Home/ Blog/Posts Tagged "Digi"

What Are the Differences Between DigiMesh® and ZigBee® Mesh?

Posted on:

Mesh networking is a powerful way to route data over an RF network. Range is extended by allowing data to hop node to node and reliability and resiliency is increased by “self-healing,” or the ability to create alternate paths when one node fails or a connection is lost.

One popular mesh networking protocol is ZigBee®, which is specifically designed for low-data rate, low-power applications. Digi offers several products based on the ZigBee protocol. Additionally, Digi has developed a similar mesh protocol named DigiMesh®. Both ZigBee and DigiMesh offer unique advantages important to different applications. The following chart highlights these differences:

ZigBee® Mesh DigiMesh®
Node types and their benefits Multiple: Coordinators, Routers, End Devices. End devices can sometimes be less expensive because of reduced functionality. Single: One homogeneous node type, with more flexibility to expand the network. DigiMesh simplifies network setup and reliability in
environments where routers may come and go due to interference or damage.
Battery Deployed Networks Coordinators and routers must be mains powered All nodes are capable of battery operation and can sleep. No single point of failure associated with relying on a gateway or coordinator to
maintain time synchronization.
Over-the-air firmware updates Yes Yes
Range Most ZigBee devices have range of less than 2 miles (3.2 km) for each hop. Available on XBee SX with range of up to 40+ miles for each hop.
Frame payload and throughput Up to 80 bytes. Up to 256 bytes, depending on product. Improves throughput for applications that send larger blocks of data.
Supported frequencies and RF data rates Predominantly 2.4 GHz (250 kbps) 900 MHz (Up to 250 Kbps), 868MHz, 2.4 GHz (Up to 250 Kbps)
Security 128-bit AES encryption. Can lock down the network and prevent other nodes from joining. Both 128 and 256-bit AES encryption. Can lock down the network and prevent other nodes from joining.
Interoperability Potential for interoperability between vendors. Digi proprietary
Interference tolerance Direct-Sequence Spread Spectrum (DSSS). 900 MHz: Frequency-Hopping Spread Spectrum (FHSS). 2.4GHz: Direct-Sequence Spread Spectrum (DSSS).
Addressing Two layers. MAC address (64 bit) and Network address (16 bit). MAC address (64 bit) only.
Maintenance More sniffers and diagnostic tools available on market. Simpler addressing can help in diagnosing problems and setting up a network.

For more information on DigiMesh and Digi XBee click here.

Fog Computing in the Internet of Things (IoT)

Posted on:

The Open Fog Consortium defines Fog Computing this way: “A system-level horizontal architecture that distributes resources and services of computing, storage, control and networking anywhere along the continuum from Cloud to Things.” In his recent Fog Computing report, Aapo Markkanen at Machina Research puts Digi in this category. He says, “Digi is well placed to a make a play in fog computing, given its strong communications portfolio and additional capabilities [such as] Device Cloud and device management.” We couldn’t agree more!

Intelligence on the edge of the network allows our customers to store, shape and translate machine and sensor data to maximize connections from the device to the cloud. Digi Device Cloud enables our customers to bring enterprise routing features to the edge of their networks enhancing security, storage, and redundancy.

The concept of Fog Computing accurately describes the way our customers are managing mission critical applications across multiple wireless protocols making it easier to configure, deploy and manage devices on the edge of their networks.

Click here to learn more about Digi Device Cloud >>

Digi Goes to Nuremberg for Embedded World 2016

Posted on:

At last week’s Embedded World, we made two exciting announcements. First off, this summer we’ll begin shipping the ConnectCore 6UL development kits. This tiny module, based on the NXP i.MX6UL processor, is just 29mm x 29mm. The CC6UL’s low-power consumption combined with high performance and easy wireless integration will make the module a true game-changer in the Industrial IoT space. More info on the ConnectCore 6UL module is available here.

cc6ul-dimensionsWe also announced a new XBee module in order to support the emerging wireless protocol, Thread. The module will be made available this spring and allow our customers to start designing and testing Thread networks. Thread is an exciting new wireless standard created to improve network reliability, security and power efficiency. We are extremely excited about this new member to the XBee family. Click here to read more about Thread.

