Home/ Blog/Posts Tagged "maker"

This Week in The Internet of Things: Friday Favorites

Posted on:

Smart Stitches Send Doctors Information on Wounds as They Heal
Modern medicine has come a long way thanks to IoT, and researchers at Tufts University who are working towards pushing the limits even further with the development of “smart stitches”. Learn how these “smart stitches” are designed to close wounds while simultaneously updating doctors on the healing progress.

7-Eleven delivers by drone in Reno including, yes, Slurpees
Are you thirsty but it’s too hot to walk to the nearest 7-Eleven? Well, read how you can have slushies, donuts, and more delivered to your door step courtesy of the first delivery drone built by tech company, Flirtey.

Developing Blockly for Propeller: Our Team Includes Three Student Interns Who’ve Progressed Quickly
In addition to helping develop the Blockly for Propeller demo system; these teenage geniuses have been working hard on a few projects of their own. Check out Blake’s Intruder Alert system he made using Digi XBee, Roxy’s M&M Color Identifying robotics project, and watch Carson’s 0.95” OLED in action.

BuzzCloud Wants to Take the Sting Out of Urban Beekeeping With Its iBuzzHive
With Colony Collapse Disorder (CCD) on the rise, even the honeybees are taking to IoT in hopes to make beekeeping possible (and painless) in Urban environments. Watch how BuzzCloud plans to use 3D-printing and IoT to save the troubled population of these important pollinators:

Facebook’s Internet-Broadcasting Drone Takes to the Skies for the First Time
In effort to increase internet access across the world, Facebook built a solar powered, lightweight, 42 m wide drone named Aquila. See for yourself how Facebook designed Aquila to stay airborne for 90 consecutive days.

What Are the Differences Between DigiMesh® and ZigBee® Mesh?

Posted on:

Mesh networking is a powerful way to route data over an RF network. Range is extended by allowing data to hop node to node and reliability and resiliency is increased by “self-healing,” or the ability to create alternate paths when one node fails or a connection is lost.

One popular mesh networking protocol is ZigBee®, which is specifically designed for low-data rate, low-power applications. Digi offers several products based on the ZigBee protocol. Additionally, Digi has developed a similar mesh protocol named DigiMesh®. Both ZigBee and DigiMesh offer unique advantages important to different applications. The following chart highlights these differences:

ZigBee® Mesh DigiMesh®
Node types and their benefits Multiple: Coordinators, Routers, End Devices. End devices can sometimes be less expensive because of reduced functionality. Single: One homogeneous node type, with more flexibility to expand the network. DigiMesh simplifies network setup and reliability in
environments where routers may come and go due to interference or damage.
Battery Deployed Networks Coordinators and routers must be mains powered All nodes are capable of battery operation and can sleep. No single point of failure associated with relying on a gateway or coordinator to
maintain time synchronization.
Over-the-air firmware updates Yes Yes
Range Most ZigBee devices have range of less than 2 miles (3.2 km) for each hop. Available on XBee SX with range of up to 40+ miles for each hop.
Frame payload and throughput Up to 80 bytes. Up to 256 bytes, depending on product. Improves throughput for applications that send larger blocks of data.
Supported frequencies and RF data rates Predominantly 2.4 GHz (250 kbps) 900 MHz (Up to 250 Kbps), 868MHz, 2.4 GHz (Up to 250 Kbps)
Security 128-bit AES encryption. Can lock down the network and prevent other nodes from joining. Both 128 and 256-bit AES encryption. Can lock down the network and prevent other nodes from joining.
Interoperability Potential for interoperability between vendors. Digi proprietary
Interference tolerance Direct-Sequence Spread Spectrum (DSSS). 900 MHz: Frequency-Hopping Spread Spectrum (FHSS). 2.4GHz: Direct-Sequence Spread Spectrum (DSSS).
Addressing Two layers. MAC address (64 bit) and Network address (16 bit). MAC address (64 bit) only.
Maintenance More sniffers and diagnostic tools available on market. Simpler addressing can help in diagnosing problems and setting up a network.

