ANY-G TO LTE
THE TOP FIVE CONSIDERATIONS FOR MIGRATING TO 4G, 5G AND BEYOND
PREPARING FOR 2G AND 3G SUNSETS

In the consumer market, 4G and 5G LTE standards continue to gain favor as the preferred networks for phones and tablets, thanks to increased data speeds. Consumers might not give much thought to the differences between generations of cellular technology, but engineers and network professionals who manage remote commercial and industrial equipment are, naturally, very focused on the nuances and distinctions that can affect their short- and long-term plans. As many carriers announce their plans to sunset their legacy networks, managers of corporate wireless networks must prepare for the migration away from legacy 2G and 3G networks. This migration, which is already well underway in North America, Western and Northern Europe, Japan and South Korea, is driven by the pursuit of three fundamental and worthy benefits.

SPEED
Over the past year, more companies have stepped up their adoption of next-generation networks for bandwidth-intensive applications such as retail store backups, IP cameras and digital signage. These networks provide unsurpassed download and upload speeds (with theoretical speeds as high as 300 Mbps) and very low latency.

TOTAL COST OF OWNERSHIP
New network technology allows operators to do more with less, thanks to increased spectral efficiency. That means carriers can support more customers and more devices with existing towers.

LONGEVITY
While consumer wireless devices typically have a 12-to-36-month refresh cycle, companies developing IoT solutions need a longer-term horizon – typically five to 10 years. Companies are viewing 4G and 5G as their strategic platform for the next decade.

“In the U.S., sunset plans have been announced and carriers are moving inexorably to shut down older network architectures. For instance, AT&T already shut down its 2G network in 2015, and Verizon has announced it will decommission its 3G network as of December 31, 2019. As a result, their 2G and 3G investments and maintenance activities have decreased dramatically, and many customers have already reported service degradations. Device activation deadlines for these older networks will arrive much sooner. Verizon will not allow any new 3G activations after June 2018, and AT&T will not allow any 3G “light-ups” after December 2018. Clearly, moving to an LTE platform is the best choice for carriers – and, by extension, device-makers as well.”
2G/3G CARRIER SUNSETS
In many cases, the migration away from 2G/3G is driven by a desire to repurpose spectrum for more efficient LTE data traffic. As mentioned above, it’s more cost-effective for a carrier to operate a LTE network than a 2G or 3G network. What, exactly, do we mean by migration? As the graphic below describes, LTE represents the confluence of the GSM and CDMA evolutions.

THE TOP FIVE MIGRATION CONSIDERATIONS
Advocates emphasize the improved speeds that are possible with new network architectures, but there are other important factors to consider. Developers of IoT solutions considering advanced devices must now factor into migration plans: SIM cards, dual antennas, new signal-quality metrics and new frequency bands. In the following pages, we review the top five considerations that M2M network operators and administrators should keep in mind as they contemplate migration from 2G/3G.

1. SIM Cards and APNs
Companies that currently leverage GSM GPRS, EDGE or HSPA networks use subscriber identification module (SIM) cards and access point names (APNs). But SIM cards are a new concept for those companies that are migrating from CDMA 1xRTT or EVDO networks. A SIM authenticates the LTE device and identifies the data services it will use.

The key consideration for device makers is that devices on a CDMA network do not require a SIM card. In migrating to LTE, engineers must decide which of four different SIM form factors is best. The key design considerations include:
• Determining which SIM form factor is best suited for the application
• Ensuring there is room on the board for a SIM card and a SIM card basket
• Factoring in the cost of the SIM card and basket in the BOM
• Operationally the SIM must be placed into every device which requires time and manpower
2. Dual Antennas
In many 3G HSPA and EVDO networks, routers are frequently deployed and configured with two antennas to achieve “antenna diversity.” (The primary antenna transmits and receives while the secondary antenna is receive only.) With this configuration, the router is better able to cope with multipath interference that occurs when signals bounce off obstructions (e.g., buildings, trees or airplanes) and arrive at the antenna out of phase. Two receive antennas, placed where signals can be best received and combined, can help counteract multipath interference. Conversely, LTE uses multiple input/multiple output (MIMO) where both antennas transmit and receive. While it is possible to use one antenna (and operate the device in SISO mode), two antennas are a better choice for optimum performance. Using one antenna will cause bandwidth to vary based on the RF conditions at the operating site. Application performance will also suffer, sometimes cutting bandwidth as much as 50 percent. Regardless, best practices call for using directly attached antennas.

