Home > Blog

Mass Transit Demos and More at Arrow IoT Immersions

Next week, we’ll be heading down to Atlanta for Arrow IoT Immersions. This stop will be part one in a series of four events, where Arrow and other leading tech companies tour around the country sharing IoT technology and how it’s changing industries. At the show we’ll have three IoT demos to share with you. Here’s a little bit of information on what we’ll be up to during the event and where you can find us:

Mass Transit Bus with ConnectCore 6Digi at Arrow IoT Immersions
We’re extremely excited to be a part of the Mass Transit demo, which showcases how IoT tech is already changing our transit systems. Inside the bus, you will find a Digi ConnectCore 6. The ConnectCore 6, based on the Freescale i.MX6 processor, drives multiple high definition monitors that provide bus location data as well as vehicle diagnostic information to the driver. Other companies that will be on board this mass transit demo include: Intel, Microsoft, Advantech, Microchip, Eurotech.

If one connected transit demo isn’t enough, we have good news. We’ll also be showing off Digi’s Wireless Vehicle Adapter, aka WVA. This handy device opens up a local Wi-Fi network and streams real-time vehicle diagnostic information to a tablet. Stop by our kiosk in the Cloud Pavilion to give it a try. We’ll have a tablet loaded with an Android application for you to play with.

Connected Health Care
We’ll also be sharing how Internet of Things is changing healthcare. There’s an enormous opportunity to use internet connected devices to improve outpatient care. We’ve built a connected blood pressure cuff, which enables caregivers to provide excellent service to patients even if they are outside the hospital.

The blood pressure device was modified with XBee, which enables communication to the cloud. Since the device is connected to the internet, caregivers can easily set up alarms so they’re notified whenever an abnormal condition is met. You can try this demo out for yourself in the Medical Pavilion.

More Information for Arrow IoT Immersions
In addition to our demos, Digi CTO, Joel Young, will be a part of the Solutions Sessions alongside other technology experts. Specifically, they’ll be discussing how the Internet of Things is impacting business, specifically cloud computing and connecting from the network’s edge into the enterprise. Want to attend, but not yet registered? Head over to the IoT Immersions page to sign up.

One Small Step for XBee, One Giant Leap for Wireless

Posted on: No Comments

This winter, Soarex, a NASA sounding rocket, will be launched into space with XBee on-board.  The three-node network is the first XBee ZigBee network to go to space. The rocket will be launched roughly 200 miles above earth to test a new parachute-like technology called an exo-brake. Exo-brakes are used to safely return samples from the Earth’s orbit as well as land spacecrafts on other planets that have a much thinner atmosphere than Earth.

2
Typically the devices that collect samples are connected with wiring. The team chose to move away from traditional wiring and experiment with a wireless network for a number of reasons. For one, less cabling on the spacecraft means less weight, which reduces the amount of fuel needed. Another important feature is the ability to relay this data back down to earth via an Iridium satellite. The Soarex will monitor six different acceleration parameters as well as temperature and air pressure.

This wireless network is part of an effort by NASA to test the performance of wireless on a spacecraft and see if it will be suitable for other applications. Due to the high cost associated with launching a rocket, the team must be extremely conservative when implementing new technology into their rockets. Once the network has had multiple successful trials, the team will begin incorporating XBee into more and more vital missions.

When NASA chooses to experiment with new technology the initial budget is relatively small, so the engineers went with off-the-shelf components to build out the network. The team is working with Digi’s XBee ZB modules, Arduino microcontrollers, and Sparkfun’s XBee adapter shields.  If the trial run is a hit, they’ll work to build a more customized solution– one that might even feature the XBee Plus!

Soarex will launch with XBee in January 2015. We’ll share some more information and let you know how it goes, so check back in! Until then, check out this video to get an idea of the wild ride XBee will be taking.

XBee Visits World Maker Faire New York 2014

Posted on: No Comments

Maker Faire is one of our favorite events of the year. We get to meet everyone that’s making with XBee, introduce others that may not be familiar, and see amazing projects like giant robotic giraffes and connected motorcycles. We’ve got tons of pictures to share with you from what was a great event.