Customer Demos
In our booth, we shared the numerous ways our customers are using Digi embedded technology today. Featuring the ConnectCore 6 module, we had our customers Fraser Nash and Furuno on display. Fraser Nash builds zero-emissions taxi cabs for the city of London, while Furuno provides a next-generation platform for commercial marine navigation. Watch the video below to see the Furuno demo in action.

Another fun demo we had was the Parallax ELEV-8 Quadcopter. The quadcopter is equipped with an XBee based telemetry system. Along with the quadcopter, Parallax provides free software to graphically view data from the device such as battery voltage, pitch, orientation, throttle position, and much more. Attendees could power up the quadcopter, pick it up, adjust the throttle, and see all of the telemetry data streaming live on a laptop.

IMG_1639
 

Digi Partners
As we explored the show floor we found an awesome IoT demo in the Digi-Key Electronics booth. It was a wireless sensor network application featuring XBee, Nimbelink cellular module, BeagleBone board, and the Exosite cloud platform. This was truly an end-to-end IoT solution from sensor to cloud.

And just 5 steps away from that end-to-end IoT demo was a wireless charging demo which used XBee to send display information and charging status data between the two devices.

IMG_1647 (2)
 

Our partner, Mouser, held a development tool giveaway at their booth and one of the prizes was an XBee Wireless Connectivity Kit. Klaus Peitzch was one of the XBee kit winners and he has already started putting it to use! Check out his blog post where he shows how to get started with XBee enabled wireless communications.

img_0370Thanks to everyone that stopped by at Embedded World. It was a valuable show for us and we enjoyed connecting with our partners and customers from around the world!

Here are more links sharing the Digi happenings at Embedded World:

Digi’s Golden Birthday: Celebrating 30 Years of Connected Technology

Posted on:

Today marks Digi’s golden birthday! Over the last 30 years, a lot has changed and more is on the way, so for a little fun, we decided to take a look back at Digi’s history. When was XBee invented? When did the Digi diamond logo come into existence? All those answers and more are below. Here’s to 30 more years!

Digi-History

Digi Employee Hackathon: Lindon Edition v2

Posted on:

Another Digi employee hackathon has come to a close! Rob paid a visit to our team out in Utah to hold a hackathon with Digi’s development staff. This continues what has become a tradition at Digi over the last couple years.

Each event has led to the creation of a number of product improvements and other fun and whimsical projects. Another important benefit is that it gives everyone a chance to collaborate with those they don’t normally work with on a day-to-day basis.

Here’s a look at the winning project.

AT Command Database
The winners of our recent hackathon created an incredibly useful tool for both developers inside our company and for our customers. The team’s final prototype is a new centralized system for managing XBee, XTend and our other radios’ AT command info across our entire wireless product line. Digi’s wireless products use these AT commands to manage setup, networking, security, sensors, actuators, battery use, diagnostics and many more functions.

There are hundred of useful commands that need to be managed, tested and shared between our products, libraries, software and documentation. In addition, the commands are implemented by our partners in third-party products and tools. Changes, updates and corrections to the commands need to be kept in sync across all these implementations, and absolute accuracy is essential.

IMG_7064

Prior to Team AT-DB’s creation, the process for maintaining up-to-date AT command information involved lots of coordination and double-checking. We also needed a more efficient way to accurately process updates when changes occur, and share these with our partners and customers. Each command has a specific syntax, description, parameters and defaults. Certain commands must be implemented differently for different protocols. Details matter!