For more information on DigiMesh and Digi XBee click here.

Prototype XBee and Other Wireless Projects with Tinylab

Posted on:

You might remember our post about the XBee product turned Indiegogo superstar last year–Plexidrone. Well, there’s another XBee related Indiegogo campaign making headlines. Tinylab is a prototyping platform, developed by Bosphorus Mechatronics, simplifying IoT development with an all-in-one Arduino-based solution.

Tinylab reduces the need to stack multiple Arduino shields, pull out the breadboard and jumper wires, or hunt down that spare LTH sensor in your drawer. This flexible and extensive development board supports Arduino and other development environments, hosts 20 Digital I/O, and additional sensors come pre-attached. And, perhaps most exciting, is the support for a number of wireless technologies like XBee, Bluetooth, or Wi-Fi with the ESP8266 chip as seen in the graphic below.

 

tinylab-schematic
 

The Indiegogo campaign got off to a great start and Bosphorus Mechatronics quickly exceeded their goal of $25,000. The crew is shipping development kits to their campaign supporters in May and one level of support will even earn contributors a development kit that includes XBee RF modules.

Also, to demonstrate the board’s capabilities, the team at Tinylab created an wireless lighting demo. The video is showing wireless control of a lightbulb with commands sent over XBee. Check out the video below.

If you are interested in learning more about the Tinylab prototyping platform, click here to visit the Indiegogo campaign and support! You can follow their updates on Twitter or visit the Bosphorus Mechatronics website here.

FogFinder Relies on Arduino and XBee to Tap into New Water Source

Posted on:

No, it’s not possible to create water out of thin air. But, with a bit of engineering, scientists in Chile are turning foggy air into a reliable water source for nearby residents. The process is almost entirely natural—the sun desalinates the water, the winds push the water to a higher elevation, and gravity allows the collected water to flow back down to the village.

Using large fog collectors, which consist of mesh mounted on a rigid structure, to capture impacting fog water droplets from the air and tapping into the natural processes mentioned above, fog collection could be an economical way to gather and distribute clean water.

The fog collectors are typically installed on hillsides and remote areas where fog is abundant. These installations are especially common in arid climates in Chile where rain runs scarce. As fog passes through, the droplets impact the mesh fibers and collect in a trough below. One of the real challenges and opportunities for innovation lies in determining where to install these collectors, how to orient them, and understanding how efficient they are at collecting water from the air.IMG_0420

While at the Universidad de los Andes in Santiago Chile, Richard LeBoeuf, Associate Professor at Tarleton State University, and Juan de Dios Rivera, of the Pontificia Universidad Católica de Chile, developed a new type of sensor called the “Liquid Water Flux Probe” to measure the availability of water at current and potential fog collector sites. The sensor measures the liquid water content and speed of the fog and can be used to understand the optimal location and orientation for each of the collectors.

The sensor is part of a larger system called FogFinder, which Richard LeBoeuf developed in collaboration with Juan Pablo Vargas and Jorge Gómez at the Universidad de los Andes. Together they designed and engineered the FogFinder system, which includes wireless networking.

20151215_182827

With the primary challenge of measuring fog liquid water flux out of the way, the team needed to design a device capable of being deployed in extremely remote environments and easily retrieve sensor data. Since there is no power source to plug into out in the desert, the options are either solar or wind power. Due to their simplicity, a separate solar power system, comprised of a solar panel, battery, and charge controller, is used in conjunction with the FogFinder unit.

To facilitate the collection and transmission of sensor data, the team chose to build the foundation of FogFinder with Arduino and XBee. Both components offered a fast and easy way to get started prototyping the design. Each sensor node is comprised of an Arduino Mega and XBee module, and the team even designed and built custom boards to regulate voltage, interface the sensors and store data on a micro-SD card.