XBee Projects

And if you stopped by our booth and looking to build any of the demos we had on display, visit examples.digi.com for instructions. Or if you’ve built a project with XBee, be sure to submit it to the XBee Gallery.

Thanks again to everyone that stopped by to hangout with us. Have photos or videos from Maker Faire that you’d like to share? Let us know in the comments section below or on Facebook or Twitter!

This Week in the Internet of Things: Friday Favorites

Posted on: No Comments

The Internet of Things is developing and buzzing all around us. Throughout the week we come across innovative projects, brilliant articles and posts that support and feature the innovators and companies that make our business possible. Here’s our list of favorites from this week’s journey on the Web.

1GRAIN1223.jpg
The Changing Face of High Tech in Minnesota | Star Tribune

Salesforce CEO Discusses New Wearables, Internet of Things Startup Fund | ZDNet

Lighting Up Future Utility Models | M2M Now

Using the Internet of Things to Deliver Effortless Customer Service | Salesforce

Internet of Things Can Increase Effectiveness of Field Workers | Rigzone

Please tell us in the comments below or Tweet us, @DigiDotCom- we would love to share your findings too. You can also follow all of the commentary and discussion with the hashtag #FridayFavorites.

XBee Tech Tip: Connecting to the IoT with XBee ZigBee Cloud Kit

Posted on: No Comments

This Tech Tip is brought to you by Digi Applications Engineer Mark Grierson, who will take you through the steps to connect an XBee Smart Plug to the XBee ZigBee Cloud Kit and manage it from the XBeegateway.herokuapp.com web application. Be sure to answer the XBee Puzzler at the end of this entry to win an XBee ZigBee Cloud Kit!

The XBee ZigBee Cloud Kit is the easiest way to connect to the Internet of Things (IoT). It features a sample web application that lets users remotely activate various outputs on the development board including LEDs, a vibration motor, a bar graph gauge and an audio buzzer.

In addition, users can build their own circuits on the development board to sense temperature or light, switch on and off other devices via a relay, turn on and off additional LEDs and more. The web application code is open-source, available for anyone to download and use as a learning tool.

The purpose of this article is not to teach you how to set up and use the kit. There is an excellent online user’s guide that will step you through that process found here. http://ftp1.digi.com/support/documentation/html/90001399/90001399_A/Files/kit-getting-started.html

This article assumes that you have set up the XBee ZigBee Cloud Kit and have followed the instructions in the getting started guide.

Using the XBee Smart Plug with the New XBee ZigBee Cloud Kit

Now that you have seen how easy it is to web enable just about any device, you may be wondering about Digi’s boxed ZigBee devices such as the XBee Smart Plug, XBee Sensors, AIO and DIO adapters, etc. Can you use these devices with the XBee ZigBee Cloud Kit? Absolutely!

1)     Introduction

Using the XBee Smart Plug is an easy way to intelligently monitor and control connected electrical devices. This example uses the XBee Smart Plug and allows you to control the AC relay as well as read and monitor the AC current sensor, the Temperature Sensor and the Light Sensor.

The three sensors generate voltage outputs that are passed to the XBee’s analog-to-digital converter (ADC). These readings are then sent via Device Cloud to the XBee ZigBee Cloud Kit’s online dashboard application where you can control and monitor the XBee Smart Plug right in your web browser.

2)     Assemble the Parts

To complete this exercise you’ll need:

1 – XBee Gateway

1 – XBee Smart Plug

1 – Device Cloud Account


xbeegateway1xbeegateway2

3)     Connect the XBee Smart Plug to the Gateway and Configure

You’ll need to ensure the XBee Smart Plug is connected to your XBee Gateway. If your XBee Smart Plug is new and has not connected to a ZigBee network, this should be as simple as plugging it in while the XBee Gateway is powered up.