Here are the main benefits the group demonstrated with their new prototype:

  • The ability to audit radio descriptors and test firmware updates against a single, authoritative source.
  • Automatic synchronization services for Digi software like XCTU, and also for third-party software development partners.
  • Electronic documentation support functions and enhanced support for automated testing.
  • A user friendly front end interface that can be enhanced as new use cases arise.

Hackathons keep us creative and excited about our work as it’s an opportunity to try out new ideas. Successful prototypes like this one inspire and help implement the innovative systems necessary to making and maintaining Digi’s mission-critical products.

Check out this page to see other projects and ideas developed at past Digi Hackathons.

Devergy Expands Solar Power Possibilities in Africa

Posted on:

Did you know that roughly 1.7 billion people are not connected to a power grid? In Sub-Sahara Africa, the number is around 500 million. For many, the infrastructure simply doesn’t exist. The modern day conveniences we take for granted such as being able to read at night, cooking on the stove top and refrigeration can be a hassle, or close to impossible, with no access to a reliable source of electricity.

The challenges of installing a power grid in remote and undeveloped areas can be numerous, so how do we reimagine how to deliver reliable electricity and move past the traditional power grid system? Thankfully, Devergy is solving this tricky problem. Using solar power and wireless technology, Devergy has built a sustainable business that’s helping villages in Tanzania and Ghana meet their energy needs.download

Who is Devergy?
Founded in 2010 by Fabio De Pascale, Gianluca Cescon and Daniel Ponz, Devergy is a social enterprise committed to providing an affordable and reliable source of energy to low-income people throughout Tanzania.

Their customers live in rural areas of the country where a power grid is nonexistent and residents do not have the money necessary to purchase a personal solar home system.

Residents in Tanzania typically spend between 6 and 25 USD per month on kerosene, phone charging, and dry-cell batteries for radios. After the installation of Devergy’s solar grids, residents spend as much as 20% less than what they were spending on kerosene for lighting and 50% less for phone charging. Not only does Devergy provide a clean, renewable and reliable source of energy, but it’s also substantially more affordable.

The service is based on village-sized energy micro-grids, which provide solar power to households and small businesses; it allows the users to connect lights and appliances such as radios, TVs and refrigerators. With the smart micro-grids, the usage of installed power is up to 70% more efficient than with equivalent solar home systems.

The key feature of the system is an energy meter that powers the household or business with a pre-paid pay-per-use approach, where customers top up their credit by using a mobile commerce platform, such as Vodacom M-Pesa. This is just like the system you would use to top-up a pre-paid mobile phone.

How it Works
Devergy uses Digi XBee technology for the communication network in its grids. Hundreds of nodes are connected with XBee–making the solar micro-grids smart, cost effective, and manageable. Devergy relies on XBee modules for its smart meters and is using Digi’s ConnectPort X4 for its ZigBee to GPRS gateways. Fabio, co-founder of Devergy says, “The plug and play, flexible nature of the Digi product was fundamental to get our services to the market faster.”

[meteor_slideshow slideshow=”Devergy”]
Devergy’s customers receive an unprecedented service thanks to a system that is designed to require no user maintenance and is remotely monitored for faults, so that the reliability and availability of the service is unmatched. Local representation of the company is ensured by the appointment of a village agent, selected based on recommendation by the village committee and trained by Devergy to perform technical support and sales. This ensures the customers always have a well-known and trusted counterpart to deal with.

Devergy has successfully connected more than 800 customers since 2012 to reliable, clean and safe electricity with a service sufficient to satisfy their needs for many years to come.  Currently, they are active in two regions and quickly growing their customer base. In addition to Tanzanaia, the Devergy grids are also licensed to third parties in Ghana, where they power 3 villages.

Visit Devergy.com to learn more about what they do!

This Week in the Internet of Things: Friday Favorites

Posted on:

The Internet of Things is developing and buzzing all around us. Throughout the week we come across innovative projects, brilliant articles and posts that support and feature the innovators and companies that make our business possible. Here’s our list of favorites from this week’s journey on the Web.

