator

Relative signal strength indicator

Channel number ranging from 11 to 26 (0x0B
to Ox1A)

0x00: First/best candidate
0x01: Ordered association by extpanid, then
by channel

Channel being scanned

Low level radio transmit power setting

suonduosep awel

86X0 - SN1eIS Wapoy papusixy

8Inpoy\ 44 @98qbiz ¢ @9agx 16Iq

(174

Status | Transparent
code mode string Description Status data Description

0x1D Energy Scan- | Starting energy scan SC mask 32-bit | Scan channel mask
channel mask

Ox1E Energy Scan - | Channel Energies observed Energies 128- | Energy Levels per channelin SC
energies bit

Ox1F PanldScan - Pan Id Scan starting on channel channel 8-bit | Radio Channel
radio channel

0x20 FormNetwork - | Forming a network radioChannel 8-bit | Channel number ranging from 11 to 26
parameters

radioTxPower 8-bit | Low level radio transmit power setting

panid 16-bit | 16-bit PAN identifier for network

extendedpanid | 64-bit K 64-bit Extended PAN identifier for network
0x21 Discovering Looking for Key Establishment Endpoint

KE Endpoint
0x22 KE Endpoint Found Key Establishment Endpoint Endpoint 8-bit | Endpoint number
0x23 Key exchange | The key exchange process timed out.

timeout
0x24 Key The key has been established.

established

0x25 Key verified The key has been verified.

0x26 Need new key | A key exchange is required to join the
network.

0x27 Key join done | The key exchange process has completed
successfully.

0x28 Ch verify fail Channel verification failed during the join
process.

suonduosep awel

86X0 - SN1eIS Wapoy papusixy

8Inpoy\ 44 @98qbiz ¢ @9agx 16Iq

(V4>

Status | Transparent
code mode string Description Status data Description

0x29 LK update fail | The link key update failed during the join

process.
0x2A Key verify The link key update timed out during the
timeout join process.
0x2B Unknown key | An unknown error occurred in the key
fail exchange process.
0x2C Request from: | Coordinator only. A request to join was EUI64 64-bit | The EUI64 of the radio requesting to join.
received.
0x2D EUI64 in key Coordinator only. A centralized trust center
table has found an entry in the transient key
table for a device requesting to join the
network.
0x2E "Joining Coordinator only. Indicate whether ornot ' Joining allowed | 8-bit | 1 if joining is allowed, else 0.
allowed:" or joining is currently allowed.
"Joining not
allowed:"

suonduosep awel

86X0 - SN1eIS Wapoy papusixy

Frame descriptions Route Record Indicator - O0xA1

Route Record Indicator - OxA1

Description

This frame type contains the routing information for a remote device on the network. This route
information should be stored in external memory and used in a Create Source Route - 0x21 frame
to provide a return route for subsequent data transmissions; this eliminates the need to perform a
route discovery.

This frame type is emitted when a network concentrator receives a route record from a remote
device. The type of concentrator determines how often this frame type is emitted: a high RAM
concentrator (the default) will emit this frame type when a unicast data transmission is received for
the first time. If a previously established route fails, a new 0xA1 Route Record Indicator will be
generated. A low RAM concentrator will emit this frame for every received transmission.
Concentrator type is determined by DO (Miscellaneous Device Options) bit 6.

Format

The following table provides the contents of the frame. For details on frame structure, see AP|
frame format.

8-bit Start Indicates the start of an API frame.
Delimiter
1 16-bit Length Number of bytes between the length and checksum.
3 8-bit Frame type Route Record Indicator - 0xA1
5 64-bit 64-bit The 64-bit IEEE address of the device that initiated the route
source record.
address
13 16-bit 16-bit The 16-bit network address of the device that initiated the
source route record.
address
15 8-bit Receive Bit field of options that apply to the received message:
Options .
= Bit 0: Packet was Acknowledged [0x01]
= Bit 1: Packet was sent as a broadcast [0x02]
16 8-bit Number of | The number of addresses in the source route—excluding
addresses | source and destination.
17-n 16-bit Address The 16-bit network address(es) of the devices along the
variable source route, excluding the source and destination.
The addresses are in order from destination to source and
match the order to be entered into the Create Source Route -
0x21 frame.
EOF 8-bit Checksum | OxFF minus the 8-bit sum of bytes from offset 3 to this byte

Digi XBee® 3 Zigbee® RF Module

(between length and checksum).

372

Frame descriptions Route Record Indicator - O0xA1

Examples

Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

4-hop route

A remote device sends a unicast transmission to a concentrator that is 4-hops away. The
concentrator emits a route record that can be stored for use in a subsequent Create Source Route -
0x21 frame prior to sending data back to the remote.

The route looks like this:
Destination (concentrator) <> Router A <> Router B <> Router C <> Source (remote)

7E0013A10013 A20012 3456 78 DD DD 01 03 CC CC BB BB AAAA 75

Frame | 64-bit 16-bit Num of Address
type source source addresses | 1 Address 2 | Address 3

0xA1 0x0013A200 | 0xDDDD | 0x01 0x03 0xCCCC 0xBBBB OxAAAA
12345678

Route | Source Source 3 Neighbor | Intermediate = Neighbor
IEEE NWK of source hop of
address address destination

Digi XBee® 3 Zigbee® RF Module 373

Frame descriptions Many-to-One Route Request Indicator - 0xA3

Many-to-One Route Request Indicator - 0xA3

Description

This frame type is emitted on devices that receive a many-to-one route request (MTORR) from a
network concentrator. Typically, a device that emits this frame type should send a unicast message
to the sender so a route record can be generated. However, such a unicast may also be sent
automatically by setting bit 6 of DC (Joining Device Controls). The advantage of this option is that it
gives the concentrator a source route to this device, but the data itself is discarded and not sent out
the serial port. DC bit 6 is off by default.

Format

The following table provides the contents of the frame. For details on frame structure, see AP|
frame format.

8-bit Start Delimiter | Indicates the start of an API frame.

1 16-bit | Length Number of bytes between the length and checksum.

3 8-bit | Frame type Many-to-One Route Request Indicator - 0xA3

4 64-bit K 64-bit source | The 64-bit IEEE address of the device that sent the many-to-
address one route request.

12 16-bit | 16-bit source | The 16-bit network address of the device that sent the many-
address to-one route request.

14 8-bit | Receive Options are not available yet. This bit field is reserved for
options future functionality.
(reserved) This field returns 0.

EOF 8-bit | Checksum OxFF minus the 8-bit sum of bytes from offset 3 to this byte

(between length and checksum).

Examples

Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

Many-to-one route request

A gateway is configured for many-to-one routing by setting AR (Aggregate Routing Notification) to
send a many-to-one route request (MTORR) every 10 minutes—AR = 0x3C.

Whenever an aggregator broadcast is sent, the following frame is emitted on all devices:

7E000CA300 13 A2 00876543 2100000057

Digi XBee® 3 Zigbee® RF Module 374

Frame descriptions Many-to-One Route Request Indicator - 0xA3

0xA3 0x0013A200 0x0000 0x00
87654321

MTORR NWK address

Digi XBee® 3 Zigbee® RF Module 375

Frame descriptions Registration Status - 0xA4

Registration Status - 0xA4

Request frame: Register Joining Device - 0x24

Description

This frame type is emitted in response to registering a device to a trust center using the Register
Joining Device - 0x24 frame and indicates whether the registration attempt succeeded or not.

This frame is only emitted if the the Frame ID in the request is non-zero.

Format

The following table provides the contents of the frame. For details on frame structure, see AP|
frame format.

8-bit Start Delimiter | Indicates the start of an API frame.

1 16-bit | Length Number of bytes between the length and checksum.
3 8-bit | Frame type Register Device Status - 0xA4
4 8-bit | Frame ID Identifies the data frame for the host to correlate with a prior
request.
5 8-bit | Registration | Status code for the registration request:
status 0x00 = Success

0x01 = Key too long

0x18 = Transient key table is full

0xB1 = Address not found in the key table

0xB2 = Key is invalid (00 and FF are reserved)

0xB3 = Invalid address

0xB4 = Key table is full

0xBD = Security data is invalid (Install code CRC fails)

EOF 8-bit | Checksum 0xFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

Examples

Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

Successful registration
A device is registered with a trust center using a Register Joining Device - 0x24 frame.

The corresponding 0xA4 Registration Status response with a matching Frame ID is emitted as a
response:

7E 0003 A4 5D 00 FE

Digi XBee® 3 Zigbee® RF Module 376

Frame descriptions BLE Unlock Response - OXAC

Frameype ———lrmep———Toms

OxA4 0x5D 0x00

Response Matches request Success

BLE Unlock Response - 0xAC

Request frame: BLE Unlock Request - 0x2C

Description

This frame type is emitted in response to a BLE Unlock Request - 0x2C during a multi-stage BLE
authentication exchange.

This frame's format is identical to that of the originating request. Refer to BLE Unlock Request -
0x2C for information on the formatting and proper use of this frame.

User Data Relay Output - 0xAD

Input frame: User Data Relay Input - 0x2D

Description

This frame type is emitted when user data is relayed to the serial port from a local interface:
MicroPython (internal interface), BLE, or the serial port.

For information and examples on how to relay user data using MicroPython, see Send and receive
User Data Relay frames in the MicroPython Programming Guide.

for information and examples on how to relay user data using BLE, see Communicate with a
Micropython application in the XBee Mobile SDK user guide.

Format

The following table provides the contents of the frame. For details on frame structure, see AP|
frame format.

Frame
Offset | Size Field Description
0 8-bit Start Indicates the start of an API frame.
Delimiter
1 16-bit Length Number of bytes between the length and checksum.
3 8-bit Frame type @ User Data Relay Output - 0XAD
4 8-bit Source The intended interface for the payload data:
Interface 0 = Serial port—SPI, or UART when in APl mode
1=BLE
2 = MicroPython
5-n variable | Data The user data to be relayed

Digi XBee® 3 Zigbee® RF Module 377

https://www.digi.com/resources/documentation/digidocs/90002219/#container/cont_send_receive_user_data.htm
https://www.digi.com/resources/documentation/digidocs/90002219/#container/cont_send_receive_user_data.htm
http://cms.digi.com/resources/documentation/digidocs/90002361/#task/t_communicate_mp.htm
http://cms.digi.com/resources/documentation/digidocs/90002361/#task/t_communicate_mp.htm

Frame descriptions Secure Session Response - OXAE

Frame
Field Description

OF 8-bit Checksum | OxFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

Error cases

Errors are reported in a Transmit Status - 0x89 frame that corresponds with the Frame ID of the
Relay Data frame:

Error
code |Error Description

0x7C | Invalid Interface The user specified a destination interface that does not exist or is
unsupported.

0x7D Interface not The destination interface is a valid interface, but is not in a state
accepting frames | that can accept data.
For example: UART not in APl mode, BLE does not have a GATT
client connected, or buffer queues are full.

If the message was relayed successfully, no status will be generated.

Examples

Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

Relay from Bluetooth (BLE)

A mobile phone sends a serial data message to the XBee device's BLE interface. The message is
flagged to be sent out of the serial port of the XBee device. The following frame outputs the relayed
data:

7E000CAD 0152656C 61792044 617461BA

0xAD 0x01 0x52656C61792044617461
Output Bluetooth "Relay Data"

Secure Session Response - OXAE

Request frame: Secure Session Control - 0x2E

Description

This frame type is output as a response to a Secure Session Control - 0x2E attempt. It indicates
whether the Secure Session operation was successful or not.

Digi XBee® 3 Zigbee® RF Module 378

Frame descriptions

Format

Secure Session Response - OXAE

The following table provides the contents of the frame. For details on frame structure, see AP|
frame format.

8-bit
1 16-bit
3 8-bit
4 8-bit
5 64-bit
13 8-bit
EOF 8-bit
Examples

Start
Delimiter

Length
Frame type

Response
type

64-bit source
address

Status

Checksum

Indicates the start of an APl frame.

Number of bytes between the length and checksum.
Secure Session Response - 0XAE

The type of response to correlate with the preceding request:

0x00 - Login response
0x01 - Logout response
0x02 - Server Termination

The 64-bit IEEE address of the responding device.

Typical statuses:

0x00 - SRP operation was successful

0x01 - Invalid Password - SRP verification failed due to
mismatched M1 and M2 values

0x02 - Session request was rejected as there are too
many active sessions on the server already

0x03 - Session options or timeout are invalid

0x05 - Timed out waiting for the other node to respond
0x06 - Could not allocate memory needed for
authentication

0x07 - A request to terminate a session in progress has
been made

0x08 - There is no password set on the server

0x09 - There was no initial response from the server
0x0A - Data within the frame is not valid or formatted
incorrectly

Atypical statuses:

0x80 - Server received a packet that was intended for a
client or vice-versa

0x81 - Received an SRP packet we were not expecting
0x82 - Offset for a split value (A/B) came out of order
0x83 - Unrecognized or invalid SRP frame type

0x84 - Authentication protocol version is not supported
OxFF - An undefined error occurred

0xFF minus the 8-bit sum of bytes from offset 3 to this byte
(between length and checksum).

Each example is written without escapes (AP = 1) and all bytes are represented in hex format. For
brevity, the start delimiter, length, and checksum fields have been excluded.