The Green Association (ASSC) light will flash once the XBee Smart Plug has joined a network.xbeegate3

You can then go to the XBee Network tab in the configuration section of the Gateway’s web UI to ensure the smart plug has joined.

deviceconfic1

If the XBee Smart Plug does not show up, click on the “Discover XBee Devices” button to have the XBee Gateway perform a network discovery. If the XBee Smart Plug still does not show up and the ASSC light is flashing on the XBee Smart Plug, this means that the XBee Smart Plug has joined another ZigBee network and must be reset using a 4-button press of the Reset button. Consecutive button presses must occur within 800 milliseconds of each other for the reset to occur.

xbeegateway4

When the reset is successful, the ASSC light will go steady as the XBee Smart Plug looks for a new network to join and will flash again once it joins. Return to the Gateway web UI and click discover to see the XBee Smart Plug is now joined to the XBee Gateway.

Once the XBee Smart Plug has joined the XBee Gateway, configure it by clicking on the extended address of the Smart plug.

deviceconfig2

After a few seconds, the settings of the XBee Smart Plug will be displayed. Click on the Input/Output settings tab and:

  1. Check the Detect box for D4 (D4 is used to toggle the AC outlet)
  2. Ensure that the IR parameter is set to 5000ms
  3. Click the Apply button to save changes 

deviceconfig3

4) View It!

You will use the XBee Wi-Fi Cloud Kit’s web application to configure three widgets for viewing the temperature current and light readings from your sensor. You will also configure a widget to control the AC relay.

Log in to the XBee ZigBee Cloud Kit web application: https://xbeegateway.herokuapp.com/#/login

dcscreen342

The Outlet Widget

First we will create the outlet control widget.

Use the Add Widget button to create a new display widget.

dcwidget

Choose On/Off Switch Widget for the widget type.

Add a label such as “XBee Smart Plug Outlet.”

Choose your XBee Gateway and module by selecting their ID.

Select DIO4 as the output stream and check the device configuration to make sure it is configured properly. Your screen should look like the following.

createnewwidget

Save the changes to see your new Widget on the home screen.

You should now be able to turn the XBee Smart Plug AC outlet on and off using the widget.

The Current Draw Meter Widget

Next we will createa widget to measure the current draw on the XBee Smart Plug. The concepts used to build this widget are the same for the light meter and temp sensor built into the XBee Smart Plug. Only the Input stream and transform will be different.

Use the Add Widget button to create a new display widget.

dcwidget

Choose Gauge Widget for the widget type.

Add a label such as “Current Draw.”

Choose your XBee Gateway and module by selecting their ID.

Select AD3 as the Input Stream and check the device configuration to make sure it is configured properly.

Enter the following formula into the Input Transform:

Enter “((((value/1024)*1200)*(156/47)-520)/180*0.7071)*1000″ into the Input Transform to transform the input from millivolts to milliamps. The formula in brackets converts the millivolt reading into AMPS. The herokuapp application is constrained to whole numbers and will convert a decimal result to the nearest whole number. To make this data more meaningful, we then multiply this value by 1000 to convert to milliamps. The following knowledgebase article is the source for this info: http://www.digi.com/support/kbase/kbaseresultdetl?id=3522#Adapters

Enter mA into the Units field.

Enter 0 for the Low value and 8000 into the High value (the XBee Smart Plug is only rated for loads up to 8 amps).

You screen should look like the following:

widgetsettings

Save the changes to see your new Widget on the home screen.

The Temperature and Light widgets are made using the same procedure as the Current widget with a few small changes.

For the Light Widget use the following:

Label=Light Meter

Input Stream=AD1

Input Transform=(value/1024) * 1200

Units=Lux

Low Value=0

High Value=1000

lightmeter

For the Temperature Widget use the following:

Label=Temperature

Input Stream=AD2

Input Transform= (((((value/1024)*1200)-500)/10)*1.8)+32 for Fahrenheit

= (((value/1024)*1200)-500)/10 for Celcius

Units=Fahrenheit or Celcius

Low Value=0

High Value=150

5) Use It!