3. Evaluating Your Signal
In 2G and 3G networks, signal strength was best understood using the received signal strength indicator (RSSI), measured in dBm. That value alone only provides a measure of the total signal including noise, and, of course, noise degrades the performance of a cellular connection. For example, a cellular router installed in an electric substation may pick up a strong cellular signal – but it will still perform poorly due to electromagnetic interference. That’s why it’s important to understand not only the strength of the signal, but also its quality.

Most 2G/3G CDMA and WCDMA (i.e., UMTS/HSPA) devices also report Ec/Io which is a better indicator of signal quality. However, this metric is less commonly used and not as well understood as RSSI.

For 3G cellular connections, RSSI and Ec/Io determine signal quality:

<table>
<thead>
<tr>
<th>RSSI</th>
<th>SIGNAL STRENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>>-70 dBm</td>
<td>Excellent</td>
</tr>
<tr>
<td>-70 dBm to -85dBm</td>
<td>Good</td>
</tr>
<tr>
<td>-86 dBm to -100dBm</td>
<td>Poor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EC/IO</th>
<th>SIGNAL QUALITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to -6</td>
<td>Excellent</td>
</tr>
<tr>
<td>-7 to -10</td>
<td>Good</td>
</tr>
<tr>
<td>-11 to -20</td>
<td>Fair to Poor</td>
</tr>
</tbody>
</table>
With LTE, operators can now take advantage of three new metrics to help indicate when the device has received a “good” LTE signal:

- Reference Signal Received Power – RSRP indicates the signal strength and is roughly analogous to RSSI
- Reference Signal Received Quality – RSRQ describes the signal quality and is similar to Ec/IoT
- Signal to Interference and Noise Ratio – SINR (also called SNR) indicates the throughput capacity of the channel. As the name implies, SINR is the strength of the signal divided by the strength of any interference.

These parameters may vary depending on the technology being used. The table below describes the RF conditions that each value range represents.

For example, a 4G modem might report an RSSI of -68 dBm, but:

<table>
<thead>
<tr>
<th>RSRP (dBm)</th>
<th>RSRQ (dB)</th>
<th>SINR (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>102 dBm</td>
<td>16 dB</td>
<td>1.8 dB</td>
</tr>
</tbody>
</table>

In this case, the signal quality is actually very poor. This could be due to the device being some distance away from the LTE transmitter. It’s also possible that something is interfering with the signal, such as a building or other obstructions between the device and the tower.

Ultimately, poor signal quality equals poor performance due to issues such as retransmissions. Not only does poor signal quality degrade performance, it also adds cost to monthly data plans.
How Does One Get the Best Possible Signal?
Move the cellular device to a location where it can receive the best possible signal and use directly attached antennas. If that’s not possible, use two identical external antennas with the shortest possible cables. Consider using dual-element antennas that reside in one enclosure. These are well suited for mobile applications but can also work in stationary settings.

4. Frequencies and Bands
When it comes to frequencies and bands, LTE adoption can involve some subtle complexities. For 2G cellular networks it was possible to have a single, worldwide SKU that operated on four bands between 850 MHz and 1,900 MHz. 3G added two bands at 1,700 MHz and 2,100 MHz, resulting in a total of six bands in a single worldwide SKU.

Due to the exponential growth in cellular devices, 4G now has more than 40 bands defined, at frequencies between 700 MHz and 3,700 MHz. This results in a few benefits, but also creates challenges.

On the positive side, the lower the frequency the larger the service area and the better the building penetration.

- More bands mean more aggregated bandwidth, resulting in a higher capacity as well as higher per-device throughput
- However, more bands mean a more expensive and complex device. It is no longer economically feasible to have a single, worldwide SKU of a product. Most products are therefore offered in regional variants, with the Americas, Europe and APAC being the most common geographical split. When comparing vendors, compare down to the band-level and if you have a global business, select a partner that has products in the region where you need to have coverage.
- The wider frequency range also requires more complex antennas. An antenna that is efficient at one frequency may be less efficient at another frequency. LTE antennas are therefore typically more expensive, and for optimal performance two antennas are recommended.