Digi XBee® 3 Zigbee® RF Module

379

Frame descriptions Secure Session Response - OXAE

Secure Session Login attempt
A client attempted to log into a Secure Session server.
The following Secure Session Response - OXAE is emitted as a response:

7E 00 0B AE 00 00 13 A2 00 12 34 56 78 00 88

0x2E 0x00 0x0013A200 0x00
12345678

Response Login success

Digi XBee® 3 Zigbee® RF Module 380

OTA firmwaref/file system upgrades

OV BIVIOW
Scheduled UPGrades ...
Create an OTA UPGrade SeIVer

Digi XBee® 3 Zigbee® RF Module 381

OTA firmwaref/file system upgrades Overview

Overview
The XBee 3 Zigbee RF Module supports two kinds of over-the-air upgrades:

= Firmware upgrades: upgrading the firmware or bootloader code on a device remotely.
= File System upgrades: placing or replacing the entire file system on a remote device.

An OTA upgrade is performed using two XBee RF modules: The client module is the module being
upgraded, and the server module is connected to an external processor (the OTA upgrade
server) and used to send the upgrade to the client. XCTU and Network Manager are capable of
acting as an OTA upgrade server, and are the recommended method for distributing OTA
upgrades. See Create an OTA upgrade server for more information on the OTA upgrade protocol.

Firmware over-the-air upgrades

A firmware OTA upgrade upgrades either just the application firmware or both the application
firmware and the bootloader firmware on a device. OTA firmware upgrades must be to a different
version, re-installing the same version as what is already installed is not supported.

Performing an OTA upgrade will erase any file system or bundled MicroPython code on the
target device, even if the OTA upgrade does not complete.

File system over-the-air upgrades

A file system OTA upgrade uses the same protocol as a firmware OTA upgrade, but instead of
changing the device firmware it installs a new image to the target module's file system. This
method does not allow writing individual files, only copying an entire file system image at once.

See OTA file system upgrades for more information on creating and sending file system images.

Scheduled upgrades

When a client has finished downloading the data for an OTA upgrade, it sends a request to the
server asking when to apply the upgrade. The server can instruct the client to upgrade
immediately, to wait a specified amount of time before upgrading, or to wait for a further command
from the server to upgrade. If instructed to wait, the device will keep the downloaded upgrade for
the specified time and then apply it. If a client looses track of time—for example, due to power loss—
it will attempt to re-send the request for an upgrade time to the server and resume waiting. If the
device does not receive a response to this request after a number of attempts, it applies the
upgrade immediately.

Sleeping devices do not count time towards the upgrade while asleep. The delay for a
scheduled upgrade on a sleeping end device should be calculated only considering the time that
device will be awake.

Different OTA upgrade server tools have varying levels of support for scheduled upgrades. See the

documentation for the OTA upgrade server you are using, or see Create an OTA upgrade server
for information on how to implement scheduled upgrades on a server.

Digi XBee® 3 Zigbee® RF Module 382

OTA firmware/file system upgrades Create an OTA upgrade server

Create an OTA upgrade server

ZCL firmware upgrade cluster specification

The process, format, and commands used for OTA firmware upgrades are based on the ZCL OTA
Upgrade cluster from the ZCL specification. The specification used is in Zigbee document 07-5123-
06. Chapter 2 describes the general format of ZCL commands and chapter 11 describes the OTA
upgrade cluster in detail. The specification contains a complete description of the OTA upgrade
process, and you should reference it when creating an OTA upgrade server. This guide focuses on
differences and examples specific to the XBee 3 Zighee RF Module. Where relevant, we refer to
the ZCL specification document by section, for example (ZCL Spec §11.2.1).

Differences from the ZCL specification

The OTA upgrade process differs from what is described in the ZCL specification in the following
ways:

m Setting/querying OTA cluster attributes and parameters (ZCL Spec §11.10, §11.11) is not
supported.

= The WAIT_FOR_DATA status in an Image Block Response Command (ZCL Spec
§11.13.8) is not supported.

= Devices will not automatically discover an OTA upgrade server upon joining a network (ZCL
Spec §11.8). To specify an OTA server leave it at its default value to accept OTA upgrades
from any server.

= Clients do not automatically query the server for an available upgrade. The only way to start
an OTA upgrade is by sending an Image Notify command from the server.

OTA files

Use an OTA file to perform an OTA upgrade. The OTA file format consists of an OTA header
describing what is present in the file followed by one or more sub-elements containing the upgrade
data. The OTA file format is described in the ZCL Spec §11.4.

The OTA file is included alongside other firmware files in each release. The file with the .ota
extension contains the application firmware update, and the file with the .otb extension contains
updates for both the firmware and the bootloader. The recommended bootloader version is listed in
each firmware release's XML file—if the target device has an older version, we strongly recommend
that you perform the OTA update using the .otb file. Updating a device with the same or newer
bootloader version as the recommended version will not change the bootloader, but will update the
application.

OTA header

The OTA header contains information about the upgrade data contained in the file. An OTA server
needs to parse this file in order to get information that will be requested by a file. The OTA header
formatis (ZCL Spec §11.4.2):

I S

OTA upgrade | Unique identifier for an OTA file - will always be
file identifier OxOBEEF11E.

Digi XBee® 3 Zigbee® RF Module 383

https://zigbeealliance.org/wp-content/uploads/2019/12/07-5123-06-zigbee-cluster-library-specification.pdf
https://zigbeealliance.org/wp-content/uploads/2019/12/07-5123-06-zigbee-cluster-library-specification.pdf

OTA firmwaref/file system upgrades

Create an OTA upgrade server

T T

10

12

14

18

20

52

32

OTA header
version

OTA header
length

OTA header
field control

Manufacturer
code

Image type

File version

Zigbee stack
version

OTA header
string

Total image
size

Version for the OTA header format - The OTA header
version supported by XBee 3 firmwares is 0x0100.

The length in bytes of this OTA header.

Indicates what optional fields are present.

The manufacturer code for the image.

One of two values:

= (0x0000 for a firmware upgrade
= 0x0100 for a file system upgrade

Contains the version information for this upgrade. See File
version definition for more information on how to interpret
this field.

It is important to parse this value from the OTA file
itself instead of inferring it from the file name, as the
software compatibility number is not included elsewhere.

The Zigbee stack version used by the application. This
field is informational for the server and is not used during
the upgrade process.

For XBee 3 Zigbee firmwares, the value of this field is
2 indicating Zigbee Pro—see ZCL Spec §11.4.2.8 for a full
list of values. The actual Zigbee stack profile used by the
device may differ depending on the value of the ZS
command.

A human-readable string to identify the OTA file.

The total size of the OTA file, including the OTA header.

This field contains incorrect information in most older
firmware files and should not be used in the update
process. The total size of the file should be determined
using an external method.

All fields—except for the OTA header string—are in little endian byte order. Optional fields may

be present at the end of the OTA header, they have been omitted here as they are not used in the
XBee 3 upgrade process.

Digi XBee® 3 Zigbee® RF Module

384

OTA firmware/file system upgrades Create an OTA upgrade server

File version definition

The file version is a 32-bit integer—sent in little-endian byte order—containing information on a
firmware version. It is divided into two fields:

= The most significant byte corresponds to the compatibility number field in the firmware's
XML file—see %C (Hardware/Software Compatibility)—for a description of the compatibility
number's effect on loading firmware.

= The remaining three bytes indicate the firmware version as reported by VR.

For example, a file version of 0x0100100A indicates that the software compatibility number is 1
and the version number is 100A. 0x0200300B indicates that the software compatibility number is 2
and the version is 300B.

Sub-elements

All data after the OTA header is organized into sub-elements. Most OTA files will contain a single
sub-element: the upgrade image. Sub-elements are arranged as tag-length-value triplets, as
shown in the table below.

W

Sub-element | The tag for the sub-element, in little-endian format. This is
tag usually 0x0000 for 'upgrade image'-this is the case for both
firmware upgrades and file system upgrades.

2 4 Sub-element | The length of the sub-element data (n) in little-endian format.
length
6 n Sub-element | The data to be transferred. This is either the contents of a
data .gbl firmware image or a signed file system image.
OTA upgrade process

The OTA upgrade process is performed by sending OTA commands between the client and server.
OTA commands are sent as explicitly addressed packets, as described in OTA commands.

To initiate an OTA upgrade, the upgrade server sends an Image Notify Command, either to a single
device or as a broadcast. After that initial transmission, the OTA process is driven by the client—or
clients, if the Image Notify command is sent as a broadcast and accepted by multiple clients. The
client sends requests to the server to request the image information, download it, and request
when to upgrade. If the client does not receive a response from the server, it retries its request a
few times before aborting the upgrade. The requests sent by the client are designed so that the
server does not have to store any state related to a client's upgrade in progress—it only needs to
send the image notify and respond to requests as they come in. The server can still observe these
requests to track the state of an upgrade if desired, however—for example, to report download
progress.

The following diagram shows the sequence of transmissions for an OTA upgrade:

Digi XBee® 3 Zigbee® RF Module 385

OTA firmware/file system upgrades Create an OTA upgrade server

Upgrade server Upgrade client

Image notify (optional)

>

Query next image request

<

Query next image response

(new image available)

Image block/page request

<
(Block/page 0)

Image block response

(Block 0)

Image block/page request

<

(Block/page n)

Image block response

(Block n)
Upgrade end request

<

(Retrieval complete)
Upgrade end response

(Upgrade when: now)

OTA commands

All OTA commands are sent as explicitly addressed packets with the following address information:

= Source/destination endpoint: 0xE8
= Cluster ID: 0x0019
= Profile ID: 0xC105
The first three payload bytes of the command indicate what the command is and the structure of

the remaining data in the command. All integer values in OTA commands are represented using
little-endian byte order.

Digi XBee® 3 Zigbee® RF Module 386

8Inpoy\ 44 @98qbiz ¢ @9agx 16Iq

L8€

Image Notify command

(see ZCL Spec §11.13.3)

The Image Notify command is sent by the server to alert clients that an upgrade is available and prompt them to begin the upgrade. This command
can be sent either as a broadcast or as a unicast:

= |f sent as a unicast, the client will respond with a Query Next Image Request if the Image Notify contains valid information, and with a default
response otherwise.

= [f sent as a broadcast, all receiving clients will examine any optional fields included and respond only if the information indicates an image
compatible with that device. On large networks, the query jitter parameter can be used to make only a percentage of those receiving the
command respond at a time.

ZCL command format

Offset |Length |Field Name Description

0 1 Frame control = When sending this command, value to set depends on whether the command will be sent as a broadcast or
a unicast:

® if sending a unicast: set this field to 0x09 (server-to-client command).
® if sending a broadcast: set this field to 0x19 (server-to-client command, Default Response disabled).

1 1 Sequence Any sequence number can be used for the Image Notify
number

2 1 Command ID 0x00 for Image Notify

3 1 Payload type | Indicates which fields are present:

0: No optional fields (Query Jitter only)

1: Query Jitter, Manufacturer Code

2: Query Jitter, Manufacturer Code, Image Type

3: Query Jitter, Manufacturer Code, Image Type, File Version

4 1 Query jitter A number, 0-100, must be set to 100 for a unicast. If less than 100 for a broadcast, then each receiving
device will generate a random number and only respond to this command if that generated number is less
than the query jitter.

sapeubdn walsAs ajly/aiemully v 1O

Janas epelbdn v/ 1O ue 8)eal)

8Inpoy\ 44 @98qbiz ¢ @9agx 16Iq

88¢

Manufacturer | Optional. The Manufacturer code for the available image, parsed from the OTA file header.

code
7 2 Image type Optional. The image type of the available image, parsed from the OTA file header.
9 4 New file Optional. The version parsed from the available image's OTA file header.

version

Example
To send this command from a server device, use the following Explicit Addressing Command Request - Ox11:

7E002111010013A200 11223344 FF FEE8 E8 0019 C105000009 0100 0364 1E 10 00 00 0A 200001 18

The payload portion of the API frame (starting at offset 23) is shown below:

Frame Sequence |Command |Payload Manufacturer
control | number ID type Query jitter code Image type | New file version
Data 09 01 00 03 64 1E 10 0000 0A 20 00 01
Value 0x09 0x01 0x00 0x03 0x64 (100) 0x101E 0x0000 0x0100200A
Description Image Allfields | Client will Digi's Firmware | Must match value in the
Notify present always respond | manufacturer upgrade OTA file header.
code 0x01: Software

compatibility number
0x00200A: Application
version

Additional error cases

If a client receives a unicast Image Notify command that includes any optional fields—Manufacturer ID, Image Type, New File Version—and those
fields do not match what the client is expecting, it will send a default response to the server. See Default Response command for more information
on possible error cases.

Query Next Image Request command
(See ZCL Spec §11.13.4)

sapeubdn walsAs ajly/aiemully v 1O

Janas epelbdn v/ 1O ue 8)eal)

8Inpoy\ 44 @98qbiz ¢ @9agx 16Iq

68¢

The Query Next Image Request command is sent by the client to ask for information on any available OTA Upgrade. It is sent in response to an
Image Notify from the server.

ZCL command format

Offset | Length |Field Name Description

0 1 Frame control | Will be setto 0x01, indicating a client to server command.
1 1 Sequence Sequence number chosen by the client.
number
2 1 Command ID 0x01 for Query Next Image Request.
3 1 Field control Indicates which optional fields are present.
4 2 Manufacturer | Manufacturer code of the client.
code
6 2 Image type Image type that the client is requesting:

= 0x0000 for a firmware upgrade
= 0x0100 for a file system upgrade

8 4 Current file Firmware version that is currently running on the client. See File version definition for more information on
version how to interpret this field.