Now you can use the XBee Smart Plug to control any AC appliance up to 8 Amps! Additionally, you can monitor the amperage being used along with the Ambient light and temperature around the XBee Smart Plug.

In my screenshot below, I have a 60 watt lamp connected to the XBee Smart Plug.

widget dashboard

Using a variation of Ohms law “P=VxI” we can see that this 60 watt bulb should draw about 500 milliamps at 120 volts. 60W/120V=.5Amps or 500 mA. My meter is showing 494 mA, which is just about right on! Feel free to try other widget types. Use a Bar Graph or Line Graph instead of a Gauge widget.

Now that you have completed this exercise, use what you have learned to add the XBee LTH Sensor, Wall Router or Analog Adapter.The formulas you will need for the transform can be found in this article: http://www.digi.com/support/kbase/kbaseresultdetl?id=3522#Adapters

XBee Puzzler

In the “Connect the XBee Smart Plug to the Gateway and Configure” section of this month’s Tech Tip, you are instructed to check the Detect box in the IO settings (See arrow 1 below).

zigbeekitconfig

What advantage is gained by having D4 monitored for a change of state?

Submit your answer below. The deadline for entries is October 15, 2014. Three winners will be randomly selected from the correct submissions. Winners will be notified by email. Employees of Digi and its subsidiaries are not eligible for the prize drawing. Good luck!

A Simpler and More Intelligent Internet of Things with Digi and Temboo

Posted on: No Comments

The ongoing drought in the western United States underscores the importance of maintaining and conserving a reliable supply of fresh water—whether for drinking, irrigation, fire control or manufacturing, reliable water storage is essential. Of course, half the battle in maintaining a water supply is managing it: once a tank system has been installed and filled, water must be properly distributed when it is needed and retained when it is not. If tanks are remote and many are spread over a wide area, monitoring them can become a costly and time-consuming obligation.

Screen Shot 2014-09-04 at 12.03.09 PMThese are the sorts of challenges that Digi and Temboo are overcoming by building a more intelligent Internet of Things. A network of Digi hardware running Temboo Choreos is flexible and smart—devices can be programmed to execute a wide variety of processes, and be reprogrammed without being interrupted. This is a solution that combines ease of automation with the trustworthiness of manual control. To illustrate the solution’s benefits, and demonstrate how the whole system works, we’ve built a model of the water tank problem. This system puts Temboo and Digi to work, keeping water levels right where they ought to be.

Our tank monitoring solution uses an XBee ZigBee radio to wirelessly exchange sensor information and remote control commands using Digi’s new XBee Gateway, a programmable device that joins ZigBee mesh networks to the Internet. A small Temboo client written in Python is installed on the XBee Gateway, allowing it to connect to over one hundred different web services using Temboo Choreos. With Temboo, the memory constraints of the small devices in the network cease to be an obstacle to intelligent behavior, as much of the code required to execute complex processes is offloaded to the cloud.

In our model, a sensor attached to the XBee radio monitors the water level of our tank, and sends those readings to the XBee Gateway. If the tank leaks and the water level falls, a response is triggered on the gateway. First, the gateway uses Temboo’s Yahoo Weather Choreos to check the forecast for rain. Temboo’s Nexmo Choreos are then used to telephone the relevant individual with an automated voice message that gives a real time rain forecast and offers a choice of actions to take by entering a number on the phone’s keypad.

Screen Shot 2014-09-04 at 11.56.33 AMIf a storm is on its way, there is an option to ignore the alert. If the leakage does not need to be urgently addressed, there is an option to schedule a maintenance event for the future, which the Temboo program on the gateway handles via a Google Calendar Choreo . If the situation is urgent, however, there is another option to activate a backup pump at a different point in the XBee network and refill the tank.  Of course, all of this will only work properly if the sensor and gateway are powered on and functioning, so our system needs to be prepared for any loss of connectivity—if, for any reason, transmission of the level of water in the tank stops, another Temboo Choreo will file a Zendesk ticket to alert support that the system needs attention.

