Home/ Blog/Posts Tagged "xbee"

Customer Showcase: Wireless Devices Around the World Rely on Digi

Posted on:

Every day Digi works with customers around the world to deploy connected solutions that businesses rely on. From the ability to monitor device health to using data to make more informed decisions-connected devices are modernizing business operations. Here are a few of the many companies we are proud to work with.powerowners

PowerOwners | Solar Energy

How do solar energy providers  measure the effectiveness of their solar panel deployments? You’ll probably get a wide variety of answers depending on who you ask. PowerOwners saw this inconsistency in the solar industry as an opportunity to create a standard benchmark to measure the performance of solar assets.

The centerpiece of the system is the Deno Smart Sensor. The sensor measures sunlight and temperature to simulate an energy benchmark. It’s placed alongside solar panels, the Deno Smart Sensor is pictured to the right. Data is transmitted wirelessly by a Digi XBee PRO 900HP and collected within Digi Device Cloud. This service replaces the commonly used weather stations, which were difficult to deploy and provided inconsistent data. Read the full story here.

Powermat | Wireless Charging

powermatThere are few things more frustrating than a dead phone battery. Almost everyone relies on their smartphone to get through the day-whether it’s for business or entertainment.

Powermat developed a creative solution that involves wireless charging and ZigBee technology. Their mission? Ensure that smartphone users never have to worry about where keeping their device charged. It’s easy to use, requires no cables or outlets, and gives businesses a service to offer to their customers. Powermat is able to manage their global deployment of charging stations via the cloud since each charging network is IP-enabled with an XBee Gateway.

The Powermat stations can be found at large retail chains like Starbucks, a select number of universities, and airport terminals. Users can install the Powermat app on their phone so they can locate the most convenient location for their next charge. Learn more about the Powermat service here.

MicroPower Technologies | Remote Video Security Systems

css-inline-solveilUtility providers often have assets widely distributed across remote areas. Ensuring security of substations or monitoring weather conditions can be a costly endeavor. And, when millions rely on your company for power, an outage can have large consequences. MicroPower works with utilities to create an easy to install solution that gives energy providers the ability to ensure their customers have reliable power. A means to remotely monitor their sites also allows for faster troubleshooting and fewer unnecessary maintenance visits.

MicroPower Technologies’ solar powered video system is made possible by the Digi TransPort WR21. The wireless cellular router is easy to install and provides the connection needed to stream video to a central database that can be accessed by network operators. Click here to read more about this solution.

Read more about how Digi customers are inventing new business models and changing their respective industries, visit our customer success page.


The Next Chapter in the Digi Story: Connect with Confidence

Posted on:

This year represents a transformational moment for Digi as a company. We celebrated our 30th birthday. We have a new CEO. We’ve made a new acquisition and have brought on customers that represent some of the world’s most innovative companies.

Not too long ago, we held a retirement gathering for one of our long time employees. She’d been with the company for 28 years. She and others who have been here for the long haul started sharing stories about how things were in the early days. The stories were the perfect anecdote for how much things have changed over the years—over the decades. Those stories show how much Digi have evolved. But just as much as they show Digi’s evolution, the stories represent our powerful foundation of strength that we’re carrying into the future.

About 18 months ago, we set out to define how we would bring the meaning of that foundation and evolution to our customers, partners and the public in the clearest way possible. We asked ourselves: “how can our brand embody the sentiment of the stories our employees tell? How can our brand articulate why those innovative companies turn to Digi over others?”

To start, we went back to our roots. To our core value: listening. With 30 years of history and our diversity of experience, that’s what made sense. You can find Digi products in vast oil fields, intensive care units, crowded freeways, factory floors, and in retail stores on Black Friday. There are millions of devices deployed in the world, each with a critical task to perform. We needed to talk to the people who depend on those connections in order to articulate our mission best.

So, we conducted deep customer and partner interviews, employee surveys and spent time with our partners. All in all, we went through 100 interviews, 125 surveys and 10 workshops—more than 500 hours of listening.

It led us to a key finding: it’s time to modernize the Digi brand, but to emphasize not change, who we are at our core.

So, here we are today.

What is the new brand?

At its core, we have the brand promise, what you can expect from Digi, why would you choose Digi:

Digi works with you to solve mission-critical and business-critical machine communication challenges in the most demanding environments. You get proven, no-nonsense solutions that work, and keep working. With Digi, you can create, deploy and manage your M2M and IoT connections with confidence.

What we heard in those 500+ hours of research is that there’s something our customers get when they choose Digi: trust. They trust the people, the products and the company.

In short, we help you CONNECT WITH CONFIDENCE.Digi-Logo-Timeline

You’ll see “connect with confidence” as our new tagline and continued promise to you. You’ll also see the evolution of the Digi corporate logo. It represents exactly what the tagline does: sturdy, solid, reliable Digi. We’ve also gotten Digi out of the box and added a new shade of green—energetic and agile. We are company that our customers can connect with confidence, and we’re dedicated to doing so with fresh energy.

Thank you to everyone who took the time to play a role in this process. Listening to you has helped us get to a place where we’re truly sharing who we are with the world.