The compatibility number reported in the current file version field refers to the installed firmware's
compatibility number, which may be different from the %C value of the device.

12 2 Hardware Optional. Hardware version of the client.
version

Example
This is an example Explicit Rx Indicator (0x91) frame containing a Query Next Image Request that could be received by a server:

7E001E910013 A2005566 7788 FF FEE8E80019C1050101020100 1E 10 00 00 06 20 00 01 F9

The payload portion of the API frame (starting at offset 21) is shown below:

sapeubdn walsAs ajly/aiemully v 1O

Janas epelbdn v/ 1O ue 8)eal)

8Inpoy\ 44 @98qbiz ¢ @9agx 16Iq

o6¢

Frame Sequence Manufacturer
control number Command ID Field control code Image type | Current version
Data 01 02 01 00 1E10 0000 0620 00 01
Value 0x01 0x02 0x01 0x00 0x101E 0x0000 0x01002006
Description Query NextImage | HW version not | Digi's Firmware 0x01: Software
Request present manufacturer upgrade compatibility number
code 0x002006: Application

version

Query Next Image Response command
(See ZCL Spec §11.13.5)
The Query Next Image Response command should be sent by the server when it receives a Query Next Image request.

ZCL command format

Offset |Length |Field Name Description

0 1 Frame control | Should be set to 0x19, indicating a server-to-client command.

1 1 Sequence Must match the sequence number of the request that prompted this response.
number

2 1 Command ID 0x02 for Query Next Image Response.

3 1 Status One of three values:

= 0Ox00 (SUCCESS): An image is available
= 0x98 (NO_IMAGE_AVAILABLE): No upgrade image is available
= Ox7E (NOT_AUTHORIZED): This server isn't authorized to perform an upgrade

Remaining fields are only included if this field contains 0x00 (SUCCESS).

4 2 Manufacturer | The Manufacturer code for the available image, parsed from the OTA file header. Must match the
code manufacturing code from the Query Next Image request that prompted this response.

sapeubdn walsAs ajly/aiemully v 1O

Janas epelbdn v/ 1O ue 8)eal)

8Inpoy\ 44 @98qbiz ¢ @9agx 16Iq

L6

Image type The Image for the available image, parsed from the OTA file header. Must match the manufacturing code
from the Query Next Image request that prompted this response.

8 4 File version The version parsed from the available image's OTA file header.

12 4 Image size The size in bytes of the image that will be sent over the air. This should be the size of the OTA file.

Note This field is handled differently if the client has a firmware version older than 100A. See Does the
download include the OTA header?.

Example

An OTA server could respond to the Query Next Image Request example in the previous section using the following Explicit Addressing Command
Request - 0x11:

7E0024 11010013 A2001122 3344 FF FEE8E80019C10500 00 1902 02 00 1E 10 00 00 OA 20 00 01 3A 90 05 00 9D

The payload portion of the API frame (starting at offset 23) is shown below:

Frame Sequence Command Manufacturer | Image
Control Number ID Code Type File Version Image Size

Data 1E10 0000 0A 200001 3A 900500
Value 0x19 0x02 0x02 0x00 0x101E 0x0000 0x0100200A 0x0005903A
(SUCCESS)
Description Digi's Firmware | Must match value in the
manufacturer upgrade OTA file header.
code 0x01: Software

compatibility number
0x00200A: Application
version

This indicates that the server has version 0x0100200A available for the client to upgrade to, and that the file's size is 0x0005903A (364,6042) bytes.

sapeubdn walsAs ajly/aiemully v 1O

Janas epelbdn v/ 1O ue 8)eal)

(See ZCL Spec §11.13.6)

ZCL command format

Frame control

8Inpoy\ 44 @98qbiz ¢ @9agx 16Iq

1 1 Sequence
number

2 1 Command ID

3 1 Field control

4 2 Manufacturer
code

6 2 Image type

8 4 File version

12 4 File offset

13 1 Maximum data
size

Image Block Request command

The client sends Image Block Request commands to the server to download the upgrade image data. The client will send requests until it has
downloaded the entire image, as determined by the image size given in the Query Next Image Response from the server.

Will be set to 0x01, indicating a client to server command.

Sequence number chosen by the client.

0x03 for Image Block Request.

Indicates which optional fields are present. No optional fields are currently used by the XBee 3 Zigbee RF
Module.

The manufacturer code of the image being downloaded.

The image type of the image being downloaded.
The version number of the file being downloaded.

The offset at which to begin the data, from the start of the OTA file.

This field is handled differently if the client has a firmware version older than 100A. See Does the
download include the OTA header?

The maximum number of bytes of image data the server may include in its response.

Optional fields have been omitted here as they are not used by the XBee 3 Zigbee RF Module.

Example

This is an example Explicit Receive Indicator - 0x91 containing an Image Block Request that could be received by a server:

c6e

sapeubdn walsAs ajly/aiemully v 1O

Janas epelbdn v/ 1O ue 8)eal)

8Inpoy\ 44 @98qbiz ¢ @9agx 16Iq

£6¢

7E002511010013A20011223344 FF FEE8E80019C1050000011203 00 1E 10 00 00 0A 20 00 01 34 12 00 00 63 CA

The payload portion of the API frame (starting at offset 21) is shown below:

Frame |Sequence |Command | Field Manufacturer | Image Maximum
control | number ID control code type Current version | File offset data size
Data 01 12 03 00 1E10 0000 0A 2000 01 34120000 63
Value 0x01 0x12 0x01 0x00 0x101E 0x0000 0x0100200A 0x00001234 | 0x63
Description Image Block | No optional | Digi's Firmware | 0x01: Software
Request fields manufacturer | upgrade compatibility
present code number
0x00200A:
Application
version

The client is requesting up to 0x63 bytes of data, starting from offset 0x1234.

Image Block Response command
(See ZCL Spec §11.13.8)
The Image Block Response is generated by the OTA server to send the data asked for in an Image Block Request.

ZCL command format

Offset |Length |Field Name Description

0 1 Frame control | Should be set to 0x19 indicating a server-to-client command.

1 1 Sequence Must match the sequence number of the request that prompted this response.
number

2 1 Command ID 0x05 for Image Block Response.

3 1 Status This field has one of two values, and determines the structure of the remaining fields:

sapeubdn walsAs ajly/aiemully v 1O

Janas epelbdn v/ 1O ue 8)eal)

8Inpoy\ 44 @98qbiz ¢ @9agx 16Iq

12

16

17

Example

Manufacturer
code

Image type

File version

File offset

Data size

Image data

= 0x00 (SUCCESS): Image data is available. The remaining fields must be included.
= 0x95 (ABORT): Instructs the client to abort the download. The remaining fields must not be included.

The 0x97 (WAIT_FOR_DATA) status (see ZCL Spec §11.13.8.1) is not supported.

The Manufacturer code for the available image, parsed from the OTA file header. Must match the
manufacturing code from the request that prompted this response.

The Image for the available image, parsed from the OTA file header. Must match the manufacturing code
from the request that prompted this response.

The version parsed from the available image's OTA file header. Must match the version number from the
request that prompted this response.

The offset into the OTA file where the data begins. Must match the offset from the request that prompted this
response.

This field is handled differently if the client has a firmware version older than 100A. See Does the
download include the OTA header?

The number of bytes of data included in this block. This can be any number less than or equal to the
maximum data size value in the request that prompted this response.

When using source routing, sending the maximum data size indicated by the client may resultin a
larger packet than the server can send—See Maximum RF payload size. Attempting to send a packet larger
than the maximum payload size will result in the transmission not being sent and receiving a transmit status
of 0x74: Message too long. In this case, the OTA server should either determine the maximum packet size
and limit the image block to that, or retry with a smaller image block until transmit status 0x74 is no longer
received.

Image data starting from the given offset. The length of this field is determined by the value in the preceding
field (Data Size).

An OTA server could respond to the Image Block Request example in the previous section using the following Explicit Addressing Command

v6€

Request - 0x11:

sapeubdn walsAs ajly/aiemully v 1O

Janas epelbdn v/ 1O ue 8)eal)

8Inpoy\ 44 @98qbiz ¢ @9agx 16Iq

G6¢

7E0028 11010013 A20011223344 FF FEE8E80019C105000019 120500 1E 10 00 00 OA 20 00 01 34 12 00 00 03 69 6D 67 D3

The payload portion of the API frame (starting at offset 23) is shown below:

Frame |Sequence |Command Manufacturer
control | number ID code File version | File offset
Data 19 12 05 00 1E10 0000 0A 20 00 01 34120000 03 69 6d 67
Value 0x19 0x12 0x05 0x00 0x101E 0x0000 0x0100200A | 0x00001234 | 0x03 69 6d
(SUCCESS) 67
Description Image Digi's Firmware | 0x01:
Block manufacturer | upgrade | Software
Response code compatibility
number
0x00200A:
Application
version

This response contains three bytes of data starting at offset 0x1234. The data size value in this example is very small—-three bytes—for simplicity;
since any size less than or equal to the client's requested maximum is allowed this is a valid frame, but smaller image blocks will increase the time
the OTA upgrade takes.

Upgrade End Request command
(See ZCL Spec §11.13.9)
The Upgrade End Request command is sent by the client when it finishes a download, whether successfully or not.

ZCL command format

Offset |Length |Field Name Description

0 1 Frame control Will be set to 0x01, indicating a client to server command.
1 1 Sequence Sequence number chosen by the client.
number

sapeubdn walsAs ajly/aiemully v 1O

Janas epelbdn v/ 1O ue 8)eal)

8Inpoy\ 44 @98qbiz ¢ @9agx 16Iq

96¢

Command ID 0x06 for Upgrade End Request.
3 1 Status One of four values indicating the status of the download.

= 0x00 (SUCCESS): The client successfully downloaded and verified the image.

= 0x96 (INVALID_IMAGE): The client aborted the download because the downloaded image was
invalid or corrupted.

= 0x95 (ABORT): The client aborted the download for another reason.

= 0x99 (REQUIRE_MORE_IMAGE): The download completed, but additional files are needed for the
upgrade. This status is not used by the XBee 3 Zigbee RF Module.

The value of this field determines what response the server should send. If the status is 0x00 (SUCCESS),
the server should respond with an Upgrade End Response command. Otherwise, the server should respond
with a Default Response command with the SUCCESS status.

4 2 Manufacturer = The manufacturer code of the image being downloaded.
code
6 2 Image type The image type of the image being downloaded.
8 4 File version The version of the image being downloaded
Exampe

This is an example Explicit Receive Indicator - 0x91 containing an Upgrade End Request that could be received by a server:
7E 00 1E 91 00 13 A2 00 55 66 77 88 FF FE E8 E8 00 19 C1 0501 01 95 06 00 1E 10 00 00 OA 20 00 01 5D

The payload portion of the API frame (starting at offset 21) is shown below:

Frame Sequence Manufacturer
control number Command ID code Image type File version

Data 1E10 0000 0A 20 00 01

Value 0x01 0x95 0x06 0x00 0x101E 0x0000 0x0100200A

sapeubdn walsAs ajly/aiemully v 1O

Janas epelbdn v/ 1O ue 8)eal)

8Inpoy\ 44 @98qbiz ¢ @9agx 16Iq

L6€

Frame Sequence Manufacturer
control number Command ID Status code Image type File version
(SUCCESS)
Description Upgrade End Digi's Firmware 0x01: Software compatibility
Request manufacturer code ' upgrade number
0x00200A: Application
version

The client has completed the download of version 0x0100200A. The server should respond with an Upgrade End Response command.

Upgrade End Response command
(See ZCL Spec §11.13.9.6)

The Upgrade End Response command is sent by the server when it receives an Upgrade End Request with the SUCCESS status. This command
instructs the device to perform the upgrade, and can be used to schedule an upgrade for a later time. An Upgrade End Response can also be sent
without a request from a client if the client is waiting for an upgrade—scheduled by a previous Upgrade End Response—to change the time to wait for
that upgrade.

ZCL command format

Frame control | Should be set to 0x19 indicating a server-to-client command.

1 1 Sequence If this command is sent in response to an Upgrade End request, the sequence number should match the one
number from that request.

2 1 Command ID 0x07 for Upgrade End Response.

3 2 Manufacturer | The Manufacturer code for the available image, parsed from the OTA file header. Must match the
code manufacturer code from the request that prompted this response.

5 2 Image type The Image for the available image, parsed from the OTA file header. Must match the image type from the

request that prompted this response.

7 4 File version The version parsed from the available image's OTA file header. Must match the version number from the

sapeubdn walsAs ajly/aiemully v 1O

Janas epelbdn v/ 1O ue 8)eal)

8Inpoy\ 44 @98qbiz ¢ @9agx 16Iq

86¢

request that prompted this response.
11 4 Current time The current time, used for scheduled upgrades. See Schedule an upgrade for more information.

15 4 Upgrade time | The scheduled upgrade time, used for scheduled upgrades. See Schedule an upgrade for more information.

If the upgrade should be performed immediately and not scheduled for a later time, the Current Time and Upgrade Time fields should be set to the
same value less than OxFFFFFFFF.