20151215_154618

The node collects data on the following parameters:

  • Liquid water flux
  • Humidity
  • Temperature
  • Flow-rate from fog collectors
  • Pressure
  • Wind speed
  • Wind direction

The team settled on using XBee for local wireless communication since it provided greater range and required less power than Bluetooth. The ZigBee protocol also offers the flexibility to create a mesh network and configuration settings to conserve power-saving valuable battery life. With external antennas and mountain top to mountain top placement of each radio, they have achieved a reliable 1 km link.

Once the data is collected, it’s sent to a remote server over a cellular network. Using a BeagleBone SBC and a cellular modem, data is taken from the local XBee ZigBee network and can be accessed on a remote computer. This data is then analyzed to assess the performance of the fog collector.

What’s next for FogFinder? As the team wraps up the prototyping stage, they’ll be conducting calibration in a wind tunnel to prepare for field tests.  Once the testing phase is complete, the team will work to deploy them as part of a pilot program and start connecting more Chilean residents to a clean source of water.

You can read more about the FogFinder project in the following articles:

The FogFinder project has received support from the Universidad de los Andes through its Fondo de Ayuda de Investigación, Andes Iron – Dominga, and the Pontificia Universidad Católica de Chile.

 

A Better Way to Build Your Next Project: XBee Hardware Tools

Posted on:

The open source movement and strong maker community has led to the creation of a number platforms that give developers a quick and efficient way to create a proof of concept, prototype, or even a final product. Here a few especially handy hardware platforms for developing XBee projects that we think you might find helpful.

Waspmote
The Waspmote is a sensor mote that gives developers a simple way to create wireless sensor networks connected over XBee. The mote supports all the same network topologies as XBee, so it is possible to create complex mesh networks as well as simple point to point communications. In addition to network flexibility, the motes primary feature is reduced power consumption, which makes it ideal for sensors running on battery.waspmote_mote_runner_24 (1)

What makes the Waspmote especially awesome is the fact that Libelium has developed their own sensor boards that plug directly into the Waspmote–eliminating the need to solder anything or dust off your box of breadboards and jumper wires. They have industry specific sensors boards that are equipped with the sensors needed for a specific applications like Smart Water, Agriculture, Smart Cities, among many others. Visit the Libelium home page to learn more about the Waspmote.

Arduino FIO
The Arduino FIO board was created by Shigeru Kobayashi and SparkFun Electronics in an effort to simplify the process of making a wireless Arduino project. With connections for a LiPo battery and an XBee socket right on board, the board has everything you need to create anything from a lightning sensor to a programmable swarm of robots.

arduino fioPerhaps the most useful feature of the FIO board is the ability to upload sketches wirelessly. Gone are the days of completely tearing down your project so that you can plug it into your computer! Check out this information guide for information on programming Arduino over XBee.

Apitronics
Apitronics is an open platform that enables farmers to collect sensor data via connected sensors deployed throughout farms, greenhouses, and gardens. The data is collected from remote nodes placed around the farm and is aggregated at a central hub. The data can be accessed at a local web page and helps farmers monitor environmental conditions, which allows them to make more informed management decisions.apitronics

With less than 10% of farms using sensors today, the goal is to give small and mid-sized farmers the tools necessary to gather quantitative data–reducing waste and maximizing crop yields. But this platform isn’t just for those with a farming day job, this can be used to monitor your backyard gardens as well! Visit Apitronics website to learn more about their open source agricultural efforts.

duinoPRO
Taking your prototype to production is an issue many start-ups and design teams struggle with. As Arduino has become nearly synonymous with the word prototype, engineers are increasingly in need of an efficient way to turn their Arduino based prototype into a scalable product. DuinoPRO is aimed at the lean start-up community or anyone looking to leverage the highly supported Arduino platform to create a prototype they plan to scale to relatively large volumes in a surface mount facility.

duinoproMaybe we Missed Your Favorite?
Did we miss one of your favorite XBee development tools? Never fear. Just leave a comment below or let us know on Twitter at @XBeeWireless and we will add it to the post!

