Ben: The initial rollout of 5G focused heavily, in the press, on the high bandwidth, low latency kinds of applications, such as video and communication for autonomous vehicles. The reality is that really 5G is set up to offer a differentiated range of solutions across multiple different frequency bands and with greater ability to segment data based on priorities. I think that'll tie into the question that was just asked about monitoring and control versus monitoring.
While current 5G deployments are still concentrated on serving dense population areas and the higher bandwidth applications, the future radio chipsets are going to start coming out. We're starting to see samples of them now. They'll probably be on the market in the next year to two years, and will offer cost-effective connectivity for a lot of these different critical infrastructures, as well as the ability to use the lower frequencies to get better penetration and range, and to differentiate things to allow different kinds of communication to be segmented from each other. It's going to give a lot of flexibility to implement these kinds of capabilities.
Digi supports a technology we call our CORE module, which is a plug-in modem that allows for flexible deployment of whatever the current available technology is at a given location, as the infrastructure supported. And so, as we've said before, a lot of these implementations are designed to be put out in the field for 10, 20 years.
And obviously, cell technology changes quickly. So this allows for updates to cell technology without making profound changes to how the communication works, which again is going to tie back to some of the security questions that we asked earlier. So this same technology allows an easy switch between pure public communication or CBRS private cellular networks.
The FirstNet or the existing 5G or the new 5G technology is going to be implemented with the simple change of the radio without having to reconfigure how the device is communicating.
Curt: I'd like to add to that. Most of our customers that started in the world of 2G and then 3G, really even didn't need 4G for a lot of their applications. The speeds and the latencies were more than adequate for grid applications. Typically, we're pulling meter data or state data.
And sometimes, as we talked about, there’s a simple command to change the state, and those don't require very much bandwidth. The exception is assets like substations, where you have a lot more equipment and responsibility for downstream transmission. They could benefit from higher speeds and lower latencies.
What's interesting to me is we have a number of customers that put our equipment out and they’ve run it for 10, 13,14 years and never upgraded. Utilities don't like to make changes to things that work, but they were forced to upgrade by the mobile operators, turning off their 2G or 3G networks and causing them to replace their equipment.
We had a discussion earlier about the benefits of public versus private networks. One of the nice things about a private network is you determine things that need to change. And if they don't need to change, you can keep them the same. And you're not forced by a mobile operator. So, I think most of the stuff that we've been involved with, for the most part, 5G hasn't been required.
Alec: Particularly in the IoT space and in utilities, no, we haven't really seen that need for the 5G speeds. But I think where the need is going to come is exactly where you were talking about. Typically, these cellular generations last about 10 years, depending upon the location, right?
And we're seeing now that 2G and 3G has been basically entirely phased out of the tower technologies. Eventually, 4G LTE will go that way as well. But the nice aspect of LTE, which stands for Long-Term Evolution, is they actually had a plan for this with IoT devices, and the 3GPP spec has already been included for 5G to include LTE networks, low-speed IoT networks, such as LTM and NB-IoT, into the future.
So I think we'll still see the continuation of these IoT networks as the generations move forward and will still need these low-power, low-bandwidth devices that are out there.