Example

An OTA server could respond to the Image Block Request example in the previous section using the following Explicit Addressing Command
Request - 0x11:

7E0027 11010013 A200 11223344 FF FEE8 E8 0019 C10500 00199507 1E 10 00 00 0A 20 00 01 00 00 00 00 00 00 00 00 D4

The payload portion of the API frame (starting at offset 23) is shown below:

Frame Sequence Manufacturer
control | number Command ID |code Image type | File version Current time | Upgrade time
Data 19 95 07 1E10 0000 0A 200001 000000 00000000
Value 0x19 0x95 0x07 0x101E 0x0000 0x0100200A 0x00000000 | 0x00000000
Description Upgrade End | Digi's Firmware 0x01: Software
Response manufacturer upgrade compatibility number
code 0x00200A: Application

version

With the current time and upgrade time both set to 0, the device will reboot and install the upgrade immediately.

Default Response command
(See ZCL Spec §2.5.12)
A Default Response command is sent when a response is needed but there is no other command frame suited to the response.

sapeubdn walsAs ajly/aiemully v 1O

Janas epelbdn v/ 1O ue 8)eal)

8Inpoy\ 44 @98qbiz ¢ @9agx 16Iq

66¢

During the OTA Upgrade process, the client will send a default response with an error status if it receives an invalid command from the server. The
only time the server needs to send a default response is when it receives an Upgrade End Request with an error status; the server responds with a
default response with status 0x00 (SUCCESS) status to indicate that the request was received.

ZCL command format

Offset | Length | Field Name Description
0 1 Frame control If command is sent by the client: 0x10
If command is sent by the server: 0x18
1 1 Sequence number Must match the sequence number of the command that prompted this Default Response.
2 1 Command ID 0xO0B for Default Response.
3 1 (Source) command identifier The command ID of the command that prompted this Default Response.
4 1 Status code A status code indicating success or an error. A full list of status codes, see ZCL Spec §2.6.3.

Error messages sent by the client

The client will send a default response to the server when an error occurs. The significance of the status code in this message depends on what
server command prompted the default response. The Handling Error Cases section of each command's section in the ZCL specification contains
detailed information on what errors a command can produce. Some errors that can be sent by the client are listed below:

Source Command
Identifier Description

0x80 (MALFORMED_ | Either one of the errors form ZCL Spec §11.13.3.5.1, or manufacturer code or image type is not

COMMAND) valid.
0x00
(Image Notify) 0x70 (REQUEST _ OTA Upgrades have been disabled on this device.
DENIED)
0x8A (DUPLICATE_ | The new version is not valid:
EXISTS)

= For firmware upgrades, the new firmware version must be different than what is installed on
the device. Upgrades to the same version are not supported.

sapeubdn walsAs ajly/aiemully v 1O

Janas epelbdn v/ 1O ue 8)eal)

8Inpoy\ 44 @98qbiz ¢ @9agx 16Iq

ooy

Source Command
Identifier Description

= Forfile system upgrades, the version indicates what firmware version the image supports. It
must match the currently installed firmware.

Make sure the firmware version in the Image Notify is being parsed from the OTA header in the
upgrade image.

0x85 (INVALID_ Firmware is incompatible with the client's %C (Hardware Compatibility) value.
FIELD)
0x02 0x80 (MALFORMED_ | The format of the command is invalid (see ZCL Spec §11.13.5.5).
(Query Next Image = COMMAND)
Response) :))
0x89 The image is too large for the client to store.
(INSUFFICIENT_
SPACE)
0x05 0x80 (MALFORMED_ | The format of the command is invalid (See ZCL Spec §11.13.8.5).
(Image Block COMMAND)
Response)
0x07 0x80 (MALFORMED_ ' The format of the command is invalid (See ZCL Spec §11.13.9.9).
(Upgrade End COMMAND)
Response)
Example

After unicasting an Image Notify command to a client, the server may receive the following Explicit Receive Indicator - 0x91 frame containing a
Default Response:

7E 0017910013 A2005566 7788 FF FEE8 E8 0019 C10501 10 0C 0B 00 8A A1

The payload portion of the API frame (starting at offset 21) is shown below:

sapeubdn walsAs ajly/aiemully v 1O

Janas epelbdn v/ 1O ue 8)eal)

8Inpoy\ 44 @98qbiz ¢ @9agx 16Iq

Loy

Frame control | Sequence number | Command ID Source command identifier Status
Data 10 0C 0B 00 8A
Value 0x10 0x0C 0x0C 0x00 0x8A (DUPLICATE_EXISTS)
Description Default Response | Image Notify

The source command identifier field indicates that the error is in response to an image notify, and the sequence number will match that of the Image
Notify command sent by the server. According to the table above, a DUPLICATE_EXISTS status for an Image Notify means that the firmware version
is invalid—the device is already running the firmware version that the server is trying to send.

When the server needs to send a default response, it can do so using an Explicit Addressing Command Request - 0x11. For example, to send a
Default Response with a SUCCESS status in response to an Upgrade End Request:

7E001911010013A200 11223344 FFFEE8E80019C105000018410B 06 0078

The payload portion of the API frame (starting at offset 23) is shown below:

18 41 0B 06 00

Data
Value 0x18 0x41 0x0B 0x06 0x00 (SUCCESS)
Description Default Response Upgrade End Response

sapeubdn walsAs ajly/aiemully v 1O

Janas epelbdn v/ 1O ue 8)eal)

OTA firmware/file system upgrades Create an OTA upgrade server

Handling unrecognized commands

If the server receives a command with an unrecognized command ID, it should respond with a
default response with status 0x81 (UNSUP_CLUSTER_COMMAND).

Schedule an upgrade

The current time and upgrade time fields of the Upgrade End Response command can be used to
schedule an upgrade for some time in the future. The time can for the upgrade can be scheduled in
several ways:

Current time Upgrade time
value value

0x00000000- | Equalto current | The device will upgrade immediately.
OxFFFFFFFE | time

0x00000000 0x00000001- Delayed upgrade: the device will upgrade after the number of
OxFFFFFFFE seconds indicated by the upgrade time value.

0x00000001- | Any value Scheduled upgrade: the device will determine how long to
OxFFFFFFFE | greater than wait by subtracting current time from upgrade time, and wait
(Currenttime currenttime and | that long before upgrading.

in seconds less than

since midnight | OxFFFFFFFF

Jan 1, 2000) (Intended
upgrade time in
seconds since
midnight Jan 1,
2000)

Any OxFFFFFFFF Prompted upgrade: The device will not upgrade, and will wait
indefinitely to receive another Upgrade End Response with
the server. The second upgrade end response can schedule
an upgrade with any of the above methods.

When performing a scheduled upgrade, we recommend that the OTA upgrade server
continue to monitor for and respond to OTA commands until after the time the upgrade is meant to
be applied. If the client loses power while waiting to apply a scheduled upgrade, it will send another
Upgrade End Request to the server when it regains power in an attempt to resume the schedule. If
the client does not receive a response from the server after a few tries, it applies the upgrade
without confirmation from the server.

Scheduled upgrades on sleeping devices

To schedule an upgrade, an XBee 3 Zigbee RF Module makes use of internal software timers,
which only count time while the device is awake. So a sleeping device takes significantly longer to
apply the scheduled upgrade than a non-sleeping device. Consider this limitation when scheduling
an upgrade on a sleeping device.

Formula for estimating when a sleeping device will apply an upgrade

upgrade_delay = number of seconds the upgrade was scheduled for (upgradeTime- currentTime
fields in the Upgrade End Response frame)

Digi XBee® 3 Zigbee® RF Module 402

OTA firmware/file system upgrades Create an OTA upgrade server

sleep_time = amount of time the device is estimated to be asleep (SP for an asynchronous
sleeping device)

wake_time = amount of time the device is estimated to be awake (ST for an asynchronous sleeping
device)

total_time = sleep_time + wake_time
expected_upgrade_delay = upgrade_delay * (total_time / wake_time)

Asynchronous cyclic sleep scheduled upgrades

A device that is configured for asynchronous cyclic sleep will only be awake for a few milliseconds
at a time, therefore we do not recommend that you schedule an upgrade for a sleeping node with
this configuration. However, if the device is configured to always stay awake for ST time then the
scheduled upgrade can be estimated by using the above formula—where wake_time = ST and
sleep_time = SP. You can configure a device to always stay awake for ST by setting SO bit 1 to
one—for example, SO = 0x01.

Pin sleep scheduled upgrades

Since the device only counts time while it is awake, scheduling an upgrade on a pin sleeping
device may be unpredictable. However, if a pin sleeping device has predictable sleep patterns it is
possible to estimate when a scheduled upgrade will be applied. The sleep estimate formula can be
applied to a pin sleeping device to estimate when it will apply the upgrade.

Aggressively sleeping devices
If a device is asynchronously sleeping, and keeping it awake for all of ST time is undesired, then
we recommend performing a scheduled upgrade in the following manner:
1. Configure the sleeping node for indirect messaging:
a. Configure the sleeping device with the following parameters:
= CE =0 (router)
m DH, DL should be set to match SH, SL of the OTA server device
b. Make sure that ST and SP of the sleeping device and OTA server radio match.

c. Setall of the transmit option fields of the API frames sent to the OTA server device to
0x40.

2. Download the firmwaref/file system image to the sleeping device as described in this section.

a. When sending the Upgrade End Response frame set the upgradeTime to
0xFFFFFFFF—instructing the sleeping device to wait for another upgrade end request
before applying the upgrade.

3. Wait for the desired amount of time to pass.

4. When the time to have the sleeping device apply its upgrade has arrived, send a second
Upgrade End Response to the sleeping device with the currentTime and upgradeTime
fields both set to 0x0000. This causes the sleeping device to apply the upgrade
immediately.

Considerations for older firmware versions

Some changes need to be made to this OTA upgrade process for some previous versions of the
software.

Digi XBee® 3 Zigbee® RF Module 403

OTA firmware/file system upgrades Create an OTA upgrade server

Version 1009 and prior: Only the GBL file is sent over the air

When the firmware is sent over the air it must be sent without including the OTA header and sub-
element tags. See Does the download include the OTA header?

Version 1009 and prior: Delayed ACK for some packets

The Query Next Image Response and the final Image Block Response both cause the client to
perform a long operation—erasing/verifying OTA update data in the storage slot. On these versions,
the network ACK for the transmission is not sent until after this operation completes. This means
that the server will time out waiting for an ACK, and the transmission will appear to fail even though
it was in fact received by the client.

On Zigbee, this error can be worked around by enabling the extended APS timeout. Set bit six of
the Transmit Options field (0x40) in the transmit API frame, at least when sending a Query Next
Image Response or the final Image Block Response.

Version 1008 and prior: Recovering from failed client transmissions

On XBee 3 Zigbee versions 1008 and previous, the OTA client will not attempt to resend a request
to the server if it fails due to network conditions. This is known to occur in large networks when the
client attempts to send the first Image Block Request or the Upgrade End Request, but could
happen at any time during the download due to a failed transmission.

When this occurs, it will appear to the server as though the client stopped sending requests. The
server can recover the update from this state using the following method:

1. When sending messages to the client, the OTA server should check the TX status of the
transmission to ensure it was successfully delivered to the client.

2. When the server waits for the client's response, it should do so with a timeout.

= How long this timeout should be can vary based on network settings, but something
like 20 seconds should cover most cases.

= Keep in mind when determining the timeout that the client can take a long time (6-8
seconds) to process some OTA commands, such as the Query Next Image
Response or the final Image Block Response.

3. Ifthe server does not receive the request from the client, the server should proceed and
send the next response, as though it had received the expected request from the client.

= For this process, note that firmware versions 1008 and prior will always specify 64 for
the maximum data size field of an Image Block Request if encryption is disabled,
and 44 if it is enabled. Use these as the maximum sizes when constructing image
blocks.

= For example, if the last packet sent before the timeout was a Query Next Image
Response, the server should send an Image Block Request with the firstimage
block, for example 64 bytes—or 44 on an encrypted network—starting at offset 0.

= [f the last packet sent before the timeout was an Image Block Response, the server
should send another Image Block Response starting immediately after the end of the
last block sent and of the same size.

= [f the last packet sent before the timeout was an Image Block Response containing
the final bytes of the image, the server should send an Upgrade End Response.

4. The client will accept the generated response and continue the update. Failures like this
should not happen consistently; If the server times out and has to do this for more than

Digi XBee® 3 Zigbee® RF Module 404

OTA firmwaref/file system upgrades Create an OTA upgrade server

about three packets in a row without hearing from the client, it should assume
communication with the client is lost and the update has failed.

Note This method should only be used when updating from a version 1008 or prior. On newer
versions the client will resend failed requests, and sending a response unprompted like this could
cause an error in the download.

Version 1007 and prior: OTA commands cannot be sent with fragmentation

An OTA update with any of these versions as the client will fail if an OTA command is sent with
fragmentation. This is why Image Block Requests sent by these versions set the maximum data
size to 64 or 44 bytes. However, on networks with source routing enabled—this includes any
network that is using encryption—this means that if a message is sent with a route record included
then the payload size must be decreased even more to ensure fragmentation is not used. This can
be handled one of two ways by the server:

1. Set AR to OxFF on the server for the duration of the update. This will ensure that the OTA
server does not send route records to the client, and is the recommended method when
updating devices from version 1007 or earlier.