The most exciting thing about this model, however, is that it is only a small example of a massively scalable system. XBee technology can connect hundreds of different devices in a much larger network, and Temboo’s Library contains over two thousand other Choreos that can be used to execute an immense variety of tasks. Modifying the behavior of the Temboo program on the gateway to, for example, switch notification services is just a matter of changing Choreos, a simple task.  Digi’s hardware and Temboo’s software are coming together to build a lighter, smarter and much easier to use Internet of Things.

Demo created using:

Are you using Temboo or XBee in your Internet of Things application? You can share how you’re using wireless technology by tweeting us at @XBeeWireless and @Temboo.

Bar Graphs, Security Systems, and GPS… All with XBee!

Posted on: No Comments

Here are a few more wireless projects you can build with some sensors, Arduino and XBee. Below are project descriptions and links to instructions that will walk you through each step, including example code. Feel free to get creative and put your own spin on these projects!

Wireless Bar Graph Display
Want to monitor the level of light in a room and reflect that data with a shiny LED bar graph? Then check out  this project, which uses an MBed microcontroller, light sensor, LED bar graph, and a pair of XBee radios to get you going on monitoring brightness without even being there. Complete instructions here.

Security Monitor
Let’s build a comprehensive security system! The motion sensor detects when a person passes by and alerts you by displaying a warning on an LCD screen and you can even be alerted with an audio message. For this project, you’ll need an Arduino and XBee radio. After all, Arduino and XBee are best friends in the electrical engineering world! Why else would an XBee shield exist? Complete instructions here.

Device Cloud GPS
Want to track the GPS coordinates of the RC vehicle you’re working on? Well, it’s simple with an XBee gateway, Arduino and Device Cloud. Complete instructions here.

Check out examples.digi.com for more projects. There, you can browse tutorials for beginner, intermediate, and even experienced XBee developers. Once you’re done building, feel free to share them with us on TwitterFacebook, or Google+ using the #XBee hashtag. Happy building!

Where in the World is the Robonaut Today?

Posted on: No Comments

Last year we shared how Digi helped NASA’s Robonaut go wireless. Since then, NASA’s robot has undergone a series of upgrades. Just last month, SpaceX delivered legs that will be mounted to the Robonaut, so that it can move around the station, making it even more valuable to the ISS crew. There are even new products being spun off from the original design like the Robo-Glove. Here are a few Robonaut-related articles that have been published recently to get you up to speed on the ISS’s newest crew member.

robonaut2-trailer-02-21-2011
NASA Upgrades Humanoid Robot in Space | Computer World
“The 300-pound humanoid robot working on the International Space Station is in the midst of getting a series of upgrades, including new processors and software, in preparation of having a pair of legs attached to it.”

NASA’s Robo-Glove Up for License for Iron Man and You | Slash Gear
“The glove is made to amplify the abilities of the wearer, not entirely unlike that of the glove of Iron Man in the Marvel Comics universe. This glove allows its user to blast through tasks that require high hand strength – grasping and repetitive tasks especially.”

Robonaut Upgrades, Spacewalk Preps & Cargo Ops for Station Crew | Product Design and Development
“For the next phase of testing, Robonaut will be outfitted with a pair of climbing legs to enable it to move around the station. These legs, which are equipped with end effectors to allow them to grip handrails and sockets, were delivered to the station during the SpaceX-3 cargo mission in April.”

Google Tech to Bring 3D Mapping Smarts to NASA’s Space Station Robots | Computer World
“Google said Thursday that its Project Tango team is collaborating with scientists at NASA’s Ames Research Center to integrate the company’s new 3D technology into a robotic platform that will work inside the space station. The integrated technology has been dubbed SPHERES, which stands for Synchronized Position Hold, Engage, Reorient, Experimental Satellites.”

Have you found an interesting article about the Robonaut? Share it with us on Twitter at @digidotcom using the hashtag #Robonaut. You can also learn more about how Digi enabled Wi-Fi communication in our NASA customer story, here.

Contact a Digi expert and get started today! CONTACT US

Desktop Site