We’d love to hear your thoughts in the comments section below.

Look What I Made: XBee Project Gallery Update

Posted on:

Farm Safety Wearable
The sweep auger motor plugs directly into an outlet on the receiving box. This receiving box and transmitter each have an XBee wireless transceiver inside. When the remote control is powered on, the first LED lights up. When the safety cord is connected, the second LED lights up. At this point, the sweep auger is off.

Connected Greenhouse
Using an Intel IoT Gateway, the wireless systems turns daily farming data into a more meaningful decision-making. Sensors for temperature, humidity, pH, and luminosity in the greenhouse pass the data to the local Galileo gateway. Galileo transmits data using XBee to an Atom processor-based gateway, and then uploads all the information to the cloud system.

Wireless Boat
This RC boat uses XBee for wireless control. The controller is fashioned from an old Air Hogs controller. An Arduino Pro mini is connected to the XBee, analog stick for steering, LEDs, and triggers buttons.

Do you have an XBee project you would like featured in the XBee Project Gallery? You can submit your own or someone else’s project here.

Digi Wireless Design Service—Prototyping

Posted on:

Digi Wireless Design Services helps companies bring ideas to life (and market). With its world-class RF lab, experienced engineers and a library of proven IP, Digi WDS is the trusted partner for many with challenging prototyping requirements. Adam Wolf, a Digi engineer walks us through the process of taking a Seattle Sport Sciences design request and transforming it into a representation of awesomeness in less than a week.

Click here to read the full story on Seattle Sport Sciences’ wireless device. Have any questions? Shoot Adam a tweet at @adamwwolf.

Makers Turn to XBee for Wireless Projects at World Maker Faire 2015

Posted on:

Another year. Another Maker Faire. And more wireless XBee projects! The Digi team was on the ground at this year’s World Maker Faire in New York and found some impressive XBee projects during the weekend. Here’s a quick recap of the event.

Telemetry for Land and Air
The first XBee project found at Maker Faire was created by Kerron Manwaring. Starting out as just a hobbyist, his passion for electronics drew him to a career in engineering. He was showing off a rover and drone powered by microcontrollers.  As you can see in the pictures below, both of the land and air vehicles had XBee onboard, which he used for sending telemetry.


Tobor – The Giant Robotic Arm
The next project we came across was Tobor, a 12-foot haptic robotic arm. The arm has haptic ability, which means it can be controlled by a glove using movement sensors and motors.  When the user wearing the glove moves his or her hand, Tobor responds by mimicking that movement. How was XBee involved? Commands from the glove telling the arm how to move are sent wirelessly over XBee.


Digi Connections at Maker Faire 
Digi Internship Alumni Jonathan Young showed off his automatic drum machine as well as the Sentry Gun he built using the experience he had over two summers at Digi. Also, Chief Innovator Rob Faludi posed for his annual photo with young maker Quinn of Qtechknow. Quinn has been mentioned in several previous blog posts, he’s been using XBees for at least four years now! Learn more about what he’s up to at his website.


World Maker Faire NYC was as crowded as it’s ever been and we’re already looking forward to the next one. If you didn’t make it out this year,  you can click here to check out Maker Faire’s slideshow of highlights from the weekend.

Connecting Grove Sensors with XBee

Posted on:

Grove modules are quickly growing in popularity due to each sensor and actuator having the same standardized connector — making it fast and easy to prototype a sensor project.

In the words of Seeed Studio, “Grove is a modulated, ready-to-use tool set. Much like Lego, it takes a building block approach to assembling electronics. Compared with the traditional, complicated learning method of using a breadboard and various electronic components to assemble a project, Grove simplifies and condenses the learning process significantly. The Grove system consists of a base shield and various modules with standardized connectors.”im121027001_2_1

What makes Grove devices so simple is that the connectors eliminate the need to break out the breadboard, resistors, jumper wires, etc.. The connection is a 4-pin interface that supports digital, analog, I2C signal through four wires with different colors.

  • Red is for VCC
  • Black is for GND,
  • Yellow is for signal
  • White is for others.

Since XBee is used frequently in wireless sensor networks, we included six Grove connectors on the new XBee Grove Development Board. You can use it to quickly evaluate XBee and Grove modules with a PC or microcontroller.

We have included two XBee Grove Adapter Boards in the Wireless Connectivity Kit. If you’re interested in how this might help you build wireless sensor networks, we have this graphic that offers an overview of the board and its connections.




Visit Digi-Key to learn more about the Wireless Connectivity Kit. More information on the XBee Grove Development Board can be found here.

XBee Tech Tip: Digital IO Line Passing with XBee

Posted on:

A unique feature of the XBee 802.15.4 modules is the ability to perform digital I/O line passing. Essentially, this feature enables the user to toggle the state of any DIO pin on a transmitting radio and have that same pin on one or more receiving radios toggle their state to match the change. This functionality is an easy way to wirelessly control relays or any other switched equipment.

Note: DIO line passing can only be done with XBee 802.15.4 modules.wck_logo

Components used in this tutorial:

  • Two XBee 802.15.4 radios
  • Two XBee Grove Development Boards
  • Two Micro USB cables

To get started with this example, configure the pin of the XBee where the button is connected as digital input, and configure the pin of the XBee where the LED is connected as digital output. You will also need to configure the first XBee to send a notification to the other XBee when the button changes state.