2. Alternatively, if the number of relays between the server and the client is known, the image
block size can be reduced to accommodate the reduced payload size.

= The payload should be reduced by one byte plus two byes for each relay node—
including the client.

= The payload should then be further reduced to a multiple of four.

= Be aware that the route could change during the update due to changing network
conditions, so it would be wise to include some additional overhead.

Does the download include the OTA header?

Most OTA files consist of an OTA header, a sub-element tag, and a single sub-element: The
upgrade image. For firmware versions 100A and newer, the entire OTA file is sent to the client
during an OTA Upgrade. However, for versions older than 100A, only the contents of the file's
single sub-element should be sent—not the OTA header or the sub-element tag. This affects
several fields in the upgrade process.

When dealing with these two methods it is useful to know the image offset of the OTA file—that is,
the offset at which the upgrade image data actually begins. This can be calculated by taking the
size of the OTA header—which can be parsed from near the beginning of the OTA file—and adding
six bytes for the sub-element header: two bytes for the tag, four bytes for the length.

Value
when
sending
Value when with
sending without header
header (100A
Command (pre-100A) and later) | Notes
Query Next Image | Thesize of the The total | In either case, this is the total number
Image size upgrade image size of of bytes that the client needs to

Digi XBee® 3 Zigbee® RF Module 405

OTA firmwaref/file system upgrades Create an OTA upgrade server

Value
when
sending
Value when with
sending without header
header (100A
Command (pre-100A) and later) | Notes
Response parsed from the first | the OTA | download. This value should never
sub-element tag's file. be determined by reading the Total
length value, or the Image Size field from the OTA
total size of the OTA header, as that field contains
file minus the image incorrect information on most older
offset. firmware files.
Image Block | File This refers to the This
offset offset from the start | refersto
of the upgrade the offset

image data—add the | into the
image offsetto this | OTAfile.
value to get the

offset into the OTA

file.

Note For compatibility with older OTA upgrade servers, newer firmware versions support both
methods for a firmware upgrade. File system upgrades only support the method corresponding to
the installed firmware version, as described above. We recommend using the newer method where
possible to ensure compatibility with future releases.

Digi XBee® 3 Zigbee® RF Module 406

OTA file system upgrades

After a FOTA update, all file system data and bundled MicroPython code is erased. To continue
running code, a new file system needs to be sent to the device after the firmware update is
complete. This section contains information on how to update the file system of remote devices
over the air.

OTASAile system Update PrOCESS
OTA file system updates using XCTU
OTA file system updates: OEM

Digi XBee® 3 Zigbee® RF Module 407

OTA file system upgrades OTA file system update process

OTA file system update process

Since OTA file system updates are signed, remote devices must be configured so that they can
validate incoming updates. To set up a network for OTA file system updates:

1. Generate a public/private Elliptic Curve Digital Signature Algorithm (ECDSA) signing key
pair.

2. Using the generated public key, set FK (File System Public Key) on all devices that will
receive OTA file system updates.

You cannot set FK remotely. You must either set FK before the XBee 3 Zigbee RF Module is
deployed, or else serial access to the device is needed to set it.

To perform an OTA file system update:

1. Onalocal device, create a copy of the file system that you want to send over the air.
2. Create an OTA file system image, signed using the private key generated previously.
3. Perform an OTA update using the created OTA file.

The local device used to create the file system image must have the same firmware version
installed as the target device or the file system will be rejected. Use VR (Firmware Version) to
check the version number on both the staging and target devices.

You can perform all of these steps automatically through XCTU or manually using other tools.

OTA file system updates using XCTU

Use the following steps to perform a file system update OTA using XCTU:

Generate a public/private key pair
Set the public key on the XBee device
Create the OTA file system image

> wh =

Perform the OTA file system update

Generate a public/private key pair

XCTU provides an ECDSA key pair generator that you can use to store a public/private key pair in
.pem files. To access the Generate file system key pair dialog:

1. Open the File System Manager dialog box.
2. Click Keys as shown below.

Digi XBee® 3 Zigbee® RF Module 408

OTA file system upgrades OTA file system updates using XCTU

e e T T T T TR [Tr—
oy . - -

e L

2 S pubic by

3. Click Generate in the Generate file system key pair dialog.
4. Save both the keys in a safe location and close the dialog box.

Set the public key on the XBee device

1. Open the configuration view of the target device in XCTU and go to the File System
category.

2. Inthe File System Public Key row, click Configure.

Digi XBee® 3 Zigbee® RF Module 409

OTA file system upgrades OTA file system updates using XCTU

=1 2N ~
&l == gy - a 710
bt D o Rl
T - g 86
| T D D Poman v B e
TH B gt Pt R 2 86
T8 ot Pt - - 2 86
L e p— » - g o6
T T p— u g o6
L T p— - g o6
T T T — R
T — -
o Dt Tamaar + 30 -
i F Dongat Femgnar - &
Ak P g Pt "0 - b Bk - -
r— : = - @)
s - %)
[ETrr——— i
[
—
P ——
L) TESVERIFEE)

Y s Az
Wl et g et et

W gy et ol
TP i .

DD Corvmn Ty it e

e] [

3. Inthe Configure File System Public Key dialog box, click Browse and choose the .pem file
that you saved the public key into. Once this is done, the HEX value of the public key is
visible under the Public key section on the dialog box as shown.

4. Click OK to ensure that the key gets written into the device.

This can be only be done locally. XBee firmware DOES NOT support remotely setting the file
system public key at this time.

Create the OTA file system image

To create the OTA file system image:

Open the File System Manager dialog box.
Open a connection on the device that you want to generate the OTA file system image from.
Click FS Image.

In the Generate a signed file system image window that displays, click Browse and choose
the .pem file that the private key was stored in.

5. Once the path shows up on the Private Key file field, click Save to assign the .fs.ota an
appropriate file name and location.

6. Save the file.

s wh =

Digi XBee® 3 Zigbee® RF Module 410

OTA file system upgrades OTA file system updates using XCTU

2 Fiba Syitem Manager o

File System Manager

. - g
* - ®-
T tood aliows you 1o interact with the fle system of your Xies module g T=)
._.ﬁ.'
F. i
L b
Clowe

Format Koy

COMD - 2I000EMNN
Laeal path

M

o
HA

My

e Genarate & signed file system enage

o In codier 1o gendrate & tignaed file fyitem image, you need B0 provide & valid private key 15 sign
the image with

Mote teat this image can only be used 1o update the file sysiem of remote deveoe.

Private Key file:
Broewie_.
Don't heve keys? Generate them bere,
Cancal
3790 B free of 3820 KB
Close
You will be prompted with a File system image successfully saved dialog box if the file was
successfully generated.
Perform the OTA file system update
1. To add the target device, click Discover radios in the same network from the source
device.
2. Enter Configuration mode on the remote device.
3. Click the down arrow next to the Update button and choose Update File System.
B rscomodues mm = n ¥ Rsdo Confgurston frgl_redio - 01 MASFFADGASARE]
_' l..::: :g.:::mn: 5: w‘? ‘?) ;ﬂ "I—‘ - :; -
E@ Ports COM10 - ZIS00BMN - 484 1 = Waad Ve Delwit Updsts Profie
MAC: COTIAZFFS2B1IS00 -
Product family: NE1 24 ﬁ Update radia firrrrare Function se
1 rerncte modules x S T updste iy pytem
E@ Function: Dy ¥Bewd BIL154 x i €M Chanesd

WAL DO IATFRADGSSALE | B0 Hetwerk MM ID

i OB Compatibskey Options
i I Mods kentifr

i HT Mode Dhcower Time
i O Mode Diicoeer Optisni
B WA A Moo

i WP Masimgm Pacopt Paylosd Length

Digi XBee® 3 Zigbee® RF Module 411

OTA file system upgrades OTA file system updates: OEM

4. Choose the OTA file system image (.fs.ota) that the target node needs to be updated to.
5. Click Open.

Updating remote file system

53

. Programming module: B6%

Updating XBee file system...

Hide details 0

Verifying that the file systern image exists... [OK]
Verifying that the OTA file is valid... [QK]
Configuring the updater node... [OK]
Starting the update process... [OK]

- Transferring OTA file...

tE L LA L E L EE L L ELELEEELEELELESESEELSE.S

+¥+¥++++ T+ FE IS

Close

Once the file system image is completely transferred and mounted on the remote device, XCTU
informs you that the file system has been updated successfully.

,;'c File system updated successfully x

o File systern has been updated successfully.
y

OTA file system updates: OEM

Use the following steps to perform a file system update OTA using OEM tools:

Digi XBee® 3 Zigbee® RF Module 412

OTA file system upgrades OTA file system updates: OEM

Generate a public/private key pair
Set the public key on the XBee 3 device
Create the OTA file system image

s wh =

Perform the OTA file system update

Generate a public/private key pair

Generate ECDSA signing keys using secp256r1 curve parameters (also known as prime256v1 or
NIST P-256).

To generate a public/private key pair using OpenSSL, run the following command:
openssl ecparam -name prime256v1 -genkey -outform pem -out keypair.pem

To extract the private key from the key pair generated above:

openssl pkcs8 -topk8 -inform pem -in pair.pem -outform pem -nocrypt -out private.pem

To extract the public key from the key pair generated above:

openssl ec -in keypair.pem -pubout -out public.pem

Set the public key on the XBee 3 device

The public keys generated by XCTU and OpenSSL are stored in *.pem files. These files need to be
parsed to get the value to use when setting FK. To parse a public key file, run:

openssl asn1parse -in public.pem -dump
The command will produce something like the following output:

0:d=0 hl=2I= 89 cons: SEQUENCE
2:d=1 hl=2 1= 19 cons: SEQUENCE
4:d=2 hl=21= 7 prim: OBJECT :id-ecPublicKey
13:d=2 hlI=21= 8 prim: OBJECT :prime256v1
23:d=1 hl=2 1= 66 prim: BIT STRING
0000 - 00 04 95 50 aa 55 b6 f5-5d 99 4d d8 15d1 7157 ...P.U..].M...qW
0010-5180d5 14 ec 1f6a 15-51a2c4 b8 0f 77 108a Q.....j.Q....w..
0020-33a380074740 14 8b-5ca74c 78 02fc4d 82 3..G@..\.Lx..M.
0030-904b 399862 a1 1d 97-6e 78 fb 54 62 06 d2 41 .K9.b...nx.Tb..A
0040-c7 3b

The public key should be 65 bytes long - it is the BIT STRING value at the end, with the leading 00
omitted; in this case:

049550aa55b6f55d994dd815d171575180d514ec1f6a1551a2c4b80f77108a33a380074740148b5ca74c780
2fc4d82904b399862a11d976e78fb546206d241c73b

Create the OTA file system image

You can create a file system image outside of XCTU using any utility that can perform ECDSA
signing. These instructions show how to do so using OpenSSL. To create an OTA file system
image, use the following steps.

Digi XBee® 3 Zigbee® RF Module 413

OTA file system upgrades OTA file system updates: OEM

Create a staged file system

In order to create a usable file system image, first create a 'staged' copy of the file system you want
to send on a local device.

Use the FS command or MicroPython to load all of the files that you want to send onto the local
staging device.

The staging device must have the same firmware version installed as the target device or the
file system will be rejected. Use the VR command to check the version number on both the staging
and target devices.

Download the file system image

Run the command ATFS GET /sys/xbfs.bin to download an image of the file system from the
staging device. The file is transferred using the YMODEM protocol. See File system for more
information on downloading files using FS GET.

Pad the file system image

The file system image must be a multiple of 2048 bytes long before it is signed. Using hex editing
software, add OxFF bytes to the end of the downloaded image until size of the file is a multiple of
2048 (0x800 in hex).

Calculate the image signature

Once the image has been padded to a multiple of 2048 bytes, it is ready to be signed. The ECDSA
signature should be calculated using SHA256 as the hash algorithm.

Assuming a public/private key pair has been generated as described in Generate a public/private
key pair, that the private key is named private.pem, and that the padded image is named xbfs.bin;
this can be done using OpenSSL with the following command:

openssl dgst -sha256 -sign private.pem -binary -out sig.bin xbfs.bin

sig.bin will contain the signature for the image.
Append the calculated signature to the image

The signature should be between 70 and 72 bytes, and it should be appended to the padded
image.

Create the OTA file
Put the image into an OTA file that follows the format specified in ZigBee Document 095264r23.
The file should consist of:

= An OTA header

= An upgrade image sub-element tag

= The padded, signed image data
The OTA file must begin with an OTA header. See OTA header for information on the format of the
header. The image type should be 0x0100 for a file system image upgrade.

The sub-element tag should come before the image data. The sub-element tag follows the format
described in section 6.3.3 of ZigBee Document 095264r23. It consists of 6 bytes: the first 2 bytes
are the tag id and should be set to 0x0000. The next 4 bytes contain the length of the file system
image in little-endian format.

Digi XBee® 3 Zigbee® RF Module 414

https://web.archive.org/web/20171031170452/http://www.zigbee.org/wp-content/uploads/2014/11/docs-09-5264-23-00zi-zigbee-ota-upgrade-cluster-specification.pdf
https://web.archive.org/web/20171031170452/http://www.zigbee.org/wp-content/uploads/2014/11/docs-09-5264-23-00zi-zigbee-ota-upgrade-cluster-specification.pdf

General Purpose Flash Memory OTA file system updates: OEM

Perform the OTA file system update

The process for performing an OTA file system update is the same as the process for performing a
FOTA upgrade, as described in OTA firmware/file system upgrades. Note that the data that goes in
the image blocks starts at the beginning of the image data, after the OTA header and sub-element

tag.