For the most part, 2G/3G GSM and CDMA networks have operated primarily within a narrow band of frequencies: from 850-2,100 MHz. Most North American cellular carriers use 850 MHz (called the cellular band) and 1,900 MHz (the PCS band). In other regions of the world, carriers use 900 MHz and 1,800 MHz, with some use of 1,700 MHz and 2,100 MHz AWS bands worldwide. In addition to these frequencies, 4G also uses spectrum below 800 MHz and above 2,100 MHz. Many LTE carriers are using the 700 MHz spectrum. LTE radios and carriers are now using “bands” to represent which frequencies are used.
5. Speed and Latency
When it comes to new and advanced networks, the conversation has largely focused on faster download and upload speeds. For the most part, that focus is understandable. Another benefit for IoT is that LTE technology typically provides much lower latency than 3G, getting closer to wire-line latency, which is critical for certain M2M polling applications like SCADA and asset monitoring. While the theoretical upload and download speeds are said to be in the 300+ Mbps range, real world speeds are typically far less. In some cases, a mobile device (e.g., a Digi TransPort® router) might see 40+ Mbps, but the same device in a different location might get less than 10 Mbps. Why? There are many factors that influence cellular data performance, just as they do for any wired or wireless network, including:

- Distance from the serving cell site
- Obstructions such as hills, buildings and trees between the end device and the serving cell site
- Interference from electric devices such as electric motors, transformers and lighting ballasts
- The type and quality of antennas and antenna cables and the number of antennas. As noted previously, two antennas will provide much better performance than just one.
- The load on the local tower and network attached to that tower. For example, a location next to a freeway will likely see slower speeds at rush hour vs. at 2 a.m. This is one of the only factors that cannot be helped by improving signal quality. Even the best antennas cannot counteract a busy, potentially overloaded network.

A CLOSER LOOK AT NEW STANDARDS

The NB-IoT mobile data standard is also gaining traction because it responds to the rapidly expanding market for low power wide area (LPWA) connectivity. It’s part of the Release (13) from the 3GPP cellular standards body. NB-IoT deployments are primarily in Europe and in parts of Asia. However, since U.S. carriers have already invested heavily in LTE-M infrastructure updates, it is unlikely they will deploy NB-IoT networks in the near future.

LTE-M is another new standard for the LPWA market that’s part of Release 13 from the #GPP. Like NB-IoT, LTE-M is optimized for lower bandwidth applications using devices that sleep and report their data periodically. It supports multi-year battery life with extended ranges and better penetration of buildings and obstacles for devices that are deployed in hard-to-reach places. It is ideal for use-cases including remote/low-density industrial sensors, automated commercial meters for water or gas systems, connected healthcare devices, and even intelligent industrial lighting systems.
CONCLUSION
For forward-thinking IoT operators, 4G, 5G and other networks will continue to emerge as increasingly important standards. Network professionals will need to acknowledge and plan for the many subtleties that will affect their long-term adoption plans as LTE takes center stage and migration strategies take shape. To capitalize on the speed and longevity benefits that LTE presents, it’s essential to account for a variety of factors – from SIM cards and antennas to bandwidth selection. With careful planning, companies will be in a better position to capitalize on the signal strength, speed and greater capacity that LTE architectures can provide.

ABOUT DIGI INTERNATIONAL
Digi International (NASDAQ: DGII) is the M2M solutions expert, combining products and services as end-to-end solutions to drive business efficiencies. Digi provides the industry’s broadest range of wireless products, a cloud computing platform tailored for devices and development services to help customers get to market fast with wireless devices and applications. Digi’s entire solution set is tailored to allow any device to communicate with any application, anywhere in the world. Digi has shipped nearly half a million cellular M2M routers to 95 countries over the last decade.

KEY TAKEAWAYS
• Device makers can no longer rely on 2G or 3G for IoT applications
• Network engineers and administrators can capitalize on the advantages of 4G, 5G, NB-IoT and LTE-M
• LTE uses more frequencies and bands, so it’s important to select a device that supports the LTE technology in your region
Contact a Digi expert and get started today

PH: 877-912-3444
www.digi.com

Digi International Worldwide HQ
11001 Bren Road East
Minnetonka, MN 55343

Digi International - Japan
+81-3-5428-0261

Digi International - Singapore
+65-6213-5380

Digi International - China
+88-21-5049-2199

©Copyright2016 Digi International Inc. All rights reserved. 91003503 A2/718

While every reasonable effort has been made to ensure that this information is accurate, complete and up-to-date, all information is provided “AS IS” without warranty of any kind. We disclaim liability for any reliance on this information. All registered trademarks or trademarks are property of their respective owners.