XBee-PRO 900HP Creates a Mesh Network With the Power to Save Lives

Posted on:

When you’re at work, how do you typically get in touch with your family if you need to contact them?

You most likely call or send a text message from your cell phone. For the most part, you have your phone on you, and you know they have their phone on them and are accessible.

What if, instead, your family is the Texas State Guard and you’re managing a natural disaster? Your soldiers are out in the field providing relief and support–how do you get in touch? How do you keep track of their location? Certainly amidst the noise, weather conditions, working environment, and limited cell coverage there aren’t too many options.

Damon Williams has experienced this issue firsthand as a Sergeant for the Texas State Guard.

“For the longest time I wasn’t able to monitor where my soldiers actually were. There was no way to know exactly where they were located.”

By day, Damon is a senior firmware engineer at Molex. Using his technical background, he set out to solve the issue he faced while serving his community: how can a soldier’s location easily be communicated from the field?

Damon entered Molex’s Innovation Challenge, an internal competition where employees compete against one another in a bid for the next great Molex innovation.

A typical entrant in the Molex Innovation Challenge creates a presentation and some design mock ups. Having personal stake in the game, Damon turned his idea into a reality. As a long-time maker, Damon knew the XBee product line well and realized the XBee-PRO 900HP would enable him to use mesh networking. He developed a working prototype of 30 personal GPS trackers.

“This is something I believe in. I have soldiers in the field. This is something that we’re constantly up against. For example, right now my bags are packed and in my truck. We’re on alert because of the flooding in Texas.”

An individual carries one of the small trackers. Their exact location can be seen in real time from the command center through video using a Google Maps overlay where pins represent the trackers.

TXSG_DPS

Damon says that this system wouldn’t be possible without the XBee-PRO 900HP. “In addition to using mesh networking for reliability, I went with the 900 for the range. Our packet sizes are very small, so we have real quick blips for data transmission.”

The XBee-PRO 900HP allowed for:

  • Mesh networking instead of cellular
  • Ease of integration
  • Ability for the system to go into sleep mode to conserve power
  • Small packet delivery
  • Accelerated system design speed
  • Integration of all of the modules together
    • Maestro GPS module
    • Bluetooth transceiver
    • Microchip controller

gumPowered by two AAA batteries, the trackers can run for four days (96 hours) with updates every 90 seconds–or for up to two weeks with hourly updates. The trackers are as small as a couple packs of gum.

Although the prototype didn’t take first place in the Innovation Challenge, Damon has implemented the system for his own team and others. He has personally funded and built 130 trackers that are out in the world today. The trackers are used by The National Guard and search and rescue teams including the City of Austin.

“Anytime someone goes down range they have a tracker on. I have a laptop that hooks up to a panel of video screens, and I have a satellite image. There’s a dot and name for every soldier. Commanders love it because they always know where their soldiers are,” Damon explained. “We had a soldier injure himself at night last year, because we knew where he was we could get help in a few minutes versus searching for hours.”

The system also works great for volunteers and first responders. He hopes it will catch on in other applications like firefighting, search and rescue and wide area damage assessment.

Koch Industries now Molex’s parent company, has also expressed interest in funding the project under its innovation division.

Today, with help from the XBee-PRO 900HP, Damon always has eyes on his family. He hopes that others will be able to do the same. For a complete look at the system check out the website: pointsgps.com.

This isn’t the first time the XBee has been used to save lives. Draganfly, a drone used by public safety agencies, selected the XBee-PRO 900HP too. After K-9 units were unable to locate a family lost in the woods while hiking, an infrared-equipped Draganflyer X4-ES unit was sent out to locate the family. Five units were purchased by the Royal Canadian Mounted Police in Nova Scotia and now respond to emergency response calls, crime investigations, traffic scene reconstruction and search and rescue operations. Draganfly is the first recorded civilian small Unmanned Aerial System (sUAS) to be credited with saving a life.