General Purpose Flash Memory

General Purpose Flash Memory
Access General Purpose Flash Memory ...
General Purpose Flash Memory commands
Possible Errors Returned from GPM Commands ...
Update the firmware over-the-air

Digi XBee® 3 Zigbee® RF Module 415

General Purpose Flash Memory General Purpose Flash Memory

General Purpose Flash Memory

XBee 3 Zigbee RF Module provides 220 2048-byte blocks of flash memory that an application can
read and write to. This memory provides a non-volatile data storage area that an application uses
for many purposes. Some common uses of this data storage include:
= Storing logged sensor data
= Buffering firmware update data for a host microcontroller
= Storing and retrieving data tables needed for calculations performed by a host
microcontroller

The General Purpose Memory (GPM) is also used to store a firmware update file for over-the-air
firmware updates of the device itself.

CAUTION! General Purpose Memory requires usage of the same memory space as the
file system. In order to use GPM users must issue a mass erase GPM command before
being allowed to modify flash with GPM commands. Make sure to backup any necessary
files before erasing flash.

The usage of sleep during a GPM update is unsupported. Users are recommended to turn off sleep
on the target device, perform the update, and then switch sleep back on to avoid data loss and
increase the update speed.

Access General Purpose Flash Memory

To access the GPM of a target node locally or over-the-air, send commands to the MEMORY _
ACCESS cluster ID (0x23) on the DIGI_DEVICE endpoint (OXE6) of the target node using explicit
API frames. For a description of Explicit API frames, see Frame descriptions.

To issue a GPM command, format the payload of an explicit API frame as follows:

Byte offset | Number of

in payload bytes Field name General field description

0 1 GPM_CMD_ID Specific GPM commands are
described in detail in the topics that
follow.

1 1 GPM_OPTIONS Command-specific options.

2 2* GPM_BLOCK_NUM The block number addressed in the
GPM.

4 2* GPM_START_INDEX The byte index within the

addressed GPM block.

6 2% GPM_NUM_BYTES The number of bytes in the GPM_
DATA field, orin the case of a
READ, the number of bytes
requested.

Digi XBee® 3 Zigbee® RF Module 416

General Purpose Flash Memory General Purpose Flash Memory commands

Byte offset | Number of
4] payload bytes Field name General field description

varies GPM_DATA

* Specify multi-byte parameters with big-endian byte ordering.

When a device sends a GPM command to another device via a unicast, the receiving device sends
a unicast response back to the requesting device's source endpoint specified in the request packet.
It does not send a response for broadcast requests. If the source endpoint is set to the DIGI_
DEVICE endpoint (OXE6) or Explicit API mode is enabled on the requesting device, then the
requesting node outputs a GPM response as an explicit APl RX indicator frame (assuming it has
API mode enabled).

The format of the response is similar to the request packet:

Byte offset in Number of
payload bytes Field name General field description

GPM_CMD_ID This field is the same as the
request field.

1 1 GPM_STATUS Status indicating whether the
command was successful.

2 2% GPM_BLOCK_NUM The block number addressed in
the GPM.

4 2* GPM_START INDEX The byte index within the
addressed GPM block.

6 2* GPM_NUM_BYTES The number of bytes in the

GPM_DATA field.
8 varies GPM_DATA

* Specify multi-byte parameters with big-endian byte ordering.

General Purpose Flash Memory commands

This section provides information about commands that interact with GPM:

PLATFORM_INFO_REQUEST (0x00)

A PLATFORM_INFO_REQUEST frame can be sent to query details of the GPM structure.

GPM_CMD_ID Should be set to PLATFORM_INFO_REQUEST (0x00).
GPM_OPTIONS This field is unused for this command. Set to 0.
GPM_BLOCK_NUM This field is unused for this command. Set to 0.

Digi XBee® 3 Zigbee® RF Module 417

General Purpose Flash Memory General Purpose Flash Memory commands

Command-specific description

GPM_START _INDEX This field is unused for this command. Set to 0.
GPM_NUM_BYTES This field is unused for this command. Set to 0.
GPM_DATA No data bytes should be specified for this command.

PLATFORM_INFO (0x80)

When a PLATFORM_INFO_REQUEST command request has been unicast to a node, that node
sends a response in the following format to the source endpoint specified in the requesting frame.

Field name Command-specific description

GPM_CMD_ID Should be set to PLATFORM_INFO (0x80).

GPM_STATUS Indicates success if 0. Otherwise, an error occurred (see
Possible Errors Returned from GPM Commands).

GPM_BLOCK_NUM Indicates the number of GPM blocks available.

GPM_START_INDEX Indicates the size, in bytes, of a GPM block.

GPM_NUM_BYTES The number of bytes in the GPM_DATA field. For this
command, this field will be set to 0.

GPM_DATA No data bytes are specified for this command.

Example

A PLATFORM_INFO_REQUEST sent to a device with a serial number of 0x0013a200407402AC
should be formatted as follows (spaces added to delineate fields):

7E001C 1101 0013A200407402AC FFFE E6 E6 0023 C105 00 00 00 00 0000 0000 0000
24

Assuming all transmissions were successful, the following API packets would be output the source
node's serial interface:

7E 0007 8B 01 FFFE 00 00 00 76
7E 001A 91 0013A200407402AC FFFE E6 E6 0023 C105 C1 80 00 0077 0200 0000 EB

ERASE (0x01)

The ERASE command erases (writes all bits to binary 1) one or all of the GPM flash blocks. You
can also use the ERASE command to erase all blocks of the GPM by setting the GPM_NUM_

BYTES field to 0.
Field name Command-specific description
GPM_CMD_ID Should be set to ERASE (0x01).
GPM_OPTIONS There are currently no options defined for the ERASE

command. Set this field to 0.

Digi XBee® 3 Zigbee® RF Module 418

General Purpose Flash Memory General Purpose Flash Memory commands

Command-specific description

GPM_BLOCK_NUM Set to the index of the GPM block that should be erased. When
erasing all GPM blocks, this field is ignored (set to 0).
GPM_START_INDEX The ERASE command only works on complete GPM blocks.

The command cannot be used to erase part of a GPM block.
For this reason GPM_START_INDEX is unused (set to 0).

GPM_NUM_BYTES Setting GPM_NUM_BYTES to 0 has a special meaning. It
indicates that every flash block in the GPM should be erased
(not just the one specified with GPM_BLOCK_NUM). In all
other cases, the GPM_NUM_BYTES field should be set to the
GPM flash block size.

GPM_DATA No data bytes are specified for this command.

ERASE_RESPONSE (0x81)

When an ERASE command request has been unicast to a node, that node sends a response in the
following format to the source endpoint specified in the requesting frame.

Command-specific description

GPM_CMD_ID Should be set to ERASE_RESPONSE (0x81).

GPM_STATUS Indicates success if 0. Otherwise, an error occurred (see
Possible Errors Returned from GPM Commands).

GPM_BLOCK_NUM Matches the parameter passed in the request frame.

GPM_START_INDEX Matches the parameter passed in the request frame.

GPM_NUM_BYTES The number of bytes in the GPM_DATA field. For this
command, this field will be set to 0.

GPM_DATA No data bytes are specified for this command.

Example

To erase flash block 42 of a target radio with serial number of 0x0013a200407402ac format an
ERASE packet as follows (spaces added to delineate fields):

7E001C 11010013 A2004074 02ACFFFEE6E60023C10500000100002A0000
08 00 F1

Assuming all transmissions were successful, the following API packets would be output the source
node's serial interface:

7E 0007 8B 01 FFFE 00 00 00 76
7E 001A 91 0013A200407402AC FFFE E6 E6 0023 C105 C1 81 00 002A 0000 0000 39

WRITE (0x02) and ERASE_THEN_WRITE (0x03)

The WRITE command writes the specified bytes to the GPM location specified. Before writing
bytes to a GPM block it is important that the bytes have been erased previously. The ERASE_
THEN_WRITE command performs an ERASE of the entire GPM block specified with the GPM_

Digi XBee® 3 Zigbee® RF Module 419

General Purpose Flash Memory General Purpose Flash Memory commands

BLOCK_NUM field prior to doing a WRITE. WRITE commands cannot index past the end of a GPM

block boundary.

Field name Command-specific description

GPM_CMD_ID Should be set to WRITE (0x02) or ERASE_THEN_WRITE
(0x03).

GPM_OPTIONS There are currently no options defined for this command. Set
this field to 0.

GPM_BLOCK_NUM Set to the index of the GPM block that should be written.

GPM_START _INDEX Set to the byte index within the GPM block where the given data
should be written.

GPM_NUM_BYTES Set to the number of bytes specified in the GPM_DATA field.
Only one GPM block can be operated on per command. For this
reason, GPM_START_INDEX + GPM_NUM_BYTES cannot be
greater than the GPM block size. The number of bytes sent in
an explicit API frame (including the GPM command fields)
cannot exceed the maximum payload size of the device. The
maximum payload size can be queried with the NP command.

GPM_DATA The data to be written.

WRITE _RESPONSE (0x82) and ERASE_THEN_WRITE_
RESPONSE (0x83)

When a WRITE or ERASE_THEN_WRITE command request has been unicast to a node, that
node sends a response in the following format to the source endpoint specified in the requesting

frame.
Field name Command-specific description
GPM_CMD_ID Should be set to WRITE_RESPONSE (0x82) or ERASE_THEN_
WRITE_RESPONSE (0x83)
GPM_STATUS Indicates success if 0. Otherwise, an error occurred (see Possible
Errors Returned from GPM Commands).
GPM_BLOCK_NUM Matches the parameter passed in the request frame
GPM_START_INDEX Matches the parameter passed in the request frame
GPM_NUM_BYTES The number of bytes in the GPM_DATA field. For this command,
this field will be set to 0
GPM_DATA No data bytes are specified for these commands
Example

To write 15 bytes of incrementing data to flash block 22 of a target radio with serial number of
0x0013a200407402ac a WRITE packet should be formatted as follows (spaces added to delineate
fields):

Digi XBee® 3 Zigbee® RF Module 420

General Purpose Flash Memory General Purpose Flash Memory commands

7E 002B 11 01 0013A200407402AC FFFE E6 E6 0023 C105 00 C0 02 00 0016 0000 000F
0102030405060708090A0BOCODOEOF C5

Assuming all transmissions were successful and that flash block 22 was previously erased, the
following API packets would be output the source node's serial interface:

7E 0007 8B 01 FFFE 00 00 00 76

READ (0x04)

You can use the READ command to read the specified number of bytes from the GPM location
specified. Data can be queried from only one GPM block per command.

Field name Command-specific description

GPM_CMD_ID Should be set to READ (0x04).

GPM_OPTIONS There are currently no options defined for this command. Set this
field to 0.

GPM_BLOCK_NUM Set to the index of the GPM block that should be read.

GPM_START_INDEX Set to the byte index within the GPM block where the given data
should be read.

GPM_NUM_BYTES Set to the number of data bytes to be read. Only one GPM block

can be operated on per command. For this reason, GPM_START_
INDEX + GPM_NUM_BYTES cannot be greater than the GPM
block size. The number of bytes sent in an explicit APl frame
(including the GPM command fields) cannot exceed the maximum
payload size of the device. You can query the maximum payload
size with the NP AT command.

GPM_DATA No data bytes should be specified for this command.

READ_RESPONSE (0x84)

When a READ command request has been unicast to a node, that node sends a response in the
following format to the source endpoint specified in the requesting frame.

Command-specific description

GPM_CMD_ID Should be set to READ_RESPONSE (0x84).
GPM_STATUS Indicates success if 0. Otherwise, an error occurred (see
Possible Errors Returned from GPM Commands).
GPM_BLOCK_NUM Matches the parameter passed in the request frame.
GPM_START_INDEX Matches the parameter passed in the request frame.
GPM_NUM_BYTES The number of bytes in the GPM_DATA field.
GPM_DATA The bytes read from the GPM block specified.

Digi XBee® 3 Zigbee® RF Module 421

General Purpose Flash Memory General Purpose Flash Memory commands

Example

To read 15 bytes of previously written data from flash block 22 of a target radio with serial number
of 0x0013a200407402ac a READ packet should be formatted as follows (spaces added to
delineate fields):

7E001C 11 01 0013A200407402AC FFFE E6 E6 0023 C105 00 C0 04 00 0016 0000 000F
3B
Assuming all transmissions were successful and that flash block 22 was previously written with
incrementing data, the following API packets would be output the source node's serial interface:
7E 0007 8B 01 FFFE 00 00 00 76

7E 0029 91 0013A200407402AC FFFE E6 E6 0023 C105 C1 84 00 0016 0000 000F
0102030405060708090A0BOCODOEOF C3

FIRMWARE_VERIFY (0x05) and FIRMWARE_VERIFY_AND_

INSTALL (0x06)

Use the FIRMWARE_VERIFY and FIRMWARE_VERIFY_AND_INSTALL commands when
remotely updating firmware on a device. For more information about firmware updates , see
Update the firmware over-the-air. These commands check if the GPM contains a valid over-the-air
update file. For the FIRMWARE_VERIFY_AND_INSTALL command, if the GPM contains a valid
firmware image, it will send a GPM response and then the device resets and begins using the new

firmware.