Let’s get started.

Here are the configuration settings that need to be written to the XBee modules. In this example, XBee A is the transmitting radio and XBee B is the receiving module (click image to enlarge):

Screen Shot 2015-08-21 at 9.29.24 AM

More of a visual learner? No worries. Follow along with this video as we write the parameters described above to both of our XBee radios.

Bonus Tip: Boost the reliability of the XBee connection by setting a sample rate on the transmitting XBee (Parameter: IR). If there happens to be interference while the data is being transmitted, it might not be received by XBee B. Setting a sample rate will ensure the change of state is communicated by the following sample rate packets.

Have the radios all set and ready to go? When the button connected to the the transmitting XBee is pressed, the LED of the receiver will light. Cue the drum roll….

If the application requires multiple receiver nodes, the change of state can be sent as a broadcast. To do this, modify the destination low address to “FFFF” on the transmitting radio. Note that this concept of DIO line passing is not specific to only pin 4, it can be applied to any DIO pin on the XBee 802.15.4 module.Wireless-Connectivity-Kit-DMG (1)

For this tutorial we used the new XBee Grove Development Board found in the Wireless Connectivity Kit. Visit Digi-Key to learn more about this new kit.


National Geographic Explorers Connect the Okavango Delta to the IoT

Posted on: 1 Comment

Drones capable of detecting illegal logging in the Amazon Rainforest. Sensor networks to help research the dwindling honeybee population. Smart solar-powered waste collection. This is all happening today thanks to the Internet of Things. In addition to new technologies, the open-source movement has made it possible to share hardware designs, software and even data-making it easy for anyone to aid the global effort to preserve the ecosystems we depend on.

This summer, a team of National Geographic explorers are taking a 1,000 mile journey down the Okavango River in an effort to collect environmental data, discover new species and measure the heartbeat of one of the most remote wetlands in the world. And it’s all being done with Internet connected devices.


Into the Okavango’s Mission
The Okavango Delta, located in Botswana, is one of the last pristine wetland wildernesses in the world. It’s protected as an UNESCO World Heritage Site, but farther upstream its water supply in Angola and Namibia is still susceptible to human interference.

National Geographic’s Okavango Expedition assembled a team of scientists and engineers to collect data along the Okavango River so that conservation efforts can be more effective, raise awareness and ensure that this remote wildlife sanctuary can be enjoyed for generations to come.

The delta itself stretches a vast 15,000 square kilometers, so the team of researchers needed to find a way to efficiently gather data across the entire area. Since this is such a remote location, additional considerations needed to be made like weatherproof equipment, power sources, and how to network the sensors.


Connecting Across the Delta
Shah Selbe, the expedition’s lead technologist and conservation engineer at Conservify, created a wireless sensor network that significantly reduces the amount of manual labor required by the team to collect environmental data. Now, they no longer have to use pH strips or manually check sensor readings and record data onto paper. The wireless network completely automates the recording of data, collects more of it, and is more accurate.

Steve Boyes, National Geographic Emerging Explorer, put it best saying, “Shah took us from little strips and pieces of paper – writing down the water quality as we go down – to environmental sensor platforms… We’re going to be measuring the literal heartbeat of that wilderness in real time for the world to see.” 

Shah and team built a wireless sensor network using components you probably have sitting on your desk right now. A Raspberry Pi running a Python script is the center of each network. This central hub processes the data generated from multiple remote nodes and acts as a Wi-Fi gateway. Data is directly uploaded to the web server using JSON. In some especially remote locations, the remote Arduino nodes send data using the Twilio API over a cellular network.


Each of the nodes consist of an Arduino, XBee, and multiple sensors. The XBee ZigBee network makes it possible to connect over long distances since data packets can hop between neighboring nodes until they reach the central coordinator. For power, the remote nodes rely on a solar panel and a 6600 mAH battery.

There were a variety of sensor deployed throughout the delta. The main goal is to gather data related to water quality so sensors for water chemistry like pH, dissolved oxygen, salinity, and conductivity make up a bulk of the data collected. The team is also trying to better understand flood dynamics by monitoring flow rate, water level, and turbidity.

On the surface, sensors measure air temperature, humidity, barometric pressure and in the future the team plans to add sensors to detect radiation and other air pollutants.

In addition to the environmental data collected by the sensors, the team is streaming GPS location, research observations, wildlife sightings, photos, and more in real-time on their website.

Rolling out the wireless sensor network and collecting data is just phase 1 of the project. All of the data will be made available to the public through the website’s API. Continuously monitoring the delta will enable the team to detect even the smallest changes in water quality. The design and code used in the project will also be open sourced so the conservation effort can reach and preserve as many marine habitats as possible.

Stay connected to ‘Into the Okavango’ at the following links:

Over the next few years, the team plans to build out the network by adding sensors to the headwaters and other locations across the delta to gain an even more comprehensive understanding of the river and its surrounding environment.

Contact a Digi expert and get started today! Contact Us