1GRAIN1223.jpg
The Changing Face of High Tech in Minnesota | Star Tribune

Salesforce CEO Discusses New Wearables, Internet of Things Startup Fund | ZDNet

Lighting Up Future Utility Models | M2M Now

Using the Internet of Things to Deliver Effortless Customer Service | Salesforce

Internet of Things Can Increase Effectiveness of Field Workers | Rigzone

Please tell us in the comments below or Tweet us, @DigiDotCom– we would love to share your findings too. You can also follow all of the commentary and discussion with the hashtag #FridayFavorites.

A Simpler and More Intelligent Internet of Things with Digi and Temboo

Posted on:

The ongoing drought in the western United States underscores the importance of maintaining and conserving a reliable supply of fresh water—whether for drinking, irrigation, fire control or manufacturing, reliable water storage is essential. Of course, half the battle in maintaining a water supply is managing it: once a tank system has been installed and filled, water must be properly distributed when it is needed and retained when it is not. If tanks are remote and many are spread over a wide area, monitoring them can become a costly and time-consuming obligation.

Screen Shot 2014-09-04 at 12.03.09 PMThese are the sorts of challenges that Digi and Temboo are overcoming by building a more intelligent Internet of Things. A network of Digi hardware running Temboo Choreos is flexible and smart—devices can be programmed to execute a wide variety of processes, and be reprogrammed without being interrupted. This is a solution that combines ease of automation with the trustworthiness of manual control. To illustrate the solution’s benefits, and demonstrate how the whole system works, we’ve built a model of the water tank problem. This system puts Temboo and Digi to work, keeping water levels right where they ought to be.

Our tank monitoring solution uses an XBee ZigBee radio to wirelessly exchange sensor information and remote control commands using Digi’s new XBee Gateway, a programmable device that joins ZigBee mesh networks to the Internet. A small Temboo client written in Python is installed on the XBee Gateway, allowing it to connect to over one hundred different web services using Temboo Choreos. With Temboo, the memory constraints of the small devices in the network cease to be an obstacle to intelligent behavior, as much of the code required to execute complex processes is offloaded to the cloud.

In our model, a sensor attached to the XBee radio monitors the water level of our tank, and sends those readings to the XBee Gateway. If the tank leaks and the water level falls, a response is triggered on the gateway. First, the gateway uses Temboo’s Yahoo Weather Choreos to check the forecast for rain. Temboo’s Nexmo Choreos are then used to telephone the relevant individual with an automated voice message that gives a real time rain forecast and offers a choice of actions to take by entering a number on the phone’s keypad.

Screen Shot 2014-09-04 at 11.56.33 AMIf a storm is on its way, there is an option to ignore the alert. If the leakage does not need to be urgently addressed, there is an option to schedule a maintenance event for the future, which the Temboo program on the gateway handles via a Google Calendar Choreo . If the situation is urgent, however, there is another option to activate a backup pump at a different point in the XBee network and refill the tank.  Of course, all of this will only work properly if the sensor and gateway are powered on and functioning, so our system needs to be prepared for any loss of connectivity—if, for any reason, transmission of the level of water in the tank stops, another Temboo Choreo will file a Zendesk ticket to alert support that the system needs attention.

The most exciting thing about this model, however, is that it is only a small example of a massively scalable system. XBee technology can connect hundreds of different devices in a much larger network, and Temboo’s Library contains over two thousand other Choreos that can be used to execute an immense variety of tasks. Modifying the behavior of the Temboo program on the gateway to, for example, switch notification services is just a matter of changing Choreos, a simple task.  Digi’s hardware and Temboo’s software are coming together to build a lighter, smarter and much easier to use Internet of Things.

Demo created using:

Are you using Temboo or XBee in your Internet of Things application? You can share how you’re using wireless technology by tweeting us at @XBeeWireless and @Temboo.

Contact a Digi expert and get started today! Contact Us