GPM_CMD_ID Should be set to FIRMWARE_VERIFY (0x05) or FIRMWARE_
VERIFY_AND_INSTALL (0x06)

GPM_OPTIONS Reserved. Set to 0.
GPM_BLOCK_NUM This field is unused for this command. Set to 0.
GPM_START_INDEX This field is unused for this command. Set to 0.
GPM_NUM_BYTES This field is unused for this command. Set to 0.
GPM_DATA This field is unused for this command

The target device will be unable to receive RF packets for a short period of time (around half a
second) while verifying the firmware after receiving either of these commands.

FIRMWARE_VERIFY_RESPONSE (0x85)

When a FIRMWARE_VERIFY command request has been unicast to a node, that node sends a
response in the following format to the source endpoint specified in the requesting frame.

Field name Command-specific description

GPM_CMD_ID Should be set to FIRMWARE_VERIFY_RESPONSE (0x85)

GPM_STATUS Indicates success if 0. Otherwise, an error occurred (see

Digi XBee® 3 Zigbee® RF Module 422

General Purpose Flash Memory Possible Errors Returned from GPM Commands

Command-specific description

Possible Errors Returned from GPM Commands).

GPM_BLOCK_NUM This field is unused for this command. Set to 0.
GPM_START_INDEX This field is unused for this command. Set to 0.
GPM_NUM_BYTES This field is unused for this command. Set to 0.
GPM_DATA This field is unused for this command

FIRMWARE_VERIFY _AND_INSTALL_RESPONSE (0x86)

When a FIRMWARE_VERIFY_AND_INSTALL command request has been unicast to a node, that
node sends a response in the following format to the source endpoint specified in the requesting
frame.

If the firmware image is valid, after that node sends the response the device will reset and
begin using the new firmware.

Field name Command-specific description

GPM_CMD_ID Should be set to FIRMWARE_VERIFY_AND_INSTALL_
RESPONSE (0x86).

GPM_STATUS Indicates success if 0. Otherwise, an error occurred (see Possible
Errors Returned from GPM Commands).

GPM_BLOCK_NUM This field is unused for this command. Set to 0.

GPM_START_INDEX This field is unused for this command. Set to 0.

GPM_NUM_BYTES This field is unused for this command. Set to 0.

GPM_DATA This field is unused for this command.

Example

To verify a firmware image previously loaded into the GPM on a target device with serial number
0x0013a200407402ac, format a FIRMWARE_VERIFY packet as follows (spaces added to
delineate fields):

7E 001C 11 01 0013A200407402AC FFFE E6 E6 0023 C105 00 00 05 00 0000 0000 0000
1F

Assuming all transmissions were successful and that the firmware image previously loaded into the
GPM is valid, the following API packets would be output the source node's serial interface:

7E 0007 8B 01 FFFE 00 00 00 76
7E 001A 91 0013A200407402AC FFFE E6 E6 0023 C105 C1 85 00 0000 0000 0000 5F

Possible Errors Returned from GPM Commands

Below are listed possible errors that may return from sending a GPM command:

Digi XBee® 3 Zigbee® RF Module 423

General Purpose Flash Memory Update the firmware over-the-air

0x00 Success

General command failures

0x01 General failure

0x02 Bad payload length

0x03 Tried to access memory block beyond the max available
0x04 Attempted to read/write across a block boundary

0x05 Attempted to read/write with a valid file system mounted
0x06 Unrecognized GPM command

0x07 GPM is currently busy executing another GPM command

Erase command failures

0x10 Flash erase operation failed
Write command failures

0x20 Flash write operation failed

0x21 Flash write would have created a valid FS header. Writing a file system
into GPM is disallowed due to security concerns.

Read command failures

0x30 Flash read operation failed
0x31 Tried to read more than can be transmitted in a single packet
0x32 Couldn't get a buffer to send read updates

Verify and install failures

0x40 Firmware verify operation failed

0x41 The given image is not compatible with this device
0x42 The given image appears corrupted or invalid
0x50 Firmware install operation failed

Update the firmware over-the-air

The XBee 3 Zigbee RF Module supports firmware over-the-air (FOTA) updates. To perform an
FOTA update, the device to be updated must be associated and communicable with a ZigBee
network. In this section, the node performing the update is considered the server and the node
being updated is the client.

This section provides instruction on how to update your firmware using wired updates and over-
the-air updates.

Digi XBee® 3 Zigbee® RF Module 424

General Purpose Flash Memory Update the firmware over-the-air

Over-the-air firmware updates

There are a few ways to use GPM commands to update a module. One is to send commands over
the air to a remote module. Another is to send commands that are addressed to the local module. A
third way is to use Bluetooth to send remote frames via a GATT connection with modules that
support BLE.

The over-the-air firmware update method provided is a robust and versatile technique that you can
tailor to many different networks and applications. OTA updates are reliable and minimize
disruption of normal network operations.

In the following sections, we refer to the node that will be updated as the target node. We refer to
the node providing the update information as the source node. In most applications the source
node is locally attached to a computer running update software.

There are three phases of the over-the-air update process:

1. Distribute the new application
2. Verify the new application
3. Install the application

Distribute the new application

The first phase of performing an over-the-air update on a device is transferring the new firmware
file to the target node. Load the new firmware image in the target node's GPM prior to installation.
XBee 3 Zigbee RF Modules use a a Gecko Bootloader (.gbl) file for both serial and over-the-air
firmware updates. These firmware files are available on the Digi Support website and via XCTU.

Send the contents of the .gbl file to the target device using general purpose memory WRITE
commands. Erase the entire GPM prior to beginning an upload of an .gbl file. The contents of the
.gbl file should be stored in order in the appropriate GPM memory blocks. The number of bytes that
are sent in an individual GPM WRITE frame is flexible and can be catered to the user application.

Example

The example firmware version has an .gbl file of 55,141 bytes in length. Based on network traffic,
we determine that sending a 128 byte packet every 30 seconds minimizes network disruption. For
this reason, you would divide and address the .gbl as follows:

GPM_BLOCK_NUM GPM_START_INDEX GPM_NUM_BYTES .gbl bytes
0 0

128 O0to 127
0 128 128 128 to 255
0 256 128 256 to 383
0 1920 128 1920 to 2047
1 0 128 2048102175
1 128 128 2176 to 2303

Digi XBee® 3 Zigbee® RF Module 425

../../../../../Content/Tasks/t_verify_application.htm
../../../../../Content/Tasks/t_install_application.htm
https://www.digi.com/support/supporttype?type=firmware

General Purpose Flash Memory Update the firmware over-the-air

GPM_BLOCK_NUM GPM_START_INDEX GPM_NUM_BYTES .gbl bytes

26 1536 128 54784 to 54911
26 1664 128 54912 to 55039
26 1792 101 55040 to 55140

Install the application

When the entire .gbl file is uploaded to the GPM of the target node, you can issue a FIRMWARE_
VERIFY_AND_INSTALL command. Once the target receives the command it verifies the .gbil file

loaded in the GPM. If it is valid, then the device installs the new firmware. This installation process
can take up to eight seconds. During the installation the device is unresponsive to both serial and

RF communication. To complete the installation, the target module resets. AT parameter settings

which have not been written to flash using the WR command will be lost.

Important considerations

Write all parameters with the WR command before performing a firmware update. Packet routing
information is also lost after a reset.

Because explicit APl Tx frames can be addressed to a local node (accessible via the SPI or UART)
or a remote node (accessible over the RF port) the same process can be used to update firmware
on a device in either case.

Verify the new application

For an uploaded application to function correctly, every single byte from the .gbl file must be
properly transferred to the GPM. To guarantee that this is the case, GPM VERIFY functions exist to
ensure that all bytes are properly in place. The FIRMWARE_VERIFY function reports whether or
not the uploaded data is valid. The FIRMWARE_VERIFY_AND_INSTALL command reports if the
uploaded data is invalid. If the data is valid, it begins installing the application. No installation takes
place on invalid data.

Digi XBee® 3 Zigbee® RF Module 426

	Digi XBee® 3 Zigbee® RF Module
	Applicable firmware and hardware
	Change the firmware protocol
	Regulatory information

	Get started
	Safety instructions
	Safety instructions
	XBee modules

	Инструкции за безопасност
	XBee модули

	Sigurnosne upute
	XBee moduli

	Bezpečnostní instrukce
	moduly XBee

	Sikkerhedsinstruktioner
	XBee moduler

	Veiligheidsinstructies
	XBee-modules

	Ohutusjuhised
	XBee moodulid

	Turvallisuusohjeet
	XBee moduulit

	Consignes de sécurité
	Modules XBee

	Sicherheitshinweise
	XBee-Module

	Οδηγίες ασφαλείας
	Biztonsági utasítások
	XBee modulok

	Istruzioni di sicurezza
	Drošības instrukcijas
	Saugos instrukcijos
	XBee moduliai

	Sikkerhetsinstruksjoner
	XBee-moduler

	Instrukcje bezpieczeństwa
	Moduły XBee

	Instruções de segurança
	Módulos XBee

	Instructiuni de siguranta
	module XBee

	Bezpečnostné inštrukcie
	moduly XBee

	Varnostna navodila
	XBee moduli

	Módulos XBee
	Säkerhets instruktioner
	XBee-moduler

	Configure the XBee 3 Zigbee RF Module
	Configure the device using XCTU
	Custom defaults
	Set custom defaults
	Restore factory defaults
	Limitations

	Custom configuration: Create a new factory default
	Set a custom configuration
	Clear all custom configuration on a device

	XBee bootloader
	Send a firmware image
	Software libraries
	XBee Network Assistant
	XBee Multi Programmer

	Update the firmware over-the-air
	Add the device to XCTU
	Update to the latest firmware

	Get started with MicroPython
	About MicroPython
	MicroPython on the XBee 3 Zigbee RF Module
	Use XCTU to enter the MicroPython environment
	Use the MicroPython Terminal in XCTU
	MicroPython examples
	Example: hello world
	Example: enter MicroPython paste mode
	Example: use the time module
	Example: AT commands using MicroPython

	MicroPython networking and communication examples
	Zigbee networks with MicroPython
	Example: forming and joining a Zigbee network using MicroPython
	Example: network Discovery using MicroPython
	Examples: transmitting data
	Receiving data
	Example: communication between two XBee 3 Zigbee modules

	Exit MicroPython mode
	Other terminal programs
	Tera Term for Windows

	Use picocom in Linux
	Micropython help ()

	Secure access
	Secure Sessions
	Configure the secure session password for a device
	Start a secure session
	End a secure session

	Secured remote AT commands
	Secure a node against unauthorized remote configuration
	Remotely configure a node that has been secured

	Send data to a secured remote node
	End a session from a server
	Secure Session API frames
	Secure transmission failures
	Data Frames - 0x10 and 0x11 frames
	Remote AT Commands- 0x17 frames

	File system
	Overview of the file system
	Directory structure
	Paths
	Limitations
	XCTU interface

	Get started with BLE
	Enable BLE on the XBee 3 Zigbee RF Module
	Enable BLE and configure the BLE password
	Get the Digi XBee Mobile phone application
	Connect with BLE and configure your XBee 3 Zigbee RF Module

	BLE reference
	BLE advertising behavior and services
	Device Information Service
	XBee API BLE Service
	API Request characteristic
	API Response characteristic

	Serial communication
	Serial interface
	UART data flow
	Serial data

	Serial buffers
	Serial receive buffer
	Serial transmit buffer

	UART flow control
	CTS flow control
	RTS flow control

	Break control
	I2C

	SPI operation
	SPI communications
	Full duplex operation
	Low power operation
	Select the SPI port
	Force UART operation

	Modes
	Transparent operating mode
	Serial-to-RF packetization

	API operating mode
	Command mode
	Enter Command mode
	Troubleshooting
	Send AT commands
	Response to AT commands
	Apply command changes
	Make command changes permanent
	Exit Command mode

	Idle mode
	Transmit mode
	Receive mode
	Sleep mode

	Zigbee networks
	The Zigbee specification
	Zigbee stack layers
	Zigbee networking concepts
	Device types
	PAN ID
	Operating channels

	Zigbee application layers: in depth
	Application Support Sublayer (APS)
	Application profiles

	Zigbee coordinator operation
	Form a network
	Security policy
	Channel selection
	PAN ID selection
	Persistent data
	Coordinator startup
	Permit joining
	Reset the coordinator
	Leave a network
	Replace a coordinator (security disabled only)
	Example: start a coordinator
	Example: replace a coordinator (security disabled)

	Router operation
	Discover Zigbee networks
	Join a network
	Authentication
	Persistent data
	Router joining
	Router network connectivity

	End device operation
	Discover Zigbee networks
	Join a network
	Parent child relationship
	End device capacity
	Authentication
	Persistent data
	Orphan scans
	End device joining
	Parent connectivity
	Reset the end device

	Channel scanning
	Manage multiple Zigbee networks
	Filter PAN ID
	Configure security keys
	Prevent unwanted devices from joining
	Application messaging framework

	Transmission, addressing, and routing
	Addressing
	64-bit device addresses
	16-bit device addresses
	Application layer addressing

	Data transmission
	Broadcast transmissions
	Unicast transmissions
	Address resolution
	Address table
	Group table