A Better Way to Build Your Next Project: Software Tools for XBee

Posted on:

The open source movement and strong maker community has led to the creation of a number platforms that give developers a quick and efficient way to create a proof of concept, prototype, or even a final product. We’ve discovered and created quite a few that involve XBee over the last several years so we put some of our favorites in one place for you.connect-devices-to-the-cloud (1)

XBee Java Library
You may remember we released the XBee Java Library earlier this year. This library was created in-house at Digi, so our customers can get to market more quickly with their Java based applications, but we also wanted to share it with the rest of you XBee developers out there. Feel free to make your own contributions! Access the library on Github.

XBee Arduino Library
A few years ago, Andrew Rapp created this extremely useful library for projects involving Arduino and XBee wireless communication. The project supports both Series 1 (802.15.4) and Series 2 (ZigBee) XBee radios. Another fellow XBee’er, Boris, supplemented this library by writing a helpful blog post to help get you startedThe library is available here on Github.

XBee Internet Gateway – XIG
Initially created by Rob Faludi to easily connect XBee to the Internet, the XIG runs on Windows, Macintosh and Linux computers as well as ConnectPort Gateways. If you’re looking to integrate your XBee networks with online databases, web pages, social networks, or other online services this is the starting point for your IoT application. The XIG is available for download here.

Rob has also compiled a list of all XBee libraries living out on the Internet including Max MSP and Python. You can view that on Digi’s Examples site here.

Third Party Development Platforms

In addition to some of the tools we’ve created at Digi, there are a number of companies solely focused on creating development platforms for rapid prototyping and product creation.

macchina.io
macchina.io is an open source software toolkit for quickly building embedded applications for the Internet of Things that run on Linux-based devices like the Raspberry Pi and Beaglebone. macchina.io implements a web-enabled, modular and extensible JavaScript and C++ runtime environment to enable applications to talk to various sensors, devices, and cloud services. The first release of macchina.io even includes support for XBee ZigBee radios.

Temboo
Temboo is a platform that simplifies interactions between multiple APIs, so you don’t need to spend hours combing through programming details, but rather focus on creating your IoT application. You can easily generate code in multiple languages for tasks like posting to Twitter, creating Google Calendar events, or more advanced processes like monitoring urban noise levels.

Once the code is generated it can simply be copy and pasted into an IDE. Temboo’s library contains thousands of Choreos that handle API interactions, work with databases, perform code utility functions, and more. Check out this video that walks you through building an XBee tank monitoring demo with Temboo Choreos.

Looking for More 
Did we miss one of your favorite XBee development tools? Never fear. Just leave a comment below or let us know on Twitter at @XBeeWireless and we will add it to the post!

Creative Inspiration: British Arrows Award Winners 2014

Posted on:

The Digi marketing and product teams took a field trip to the British Arrow Awards at the Walker Art Center here in Minneapolis to get our creativity flowing for the new year. We left laughing and inspired, so we thought you might be interested in checking out a few of this year’s winners too.

Unilever Marmite Rescue

Unilever is well aware of the love/hate relationship people have with Marmite, and they’re not afraid to show it in this ad that was named as commercial of the year.

 

Mercedes-Benz Magic Body Control Chicken

Oddly enough, Chicken was great inspiration for our cellular team. The products they work on are all about stability and control.

 

Honda Hands

This may have been the ad that spoke to us the most. After all, we’re all makers here at Digi and every IoT deployment starts with someone who is willing to think curiously.

 

Hutchen 3D Three Mobile Pony

Because… dancing ponies.

It’s the perfect time of year to get out of the office and find inspiration in unexpected places. Where are you finding creative fuel for the new year?

Contact a Digi expert and get started today! Contact Us