	Binding transmissions
	Multicast transmissions
	Address resolution
	Address resolution
	Binding table

	Fragmentation
	Data transmission examples
	Send a packet in Transparent mode
	Send data in API mode
	API frame examples

	RF packet routing
	Link status transmission
	AODV mesh routing
	Many-to-One routing
	High/Low RAM Concentrator mode
	Source routing

	Encrypted transmissions
	Maximum RF payload size
	Throughput
	ZDO transmissions
	Send a ZDO command
	Receiving ZDO command and responses
	Support ZDOs with the XBee API
	Support the ZDP with the XBee API
	ZDO clusters
	API example 1
	API example 2
	API example 3
	API example 4
	API example 5
	API example 6
	API Example 7

	Transmission timeouts
	Unicast timeout
	Extended timeout
	Transmission examples

	Zigbee security
	Security overview
	Network key
	Link key
	Preconfigured link key - moderate security
	Well-known default link key - low security
	Install code derived link key - high security

	Join window
	Key management
	Centralized security
	Distributed security

	Device registration
	Centralized trust center
	Distributed trust center
	Example: Form a secure network
	Example: Join a secure network using a preconfigured link key
	Example: Register a joining node without a preconfigured link key
	Example: Register a joining node using an install code
	Example: Deregister a previously registered device
	Registration scenario

	Centralized trust center backup
	Create the backup file
	New networks
	Existing networks

	Store the file
	Recover a Centralized Trust Center
	Best practices
	Network commissioning and diagnostics
	Place devices
	Device discovery
	Commissioning pushbutton and associate LED
	Binding
	Group Table API

	Manage End Devices
	End device operation
	Parent operation
	End Device poll timeouts
	End Device child table
	Packet buffer usage

	Non-Parent device operation
	End Device configuration
	Pin sleep
	Cyclic sleep

	Recommended sleep current measurements
	Achieve the lowest sleep current
	Compensate for switching time
	Internal pin pull-ups

	Transmit RF data
	Receiving RF data
	I/O sampling
	Wake end devices with the Commissioning Pushbutton
	Parent verification
	Rejoining
	Router/Coordinator configuration
	RF packet buffering timeout
	Child poll timeout
	Adaptive polling
	Transmission timeout

	Short sleep periods
	Extended sleep periods
	Sleep examples
	Example 1: Configure a device to sleep for 20 seconds, but set SN such that t...
	Example 2: Configure an end device to sleep for 20 seconds, send 4 I/O sample...
	Example 3: configure a device for extended sleep: to sleep for 4 minutes.

	I/O support
	Digital I/O support
	Analog I/O support
	Monitor I/O lines
	I/O sample data format
	API frame support
	On-demand sampling
	Example: Command mode
	Example: Local AT command in API mode
	Example: Remote AT command in API mode

	Periodic I/O sampling
	Source
	Destination

	Digital I/O change detection
	I/O behavior during sleep
	Digital I/O lines
	Analog and PWM I/O lines

	AT commands
	Networking commands
	CE (Device Role)
	ID (Extended PAN ID)
	II (Initial 16-bit PAN ID)
	ZS (Zigbee Stack Profile)
	CR (Conflict Report)
	NJ (Node Join Time)
	DJ (Disable Joining)
	NR (Network Reset)
	NW (Network Watchdog Timeout)
	JV (Coordinator Join Verification)
	JN (Join Notification)
	DO (Miscellaneous Device Options)
	DC (Joining Device Controls)
	C8 (Compatibility Options)

	Discovery commands
	NI (Node Identifier)
	DD (Device Type Identifier)
	NT (Node Discover Timeout)
	NO (Network Discovery Options)
	ND (Network Discovery)
	DN (Discover Node)
	AS (Active Scan)

	Operating Network commands
	AI (Association Indication)
	OP (Operating Extended PAN ID)
	OI (Operating 16-bit PAN ID)
	CH (Operating Channel)
	NC (Number of Remaining Children)

	Zigbee Addressing commands
	SH (Serial Number High)
	SL (Serial Number Low)
	MY (16-bit Network Address)
	MP (16-bit Parent Network Address)
	DH (Destination Address High)
	DL (Destination Address Low)
	TO (Transmit Options)
	NP (Maximum Packet Payload Bytes)

	Zigbee configuration commands
	NH (Maximum Unicast Hops)
	BH (Broadcast Hops)
	AR (Aggregate Routing Notification)
	SE (Source Endpoint)
	DE (Destination Endpoint)
	CI (Cluster ID)

	Security commands
	EE (Encryption Enable)
	EO (Encryption Options)
	KY (Link Key)
	NK (Trust Center Network Key)
	RK (Trust Center Network Key Rotation Interval)
	KT (Trust Center Link Key Registration Timeout)
	I? (Install Code)
	DM (Disable Features)
	BK (Centralized Trust Center Backup and Restore)
	CX (Centralized Trust Center Network Information Update)
	KB (Centralized Trust Center Backup Key)

	Secure Session commands
	SA (Secure Access)
	*S (Secure Session Salt)
	*V, *W, *X, *Y (Secure Session Verifier)

	RF interfacing commands
	PL (TX Power Level)
	PP (Output Power in dBm)
	SC (Scan Channels)
	SD (Scan Duration)

	MAC diagnostics commands
	EA (MAC ACK Failure Count)
	DB (Last Packet RSSI)
	ED (Energy Detect)

	Sleep settings commands
	SM (Sleep Mode)
	SP (Cyclic Sleep Period)
	ST (Cyclic Sleep Wake Time)
	SN (Number of Sleep Periods)
	SO (Sleep Options)
	WH (Wake Host Delay)
	PO (Polling Rate)
	ET (End Device Timeout)
	SI (Sleep Immediately)

	MicroPython commands
	PS (Python Startup)
	PY (MicroPython Command)

	File System commands
	FS (File System)
	FK (File System Public Key)

	Bluetooth Low Energy (BLE) commands
	BT (Bluetooth Enable)
	BL (Bluetooth Address)
	BI (Bluetooth Identifier)
	BP (Bluetooth Power)
	$S (SRP Salt)
	$V, $W, $X, $Y commands (SRP Salt verifier)

	API configuration commmands
	AP (API Enable)
	AO (API Options)
	AZ (Extended API Options)

	UART interface commands
	BD (UART Baud Rate)
	NB (Parity)
	SB (Stop Bits)
	RO (Packetization Timeout)

	AT Command options
	CC (Command Character)
	CT (Command Mode Timeout)
	GT (Guard Times)
	CN (Exit Command mode)

	UART pin configuration commands
	D6 (DIO6/RTS)
	D7 (DIO7/CTS)
	P3 (DIO13/DOUT Configuration)
	P4 (DIO14/DIN Configuration)

	SMT/MMT SPI interface commands
	P5 (DIO15/SPI_MISO Configuration)
	P6 (DIO16/SPI_MOSI Configuration)
	P7 (DIO17/SPI_SSEL Configuration)
	P8 (DIO18/SPI_CLK Configuration)
	P9 (DIO19/SPI_ATTN Configuration)

	I/O settings commands
	D0 (DIO0/AD0/Commissioning Button Configuration)
	CB (Commissioning Pushbutton)
	D1 (AD1/DIO1/TH_SPI_ATTN Configuration)
	D2 (DIO2/AD2/TH_SPI_CLK Configuration)
	D3 (DIO3/AD3/TH_SPI_SSEL Configuration)
	D4 (DIO4/TH_SPI_MOSI Configuration)
	D5 (DIO5/Associate Configuration)
	D8 (DIO8/DTR/SLP_RQ)
	D9 (DIO9/ON_SLEEP)
	P0 (DIO10/RSSI Configuration)
	P1 (DIO11 Configuration)
	P2 (DIO12/TH_SPI_MISO Configuration)
	PR (Pull-up/Down Resistor Enable)
	PD (Pull Up/Down Direction)
	M0 (PWM0 Duty Cycle)
	M1 (PWM1 Duty Cycle)
	RP (RSSI PWM Timer)
	LT (Associate LED Blink Time)

	I/O sampling commands
	IR (I/O Sample Rate)
	IC (Digital Change Detection)
	AV (Analog Voltage Reference)
	IS (Force Sample)
	V+ (Supply Voltage Threshold)

	Location commands
	LX (Location X—Latitude)
	LY (Location Y—Longitude)
	LZ (Location Z—Elevation)

	Diagnostic commands - firmware/hardware information
	VR (Firmware Version)
	VL (Version Long)
	VH (Bootloader Version)
	HV (Hardware Version)
	%C (Hardware/Software Compatibility)
	R? (Power Variant)
	%V (Voltage Supply Monitoring)
	TP (Temperature)
	CK (Configuration Checksum)
	%P (Invoke Bootloader)
	D% (Manufacturing Date)

	Memory access commands
	FR (Software Reset)
	AC (Apply Changes)
	WR (Write)
	RE (Restore Defaults)

	Custom Default commands
	%F (Set Custom Default)
	!C (Clear Custom Defaults)
	R1 (Restore Factory Defaults)

	Operate in API mode
	API serial exchanges
	AT commands
	Transmit and Receive RF data
	Remote AT commands
	Source routing
	Device Registration

	API frame format
	API operation (AP parameter = 1)
	API operation with escaped characters (AP parameter = 2)

	Send ZDO commands with the API
	Example

	Send Zigbee cluster library (ZCL) commands with the API
	Example

	Send Public Profile Commands with the API
	Frame specific data
	Example

	Frame descriptions
	Local AT Command Request - 0x08
	Description
	Format
	Examples

	Queue Local AT Command Request - 0x09
	Description
	Format
	Examples

	Transmit Request - 0x10
	Description
	Transmit options bit field
	Examples

	Explicit Addressing Command Request - 0x11
	Description
	64-bit addressing
	16-bit addressing
	Zigbee-specific addressing information
	Reserved endpoints
	Reserved cluster IDs
	Reserved profile IDs
	Transmit options bit field
	Examples

	Remote AT Command Request - 0x17
	Description
	Format
	Examples

	Create Source Route - 0x21
	Description
	Format
	Examples

	Register Joining Device - 0x24
	Description
	Format
	Examples

	BLE Unlock Request - 0x2C
	Description
	Format
	Phase tables
	Examples

	User Data Relay Input - 0x2D
	Description
	Use cases
	Format
	Error cases
	Examples

	Secure Session Control - 0x2E
	Description
	Format
	Examples

	Local AT Command Response - 0x88
	Description
	Format
	Examples

	Modem Status - 0x8A
	Description
	Format

	Modem status codes
	Examples

	Extended Transmit Status - 0x8B
	Description
	Format
	Delivery status codes
	Examples

	Transmit Status - 0x89
	Description
	Format
	Delivery status codes

	Receive Packet - 0x90
	Description
	Format
	Examples

	Explicit Receive Indicator - 0x91
	Description
	Format
	Examples

	I/O Sample Indicator - 0x92
	Description
	Format
	Examples

	Node Identification Indicator - 0x95
	Description
	Format
	Examples

	Remote AT Command Response- 0x97
	Description
	Format
	Examples

	Extended Modem Status - 0x98
	Description
	Format
	Secure Session status codes
	Examples
	Zigbee Verbose Join status codes

	Route Record Indicator - 0xA1
	Description
	Format
	Examples

	Many-to-One Route Request Indicator - 0xA3
	Description
	Format
	Examples

	Registration Status - 0xA4
	Description
	Format
	Examples

	BLE Unlock Response - 0xAC
	Description

	User Data Relay Output - 0xAD
	Description
	Format
	Error cases
	Examples

	Secure Session Response - 0xAE
	Description
	Format
	Examples

	OTA firmware/file system upgrades
	Overview
	Firmware over-the-air upgrades
	File system over-the-air upgrades

	Scheduled upgrades
	Create an OTA upgrade server
	ZCL firmware upgrade cluster specification
	Differences from the ZCL specification
	OTA files
	OTA upgrade process
	OTA commands
	Schedule an upgrade
	Scheduled upgrades on sleeping devices
	Considerations for older firmware versions
	Does the download include the OTA header?

	OTA file system upgrades
	OTA file system update process
	OTA file system updates using XCTU
	Generate a public/private key pair
	Set the public key on the XBee device
	Create the OTA file system image
	Perform the OTA file system update

	OTA file system updates: OEM
	Generate a public/private key pair
	Set the public key on the XBee 3 device
	Create the OTA file system image
	Perform the OTA file system update

	General Purpose Flash Memory
	General Purpose Flash Memory
	Access General Purpose Flash Memory
	General Purpose Flash Memory commands
	PLATFORM_INFO_REQUEST (0x00)
	PLATFORM_INFO (0x80)
	ERASE (0x01)
	ERASE_RESPONSE (0x81)
	WRITE (0x02) and ERASE_THEN_WRITE (0x03)
	WRITE _RESPONSE (0x82) and ERASE_THEN_WRITE_RESPONSE (0x83)
	READ (0x04)
	READ_RESPONSE (0x84)
	FIRMWARE_VERIFY (0x05) and FIRMWARE_VERIFY_AND_INSTALL (0x06)
	FIRMWARE_VERIFY_RESPONSE (0x85)
	FIRMWARE_VERIFY _AND_INSTALL_RESPONSE (0x86)

	Possible Errors Returned from GPM Commands
	Update the firmware over-the-air
	Over-the-air firmware updates
	Distribute the new application
	Install the application
	Verify the new application

